1
|
Hao F, Zhang Y, Hou J, Zhao B. Chromatin remodeling and cancer: the critical influence of the SWI/SNF complex. Epigenetics Chromatin 2025; 18:22. [PMID: 40269969 PMCID: PMC12016160 DOI: 10.1186/s13072-025-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
The SWI/SNF complex was first identified in yeast and named after studies of mutants critical for the mating-type switch (SWI) and sucrose non-fermenting (SNF) pathways.The SWI/SNF complex plays a pivotal role in regulating gene expression by altering chromatin structure to promote or suppress the expression of specific genes, maintain stem cell pluripotency, and participate in various biological processes. Mutations in the SWI/SNF complex are highly prevalent in various human cancers, significantly impacting tumor suppressive or oncogenic functions and influencing tumor initiation and progression. This review focuses on the mechanisms by which ARID1A/ARID1B, PBRM1, SMARCB1, and SMARCA2/SMARCA4 contribute to cancer, the immunoregulatory roles of the SWI/SNF complex, its involvement in DNA repair pathways, synthetic lethality, and applications in precision oncology.
Collapse
Affiliation(s)
- Fengxiang Hao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China
| | - Ying Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China
| | - Jiayi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Bin Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China.
| |
Collapse
|
2
|
Mignon J, Leyder T, Monari A, Mottet D, Michaux C. Exploration of the influence of environmental changes on the conformational and amyloidogenic landscapes of the zinc finger protein DPF3a by combining biophysical and molecular dynamics approaches. Int J Biol Macromol 2025; 310:143234. [PMID: 40250658 DOI: 10.1016/j.ijbiomac.2025.143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
In the past few years, the double PHD fingers 3 (DPF3) protein isoforms (DPF3b and DPF3a) have been identified as new amyloidogenic intrinsically disordered proteins (IDPs). Although such discovery is coherent and promising in light of their involvement in proteinopathies, their amyloidogenic pathway remains largely unexplored. As environmental variations in pH and ionic strength are relevant to DPF3 pathophysiological landscape, we therefore enquired the effect of these physicochemical parameters on the protein structural and prone-to-aggregation properties, by focusing on the more disordered DPF3a isoform. In the present study, we exploited in vitro and in silico strategies by combining spectroscopy, microscopy, and all-atom molecular dynamics methods. Very good consistency and complementary information were found between the experiments and the simulations. Acidification unequivocally abrogated DPF3a fibrillation upon maintaining the protein in highly hydrated and expanded conformers due to extensive repulsion between positively charged regions. In contrast, alkaline pH delayed the aggregation process due to loss in intramolecular contacts and chain decompaction, the extent of which was partly reduced thanks to the compensation of negative charge by arginine side chains. Through screening attractive electrostatic interactions, high ionic strength conditions (300 and 500 mM NaCl) shifted the conformational ensemble towards more swollen, heterogeneous, and less H-bonded structures, which were responsible for slowing down the conversion into β-sheeted species and restricting the fibril elongation. For defining the self-assembly pathway of DPF3a, we unveiled that the protein amyloidogenicity intimately communicates with its conformational landscape, which is particularly sensitive to modification of its physicochemical environment. As such, understanding how to modulate DPF3a conformational ensemble will help designing novel protein-specific strategies for targeting neurodegeneration.
Collapse
Affiliation(s)
- Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Tanguy Leyder
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006 Paris, France.
| | - Denis Mottet
- Molecular Analysis of Gene Expression (MAGE) Laboratory, GIGA Institute, University of Liège, B34, 1 Avenue de l'Hôpital, 4000 Liège, Belgium.
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
3
|
Skouras P, Markouli M, Papadatou I, Piperi C. Targeting epigenetic mechanisms of resistance to chemotherapy in gliomas. Crit Rev Oncol Hematol 2024; 204:104532. [PMID: 39406277 DOI: 10.1016/j.critrevonc.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Glioma, an aggressive type of brain tumors of glial origin is highly heterogeneous, posing significant treatment challenges due to its intrinsic resistance to conventional therapeutic schemes. It is characterized by an interplay between epigenetic and genetic alterations in key signaling pathways which further endorse their resistance potential. Aberrant DNA methylation patterns, histone modifications and non-coding RNAs may alter the expression of genes associated with drug response and cell survival, induce gene silencing or deregulate key pathways contributing to glioma resistance. There is evidence that epigenetic plasticity enables glioma cells to adapt dynamically to therapeutic schemes and allow the formation of drug-resistant subpopulations. Furthermore, the tumor microenvironment adds an extra input on epigenetic regulation, increasing the complexity of resistance mechanisms. Herein, we discuss epigenetic changes conferring to drug resistance mechanisms in gliomas in order to delineate novel therapeutic targets and potential approaches that will enable personalized treatment.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Greece.
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Ioanna Papadatou
- University Research Institute for the Study of Genetic & Malignant Disorders in Childhood, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
4
|
Verrillo G, Obeid AM, Genco A, Scrofani J, Orange F, Hanache S, Mignon J, Leyder T, Michaux C, Kempeneers C, Bricmont N, Herkenne S, Vernos I, Martin M, Mottet D. Non-canonical role for the BAF complex subunit DPF3 in mitosis and ciliogenesis. J Cell Sci 2024; 137:jcs261744. [PMID: 38661008 PMCID: PMC11166463 DOI: 10.1242/jcs.261744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
DPF3, along with other subunits, is a well-known component of the BAF chromatin remodeling complex, which plays a key role in regulating chromatin remodeling activity and gene expression. Here, we elucidated a non-canonical localization and role for DPF3. We showed that DPF3 dynamically localizes to the centriolar satellites in interphase and to the centrosome, spindle midzone and bridging fiber area, and midbodies during mitosis. Loss of DPF3 causes kinetochore fiber instability, unstable kinetochore-microtubule attachment and defects in chromosome alignment, resulting in altered mitotic progression, cell death and genomic instability. In addition, we also demonstrated that DPF3 localizes to centriolar satellites at the base of primary cilia and is required for ciliogenesis by regulating axoneme extension. Taken together, these findings uncover a moonlighting dual function for DPF3 during mitosis and ciliogenesis.
Collapse
Affiliation(s)
- Giulia Verrillo
- University of Liege, GIGA – Research Institute, Molecular Analysis of Gene Expression (MAGE) Laboratory, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Anna Maria Obeid
- University of Liege, GIGA – Research Institute, Molecular Analysis of Gene Expression (MAGE) Laboratory, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Alexia Genco
- University of Liege, GIGA – Research Institute, Molecular Analysis of Gene Expression (MAGE) Laboratory, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Jacopo Scrofani
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - François Orange
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée (CCMA), 06100 Nice, France
| | - Sarah Hanache
- University of Liege, GIGA – Research Institute, Molecular Analysis of Gene Expression (MAGE) Laboratory, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Julien Mignon
- University of Namur, Laboratory of Physical Chemistry of Biomolecules, Unité de Chimie Physique Théorique et Structurale (UCPTS), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Tanguy Leyder
- University of Namur, Laboratory of Physical Chemistry of Biomolecules, Unité de Chimie Physique Théorique et Structurale (UCPTS), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Catherine Michaux
- University of Namur, Laboratory of Physical Chemistry of Biomolecules, Unité de Chimie Physique Théorique et Structurale (UCPTS), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Céline Kempeneers
- University of Liege, Pneumology Laboratory, I3 Group, GIGA Research Center, B-4000 Liège, Belgium
- Division of Respirology, Department of Pediatrics, University Hospital Liège, B-4000 Liège, Belgium
| | - Noëmie Bricmont
- University of Liege, Pneumology Laboratory, I3 Group, GIGA Research Center, B-4000 Liège, Belgium
- Division of Respirology, Department of Pediatrics, University Hospital Liège, B-4000 Liège, Belgium
| | - Stephanie Herkenne
- University of Liege, GIGA-Cancer, Laboratory of Mitochondria and Cell Communication, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maud Martin
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Denis Mottet
- University of Liege, GIGA – Research Institute, Molecular Analysis of Gene Expression (MAGE) Laboratory, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| |
Collapse
|
5
|
Navickas SM, Giles KA, Brettingham-Moore KH, Taberlay PC. The role of chromatin remodeler SMARCA4/BRG1 in brain cancers: a potential therapeutic target. Oncogene 2023:10.1038/s41388-023-02773-9. [PMID: 37433987 PMCID: PMC10374441 DOI: 10.1038/s41388-023-02773-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
The chromatin remodeler SMARCA4/BRG1 is a key epigenetic regulator with diverse roles in coordinating the molecular programs that underlie brain tumour development. BRG1 function in brain cancer is largely specific to the tumour type and varies further between tumour subtypes, highlighting its complexity. Altered SMARCA4 expression has been linked to medulloblastoma, low-grade gliomas such as oligodendroglioma, high-grade gliomas such as glioblastoma and atypical/teratoid rhabdoid tumours. SMARCA4 mutations in brain cancer predominantly occur in the crucial catalytic ATPase domain, which is associated with tumour suppressor activity. However, SMARCA4 is opposingly seen to promote tumourigenesis in the absence of mutation and through overexpression in other brain tumours. This review explores the multifaceted interaction between SMARCA4 and various brain cancer types, highlighting its roles in tumour pathogenesis, the pathways it regulates, and the advances that have been made in understanding the functional relevance of mutations. We discuss developments made in targeting SMARCA4 and the potential to translate these to adjuvant therapies able to enhance current methods of brain cancer treatment.
Collapse
Affiliation(s)
- Sophie M Navickas
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Katherine A Giles
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kate H Brettingham-Moore
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
6
|
Ferguson LP, Gatchalian J, McDermott ML, Nakamura M, Chambers K, Rajbhandari N, Lytle NK, Rosenthal SB, Hamilton M, Albini S, Wartenberg M, Zlobec I, Galván JA, Karamitopoulou E, Vavinskaya V, Wascher A, Lowy AM, Schürch CM, Puri PL, Bruneau BG, Hargreaves DC, Reya T. Smarcd3 is an epigenetic modulator of the metabolic landscape in pancreatic ductal adenocarcinoma. Nat Commun 2023; 14:292. [PMID: 36653361 PMCID: PMC9849267 DOI: 10.1038/s41467-023-35796-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Pancreatic cancer is characterized by extensive resistance to conventional therapies, making clinical management a challenge. Here we map the epigenetic dependencies of cancer stem cells, cells that preferentially evade therapy and drive progression, and identify SWI/SNF complex member SMARCD3 as a regulator of pancreatic cancer cells. Although SWI/SNF subunits often act as tumor suppressors, we show that SMARCD3 is amplified in cancer, enriched in pancreatic cancer stem cells and upregulated in the human disease. Diverse genetic mouse models of pancreatic cancer and stage-specific Smarcd3 deletion reveal that Smarcd3 loss preferentially impacts established tumors, improving survival especially in context of chemotherapy. Mechanistically, SMARCD3 acts with FOXA1 to control lipid and fatty acid metabolism, programs associated with therapy resistance and poor prognosis in cancer. These data identify SMARCD3 as an epigenetic modulator responsible for establishing the metabolic landscape in aggressive pancreatic cancer cells and a potential target for new therapies.
Collapse
Affiliation(s)
- L Paige Ferguson
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | | | - Matthew L McDermott
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Mari Nakamura
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Kendall Chambers
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Nirakar Rajbhandari
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Nikki K Lytle
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Michael Hamilton
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Sonia Albini
- Genethon, 91000, EVRY, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Martin Wartenberg
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - José A Galván
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Eva Karamitopoulou
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Vera Vavinskaya
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Alexis Wascher
- Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Andrew M Lowy
- Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benoit G Bruneau
- Gladstone Institutes, Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | | - Tannishtha Reya
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Department of Physiology and Cellular Biophysics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Unveiling the Metal-Dependent Aggregation Properties of the C-terminal Region of Amyloidogenic Intrinsically Disordered Protein Isoforms DPF3b and DPF3a. Int J Mol Sci 2022; 23:ijms232315291. [PMID: 36499617 PMCID: PMC9738585 DOI: 10.3390/ijms232315291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Double-PHD fingers 3 (DPF3) is a BAF-associated human epigenetic regulator, which is increasingly recognised as a major contributor to various pathological contexts, such as cardiac defects, cancer, and neurodegenerative diseases. Recently, we unveiled that its two isoforms (DPF3b and DPF3a) are amyloidogenic intrinsically disordered proteins. DPF3 isoforms differ from their C-terminal region (C-TERb and C-TERa), containing zinc fingers and disordered domains. Herein, we investigated the disorder aggregation properties of C-TER isoforms. In agreement with the predictions, spectroscopy highlighted a lack of a highly ordered structure, especially for C-TERa. Over a few days, both C-TERs were shown to spontaneously assemble into similar antiparallel and parallel β-sheet-rich fibrils. Altered metal homeostasis being a neurodegeneration hallmark, we also assessed the influence of divalent metal cations, namely Cu2+, Mg2+, Ni2+, and Zn2+, on the C-TER aggregation pathway. Circular dichroism revealed that metal binding does not impair the formation of β-sheets, though metal-specific tertiary structure modifications were observed. Through intrinsic and extrinsic fluorescence, we found that metal cations differently affect C-TERb and C-TERa. Cu2+ and Ni2+ have a strong inhibitory effect on the aggregation of both isoforms, whereas Mg2+ impedes C-TERb fibrillation and, on the contrary, enhances that of C-TERa. Upon Zn2+ binding, C-TERb aggregation is also hindered, and the amyloid autofluorescence of C-TERa is remarkably red-shifted. Using electron microscopy, we confirmed that the metal-induced spectral changes are related to the morphological diversity of the aggregates. While metal-treated C-TERb formed breakable and fragmented filaments, C-TERa fibrils retained their flexibility and packing properties in the presence of Mg2+ and Zn2+ cations.
Collapse
|
8
|
Maciag SS, Bellaver FV, Bombassaro G, Haach V, Morés MAZ, Baron LF, Coldebella A, Bastos AP. On the influence of the source of porcine colostrum in the development of early immune ontogeny in piglets. Sci Rep 2022; 12:15630. [PMID: 36115917 PMCID: PMC9482628 DOI: 10.1038/s41598-022-20082-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
The effects on the ontogeny of serum cytokines and immune cells caused by feeding suckling piglets with sow/gilt colostrum and milk replacer was assessed in the present study. After farrowing, the piglets born were randomized into six groups: GG and SS (n = 10/group): piglets were kept with their dam; GS (n = 10): piglets were changed from gilts to sows; SG (n = 10): piglets were changed from sows to gilts; GMR (n = 6) and SMR (n = 8): piglets from either gilts or sows were isolated from the dams and were bottle-fed ad libitum with commercial formula milk replacer. The piglets remained in the groups during the first 24 h of life and were later returned to their respective mothers. Serum immunoglobulin concentration and lymphocyte proliferation from the blood, spleen, thymus, and mesenteric lymph node of the piglets were assessed at 24 h and at 28 days of age. Serum cytokine concentrations were measured through a cytokine multiplex assay at 24 h. Overall, piglets suckling on sows (SS and GS) had a higher concentration of serum immunoglobulin at 24 h, which was also associated with a rise in plasma cytokine concentration and greater ability of B and T cells from lymphatic organs and blood mononuclear cells to respond to mitogens. We suggest a bias towards Th1-, Th2-, and Th17-cell polarizing and cytokines during the suckling period, which may be influenced by maternal immunological factors in the colostrum, such as dam parity. All findings suggest sow parity having a possible role, which may contribute to exerting a modulating action on immune response development.
Collapse
Affiliation(s)
- Shaiana Salete Maciag
- Universidade Estadual do Centro-Oeste do Paraná - Campus CEDETEG, Guarapuava, PR, Brazil
| | | | | | - Vanessa Haach
- Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | | | | | - Ana Paula Bastos
- Universidade Estadual do Centro-Oeste do Paraná - Campus CEDETEG, Guarapuava, PR, Brazil.
- Embrapa Suínos E Aves, Concórdia, SC, Brazil.
| |
Collapse
|
9
|
The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-β signaling. Nat Commun 2022; 13:4680. [PMID: 35945219 PMCID: PMC9363427 DOI: 10.1038/s41467-022-32472-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
DPF3, a component of the SWI/SNF chromatin remodeling complex, has been associated with clear cell renal cell carcinoma (ccRCC) in a genome-wide association study. However, the functional role of DPF3 in ccRCC development and progression remains unknown. In this study, we demonstrate that DPF3a, the short isoform of DPF3, promotes kidney cancer cell migration both in vitro and in vivo, consistent with the clinical observation that DPF3a is significantly upregulated in ccRCC patients with metastases. Mechanistically, DPF3a specifically interacts with SNIP1, via which it forms a complex with SMAD4 and p300 histone acetyltransferase (HAT), the major transcriptional regulators of TGF-β signaling pathway. Moreover, the binding of DPF3a releases the repressive effect of SNIP1 on p300 HAT activity, leading to the increase in local histone acetylation and the activation of cell movement related genes. Overall, our findings reveal a metastasis-promoting function of DPF3, and further establish the link between SWI/SNF components and ccRCC. The functional role of DPF3, a component of the SWI/SNF chromatin remodelling complex associated with clear cell renal cell carcinoma (ccRCC), remains unknown. Here, the authors characterise the mechanism by which DPF3 promotes metastasis via the activation of the TGF-β signalling pathway in ccRCC.
Collapse
|
10
|
Mignon J, Mottet D, Leyder T, Uversky VN, Perpète EA, Michaux C. Structural characterisation of amyloidogenic intrinsically disordered zinc finger protein isoforms DPF3b and DPF3a. Int J Biol Macromol 2022; 218:57-71. [PMID: 35863661 DOI: 10.1016/j.ijbiomac.2022.07.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
Abstract
Double PHD fingers 3 (DPF3) is a zinc finger protein, found in the BAF chromatin remodelling complex, and is involved in the regulation of gene expression. Two DPF3 isoforms have been identified, respectively named DPF3b and DPF3a. Very limited structural information is available for these isoforms, and their specific functionality still remains poorly studied. In a previous work, we have demonstrated the first evidence of DPF3a being a disordered protein sensitive to amyloid fibrillation. Intrinsically disordered proteins (IDPs) lack a defined tertiary structure, existing as a dynamic conformational ensemble, allowing them to act as hubs in protein-protein interaction networks. In the present study, we have more thoroughly characterised DPF3a in vitro behaviour, as well as unravelled and compared the structural properties of the DPF3b isoform, using an array of predictors and biophysical techniques. Predictions, spectroscopy, and dynamic light scattering have revealed a high content in disorder: prevalence of random coil, aromatic residues partially to fully exposed to the solvent, and large hydrodynamic diameters. DPF3a appears to be more disordered than DPF3b, and exhibits more expanded conformations. Furthermore, we have shown that they both time-dependently aggregate into amyloid fibrils, as revealed by typical circular dichroism, deep-blue autofluorescence, and amyloid-dye binding assay fingerprints. Although spectroscopic and microscopic analyses have unveiled that they share a similar aggregation pathway, DPF3a fibrillates at a faster rate, likely through reordering of its C-terminal domain.
Collapse
Affiliation(s)
- Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| | - Denis Mottet
- University of Liège, GIGA-Molecular Biology of Diseases, Gene Expression and Cancer Laboratory, B34, Avenue de l'Hôpital, 4000 Liège, Belgium.
| | - Tanguy Leyder
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - Eric A Perpète
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium; Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium.
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| |
Collapse
|
11
|
Putthisen S, Silsirivanit A, Panawan O, Niibori-Nambu A, Nishiyama-Ikeda Y, Ma-In P, Luang S, Ohta K, Muisuk K, Wongkham S, Araki N. Targeting alpha2,3-sialylated glycan in glioma stem-like cells by Maackia amurensis lectin-II: A promising strategy for glioma treatment. Exp Cell Res 2022; 410:112949. [PMID: 34843714 DOI: 10.1016/j.yexcr.2021.112949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Glioma stem/initiating cells have been considered a major cause of tumor recurrence and therapeutic resistance. In this study, we have established a new glioma stem-like cell (GSC), named U373-GSC, from the U373 glioma cell line. The cells exhibited stemness properties, e.g., expression of stem cell markers, self-renewal activity, multi-lineage differentiating abilities, and drug resistance. Using U373-GSC and GSC-03A-a GSC clone previously established from patient tissue, we have identified a novel GSC-associated sialic acid-modified glycan commonly expressed in both cell lines. Lectin fluorescence staining showed that Maackia amurensis lectin II (MAL-II)-binding alpha2,3-sialylated glycan (MAL-SG) was highly expressed in GSCs, and drastically decreased during FBS induced differentiation to glioma cells or little in the parental cells. Treatment of GSCs by MAL-II, compared with other lectins, showed that MAL-II significantly suppresses cell viability and sphere formation via induction of cell cycle arrest and apoptosis of the GSCs. Similar effects were observed when the cells were treated with a sialyltransferase inhibitor or sialidase. Taken together, we demonstrate for the first time that MAL-SGs/alpha-2,3 sialylations are upregulated and control survival/maintenances of GSCs, and their functional inhibitions lead to apoptosis of GSCs. MAL-SG could be a potential marker and therapeutic target of GSCs; its inhibitors, such as MAL-II, may be useful for glioma treatment in the future.
Collapse
Affiliation(s)
- Siyaporn Putthisen
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Orasa Panawan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Akiko Niibori-Nambu
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuki Nishiyama-Ikeda
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Prasertsri Ma-In
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukanya Luang
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kunimasa Ohta
- Division for Experimental Natural Science, Faculty of Art and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
12
|
Wu Q, Berglund AE, Etame AB. The Impact of Epigenetic Modifications on Adaptive Resistance Evolution in Glioblastoma. Int J Mol Sci 2021; 22:8324. [PMID: 34361090 PMCID: PMC8347012 DOI: 10.3390/ijms22158324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a highly lethal cancer that is universally refractory to the standard multimodal therapies of surgical resection, radiation, and chemotherapy treatment. Temozolomide (TMZ) is currently the best chemotherapy agent for GBM, but the durability of response is epigenetically dependent and often short-lived secondary to tumor resistance. Therapies that can provide synergy to chemoradiation are desperately needed in GBM. There is accumulating evidence that adaptive resistance evolution in GBM is facilitated through treatment-induced epigenetic modifications. Epigenetic alterations of DNA methylation, histone modifications, and chromatin remodeling have all been implicated as mechanisms that enhance accessibility for transcriptional activation of genes that play critical roles in GBM resistance and lethality. Hence, understanding and targeting epigenetic modifications associated with GBM resistance is of utmost priority. In this review, we summarize the latest updates on the impact of epigenetic modifications on adaptive resistance evolution in GBM to therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| |
Collapse
|
13
|
Mignon J, Mottet D, Verrillo G, Matagne A, Perpète EA, Michaux C. Revealing Intrinsic Disorder and Aggregation Properties of the DPF3a Zinc Finger Protein. ACS OMEGA 2021; 6:18793-18801. [PMID: 34337219 PMCID: PMC8319922 DOI: 10.1021/acsomega.1c01948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 05/27/2023]
Abstract
Double PHD fingers 3 (DPF3) is a human epigenetic factor found in the multiprotein BRG1-associated factor (BAF) chromatin remodeling complex. It has two isoforms: DPF3b and DPF3a, but very little is known about the latter. Despite the lack of structural data, it has been established that DPF3a is involved in various protein-protein interactions and that it is subject to phosphorylation. These features are typical of intrinsically disordered proteins (IDPs) for which the disorder is essential to their functionality. IDPs are also prone to aggregation and can assemble into cytotoxic amyloid fibrils in specific pathological contexts. In the present work, the DPF3a disordered nature and propensity to aggregation have been investigated using a combination of disorder predictors and biophysical methods. The DPF3a-predicted disordered character has been correlated to a characteristic random coil signal in far-UV circular dichroism (CD) and to a fluorescence emission band typical of Trp residues fully exposed to the solvent. After DPF3a purification and 24 h of incubation at room temperature, dynamic light scattering confirmed the presence of DPF3a aggregates whose amyloid nature have been highlighted by a specific deep-blue autofluorescence signature, as well as by an increase in thioflavin T fluorescence upon binding. These results are supported by an enrichment in twisted β-sheets as observed in far-UV CD and a blue shift in intrinsic Trp fluorescence. Both indicate that DPF3a spontaneously tends to orderly aggregate into amyloid fibrils. The diversity of optical signatures originates from dynamical transitions between the disordered and aggregated states of the protein during the incubation. Transmission electron microscopy micrographs reveal that the DPF3a fibrillation process leads to the formation of short needle-shape filaments.
Collapse
Affiliation(s)
- Julien Mignon
- Laboratoire
de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Denis Mottet
- GIGA-Molecular
Biology of Diseases, University of Liège, Quartier Hôpital, Avenue
de l’Hôpital 11, 4000 Liège, Belgium
| | - Giulia Verrillo
- GIGA-Molecular
Biology of Diseases, University of Liège, Quartier Hôpital, Avenue
de l’Hôpital 11, 4000 Liège, Belgium
| | - André Matagne
- Laboratoire
d’Enzymologie et Repliement des Protéine, Centre d’Ingénierie
des Protéines, InBioS, University
of Liège, Building B6C, Quartier Agora, Allée du 6 Août 13, 4000 Liège, Belgium
| | - Eric A. Perpète
- Laboratoire
de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Namur
Institute of Structured Matter, University
of Namur, 5000 Namur, Belgium
- Institute
of Life-Earth-Environment, University of
Namur, 5000 Namur, Belgium
| | - Catherine Michaux
- Laboratoire
de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Namur
Institute of Structured Matter, University
of Namur, 5000 Namur, Belgium
- Namur
Research
Institute for Life Sciences, University
of Namur, 5000 Namur, Belgium
| |
Collapse
|
14
|
Lang F, Liu Y, Chou FJ, Yang C. Genotoxic therapy and resistance mechanism in gliomas. Pharmacol Ther 2021; 228:107922. [PMID: 34171339 DOI: 10.1016/j.pharmthera.2021.107922] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Glioma is one of the most common and lethal brain tumors. Surgical resection followed by radiotherapy plus chemotherapy is the current standard of care for patients with glioma. The existence of resistance to genotoxic therapy, as well as the nature of tumor heterogeneity greatly limits the efficacy of glioma therapy. DNA damage repair pathways play essential roles in many aspects of glioma biology such as cancer progression, therapy resistance, and tumor relapse. O6-methylguanine-DNA methyltransferase (MGMT) repairs the cytotoxic DNA lesion generated by temozolomide (TMZ), considered as the main mechanism of drug resistance. In addition, mismatch repair, base excision repair, and homologous recombination DNA repair also play pivotal roles in treatment resistance as well. Furthermore, cellular mechanisms, such as cancer stem cells, evasion from apoptosis, and metabolic reprogramming, also contribute to TMZ resistance in gliomas. Investigations over the past two decades have revealed comprehensive mechanisms of glioma therapy resistance, which has led to the development of novel therapeutic strategies and targeting molecules.
Collapse
Affiliation(s)
- Fengchao Lang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Fu-Ju Chou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Wang Y, Yang CH, Schultz AP, Sims MM, Miller DD, Pfeffer LM. Brahma-Related Gene-1 (BRG1) promotes the malignant phenotype of glioblastoma cells. J Cell Mol Med 2021; 25:2956-2966. [PMID: 33528916 PMCID: PMC7957270 DOI: 10.1111/jcmm.16330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumour that is resistant to existing therapeutics. Identifying signalling pathways deregulated in GBM that can be targeted therapeutically is critical to improve the present dismal prognosis for GBM patients. In this report, we have identified that the BRG1 (Brahma‐Related Gene‐1) catalytic subunit of the SWI/SNF chromatin remodelling complex promotes the malignant phenotype of GBM cells. We found that BRG1 is ubiquitously expressed in tumour tissue from GBM patients, and high BRG1 expression levels are localized to specific brain tumour regions. Knockout (KO) of BRG1 by CRISPR‐Cas9 gene editing had minimal effects on GBM cell proliferation, but significantly inhibited GBM cell migration and invasion. BRG1‐KO also sensitized GBM cells to the anti‐proliferative effects of the anti‐cancer agent temozolomide (TMZ), which is used to treat GBM patients in the clinic, and selectively altered STAT3 tyrosine phosphorylation and gene expression. These results demonstrate that BRG‐1 promotes invasion and migration, and decreases chemotherapy sensitivity, indicating that it functions in an oncogenic manner in GBM cells. Taken together, our findings suggest that targeting BRG1 in GBM may have therapeutic benefit in the treatment of this deadly form of brain cancer.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrew P Schultz
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michelle M Sims
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences (College of Pharmacy), University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
16
|
Rubin MA, Bristow RG, Thienger PD, Dive C, Imielinski M. Impact of Lineage Plasticity to and from a Neuroendocrine Phenotype on Progression and Response in Prostate and Lung Cancers. Mol Cell 2020; 80:562-577. [PMID: 33217316 PMCID: PMC8399907 DOI: 10.1016/j.molcel.2020.10.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Intratumoral heterogeneity can occur via phenotype transitions, often after chronic exposure to targeted anticancer agents. This process, termed lineage plasticity, is associated with acquired independence to an initial oncogenic driver, resulting in treatment failure. In non-small cell lung cancer (NSCLC) and prostate cancers, lineage plasticity manifests when the adenocarcinoma phenotype transforms into neuroendocrine (NE) disease. The exact molecular mechanisms involved in this NE transdifferentiation remain elusive. In small cell lung cancer (SCLC), plasticity from NE to nonNE phenotypes is driven by NOTCH signaling. Herein we review current understanding of NE lineage plasticity dynamics, exemplified by prostate cancer, NSCLC, and SCLC.
Collapse
Affiliation(s)
- Mark A Rubin
- Department for BioMedical Research, University of Bern and Inselspital, 3010 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3010 Bern, Switzerland.
| | - Robert G Bristow
- Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, University of Manchester, Macclesfield SK10 4TG, UK
| | - Phillip D Thienger
- Department for BioMedical Research, University of Bern and Inselspital, 3010 Bern, Switzerland
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Macclesfield SK10 4TG, UK
| | - Marcin Imielinski
- Pathology and Laboratory Medicine and Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
17
|
Cyrta J, Augspach A, De Filippo MR, Prandi D, Thienger P, Benelli M, Cooley V, Bareja R, Wilkes D, Chae SS, Cavaliere P, Dephoure N, Uldry AC, Lagache SB, Roma L, Cohen S, Jaquet M, Brandt LP, Alshalalfa M, Puca L, Sboner A, Feng F, Wang S, Beltran H, Lotan T, Spahn M, Kruithof-de Julio M, Chen Y, Ballman KV, Demichelis F, Piscuoglio S, Rubin MA. Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nat Commun 2020; 11:5549. [PMID: 33144576 PMCID: PMC7642293 DOI: 10.1038/s41467-020-19328-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/07/2020] [Indexed: 01/06/2023] Open
Abstract
Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10–20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data point to a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may also be relevant for other solid tumors. The differentiation of prostate adenocarcinoma to neuroendocrine prostate cancer (CRPC-NE) is a mechanism of resistance to androgen deprivation therapy. Here the authors show that SWI/SNF chromatin-remodeling complex is deregulated in CRPC-NE and that the complex interacts with different lineage specific factors throughout prostate cancer transdifferentiation.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.,The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Anke Augspach
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Maria Rosaria De Filippo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008, Bern, Switzerland.,Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, 4051, Basel, Switzerland
| | - Davide Prandi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122, Trento, Italy
| | - Phillip Thienger
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Matteo Benelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122, Trento, Italy.,Bioinformatics Unit, Hospital of Prato, 59100, Prato, Italy
| | - Victoria Cooley
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rohan Bareja
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David Wilkes
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Sung-Suk Chae
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Paola Cavaliere
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Anne-Christine Uldry
- Proteomics Mass Spectrometry Core Facility, University of Bern, 3010, Bern, Switzerland
| | - Sophie Braga Lagache
- Proteomics Mass Spectrometry Core Facility, University of Bern, 3010, Bern, Switzerland
| | - Luca Roma
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, 4051, Basel, Switzerland
| | - Sandra Cohen
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Muriel Jaquet
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Laura P Brandt
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Loredana Puca
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Andrea Sboner
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.,HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Felix Feng
- Proteomics Mass Spectrometry Core Facility, University of Bern, 3010, Bern, Switzerland
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Himisha Beltran
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tamara Lotan
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Martin Spahn
- Lindenhofspital Bern, Prostate Center Bern, 3012, Bern, Switzerland.,Department of Urology, Essen University Hospital, University of Duisburg-Essen, 47057, Essen, Germany
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.,Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008, Bern, Switzerland.,Department of Urology, Inselspital, 3010, Bern, Switzerland
| | - Yu Chen
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Karla V Ballman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Demichelis
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122, Trento, Italy
| | - Salvatore Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, 4051, Basel, Switzerland.,Visceral Surgery Research Laboratory, Clarunis, Department of Biomedicine, University of Basel, 4051, Basel, Switzerland.,Clarunis Universitäres Bauchzentrum Basel, 4002, Basel, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland. .,Inselspital, 3010, Bern, Switzerland. .,Bern Center for Precision Medicine, 3008, Bern, Switzerland.
| |
Collapse
|
18
|
Paik S, Maule F, Gallo M. Dysregulation of chromatin organization in pediatric and adult brain tumors: oncoepigenomic contributions to tumorigenesis and cancer stem cell properties. Genome 2020; 64:326-336. [PMID: 33075237 DOI: 10.1139/gen-2020-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional (3D) organization of the genome is a crucial enabler of cell fate, identity, and function. In this review, we will focus on the emerging role of altered 3D genome organization in the etiology of disease, with a special emphasis on brain cancers. We discuss how different genetic alterations can converge to disrupt the epigenome in childhood and adult brain tumors, by causing aberrant DNA methylation and by affecting the amounts and genomic distribution of histone post-translational modifications. We also highlight examples that illustrate how epigenomic alterations have the potential to affect 3D genome architecture in brain tumors. Finally, we will propose the concept of "epigenomic erosion" to explain the transition from stem-like cells to differentiated cells in hierarchically organized brain cancers.
Collapse
Affiliation(s)
- Seungil Paik
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francesca Maule
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Liu N, Yang R, Shi Y, Chen L, Liu Y, Wang Z, Liu S, Ouyang L, Wang H, Lai W, Mao C, Wang M, Cheng Y, Liu S, Wang X, Zhou H, Cao Y, Xiao D, Tao Y. The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties. Signal Transduct Target Ther 2020; 5:197. [PMID: 32994405 PMCID: PMC7524730 DOI: 10.1038/s41392-020-00249-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/20/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Posttranslational modifications (PTMs) of proteins, including chromatin modifiers, play crucial roles in the dynamic alteration of various protein properties and functions including stem-cell properties. However, the roles of Lymphoid-specific helicase (LSH), a DNA methylation modifier, in modulating stem-like properties in cancer are still not clearly clarified. Therefore, exploring PTMs modulation of LSH activity will be of great significance to further understand the function and activity of LSH. Here, we demonstrate that LSH is capable to undergo PTMs, including methylation and phosphorylation. The arginine methyltransferase PRMT5 can methylate LSH at R309 residue, meanwhile, LSH could as well be phosphorylated by MAPK1 kinase at S503 residue. We further show that the accumulation of phosphorylation of LSH at S503 site exhibits downregulation of LSH methylation at R309 residue, which eventually promoting stem-like properties in lung cancer. Whereas, phosphorylation-deficient LSH S503A mutant promotes the accumulation of LSH methylation at R309 residue and attenuates stem-like properties, indicating the critical roles of LSH PTMs in modulating stem-like properties. Thus, our study highlights the importance of the crosstalk between LSH PTMs in determining its activity and function in lung cancer stem-cell maintenance.
Collapse
Affiliation(s)
- Na Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.,Postdoctoral Research Workstation, Department of Neurosurgery, Xiangya Hospital, Central South University, 410078, Hunan, China
| | - Rui Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Ying Shi
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Ling Chen
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Yating Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Zuli Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Shouping Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Lianlian Ouyang
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Haiyan Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Weiwei Lai
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Chao Mao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Min Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Yan Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, 410078, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xiang Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine; Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Hu Zhou
- Shanghai Institute of Material Medical, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China
| | - Ya Cao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Xiangya Hospital; Central South University, 410078, Hunan, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine; Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
20
|
Lei X, Ma N, Du L, Liang Y, Zhang P, Han Y, Qu B. PP2A and tumor radiotherapy. Hereditas 2020; 157:36. [PMID: 32847617 PMCID: PMC7450598 DOI: 10.1186/s41065-020-00149-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that serves as a key regulator of cellular physiology in the context of apoptosis, mitosis, and DNA damage responses. Canonically, PP2A functions as a tumor suppressor gene. However, recent evidence suggests that inhibiting PP2A activity in tumor cells may represent a viable approach to enhancing tumor sensitivity to chemoradiotherapy as such inhibition can cause cells to enter a disordered mitotic state that renders them more susceptible to cell death. Indeed, there is evidence that inhibiting PP2A can slow tumor growth following radiotherapy in a range of cancer types including ovarian cancer, liver cancer, malignant glioma, pancreatic cancer, and nasopharyngeal carcinoma. In the present review, we discuss current understanding of the role of PP2A in tumor radiotherapy and the potential mechanisms whereby it may influence this process.
Collapse
Affiliation(s)
- Xiao Lei
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Na Ma
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Lehui Du
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Yanjie Liang
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Pei Zhang
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Yanan Han
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Baolin Qu
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China.
| |
Collapse
|
21
|
Soldi R, Ghosh Halder T, Weston A, Thode T, Drenner K, Lewis R, Kaadige MR, Srivastava S, Daniel Ampanattu S, Rodriguez del Villar R, Lang J, Vankayalapati H, Weissman B, Trent JM, Hendricks WPD, Sharma S. The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS One 2020; 15:e0235705. [PMID: 32649682 PMCID: PMC7351179 DOI: 10.1371/journal.pone.0235705] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/20/2020] [Indexed: 01/01/2023] Open
Abstract
Mutations of the SWI/SNF chromatin remodeling complex occur in 20% of all human cancers, including ovarian cancer. Approximately half of ovarian clear cell carcinomas (OCCC) carry mutations in the SWI/SNF subunit ARID1A, while small cell carcinoma of the ovary hypercalcemic type (SCCOHT) presents with inactivating mutations of the SWI/SNF ATPase SMARCA4 alongside epigenetic silencing of the ATPase SMARCA2. Loss of these ATPases disrupts SWI/SNF chromatin remodeling activity and may also interfere with the function of other histone-modifying enzymes that associate with or are dependent on SWI/SNF activity. One such enzyme is lysine-specific histone demethylase 1 (LSD1/KDM1A), which regulates the chromatin landscape and gene expression by demethylating proteins such as histone H3. Cross-cancer analysis of the TCGA database shows that LSD1 is highly expressed in SWI/SNF-mutated tumors. SCCOHT and OCCC cell lines have shown sensitivity to the reversible LSD1 inhibitor SP-2577 (Seclidemstat), suggesting that SWI/SNF-deficient ovarian cancers are dependent on LSD1 activity. Moreover, it has been shown that inhibition of LSD1 stimulates interferon (IFN)-dependent anti-tumor immunity through induction of endogenous retroviral elements and may thereby overcome resistance to checkpoint blockade. In this study, we investigated the ability of SP-2577 to promote anti-tumor immunity and T-cell infiltration in SCCOHT and OCCC cell lines. We found that SP-2577 stimulated IFN-dependent anti-tumor immunity in SCCOHT and promoted the expression of PD-L1 in both SCCOHT and OCCC. Together, these findings suggest that the combination therapy of SP-2577 with checkpoint inhibitors may induce or augment immunogenic responses of SWI/SNF-mutated ovarian cancers and warrants further investigation.
Collapse
Affiliation(s)
- Raffaella Soldi
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Tithi Ghosh Halder
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Alexis Weston
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Trason Thode
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Kevin Drenner
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Rhonda Lewis
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Mohan R. Kaadige
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Shreyesi Srivastava
- HonorHealth Clinical Research Institute, Scottsdale, Arizona, United States of America
| | - Sherin Daniel Ampanattu
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Ryan Rodriguez del Villar
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Jessica Lang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | | | - Bernard Weissman
- Department of Pathology and Laboratory Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeffrey M. Trent
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - William P. D. Hendricks
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Sunil Sharma
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
22
|
Tu WJ, McCuaig RD, Tan AHY, Hardy K, Seddiki N, Ali S, Dahlstrom JE, Bean EG, Dunn J, Forwood J, Tsimbalyuk S, Smith K, Yip D, Malik L, Prasanna T, Milburn P, Rao S. Targeting Nuclear LSD1 to Reprogram Cancer Cells and Reinvigorate Exhausted T Cells via a Novel LSD1-EOMES Switch. Front Immunol 2020; 11:1228. [PMID: 32612611 PMCID: PMC7309504 DOI: 10.3389/fimmu.2020.01228] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
Lysine specific demethylase 1 (LSD1) is a key epigenetic eraser enzyme implicated in cancer metastases and recurrence. Nuclear LSD1 phosphorylated at serine 111 (nLSD1p) has been shown to be critical for the development of breast cancer stem cells. Here we show that circulating tumor cells isolated from immunotherapy-resistant metastatic melanoma patients express higher levels of nLSD1p compared to responders, which is associated with co-expression of stem-like, mesenchymal genes. Targeting nLSD1p with selective nLSD1 inhibitors better inhibits the stem-like mesenchymal signature than traditional FAD-specific LSD1 catalytic inhibitors such as GSK2879552. We also demonstrate that nLSD1p is enriched in PD-1+CD8+ T cells from resistant melanoma patients and 4T1 immunotherapy-resistant mice. Targeting the LSD1p nuclear axis induces IFN-γ/TNF-α-expressing CD8+ T cell infiltration into the tumors of 4T1 immunotherapy-resistant mice, which is further augmented by combined immunotherapy. Underpinning these observations, nLSD1p is regulated by the key T cell exhaustion transcription factor EOMES in dysfunctional CD8+ T cells. EOMES co-exists with nLSD1p in PD-1+CD8+ T cells in resistant patients, and nLSD1p regulates EOMES nuclear dynamics via demethylation/acetylation switching of critical EOMES residues. Using novel antibodies to target these post-translational modifications, we show that EOMES demethylation/acetylation is reciprocally expressed in resistant and responder patients. Overall, we show for the first time that dual inhibition of metastatic cancer cells and re-invigoration of the immune system requires LSD1 inhibitors that target the nLSD1p axis.
Collapse
Affiliation(s)
- Wen Juan Tu
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Melanie Swan Memorial Translational Centre, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Robert D. McCuaig
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Melanie Swan Memorial Translational Centre, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Abel H. Y. Tan
- Melanie Swan Memorial Translational Centre, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Kristine Hardy
- Melanie Swan Memorial Translational Centre, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Nabila Seddiki
- Inserm, U955, Equipe 16, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Sayed Ali
- Medical Oncology, St John of God Midland Public and Private Hospitals, Midland, WA, Australia
| | - Jane E. Dahlstrom
- Anatomical Pathology, ACT Pathology, The Canberra Hospital, Canberra Health Services, Garran, ACT, Australia
- ANU Medical School, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Elaine G. Bean
- Anatomical Pathology, ACT Pathology, The Canberra Hospital, Canberra Health Services, Garran, ACT, Australia
| | - Jenny Dunn
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jade Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sofia Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Kate Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Australian Synchtrotron - ANSTO, Clayton, VIC, Australia
| | - Desmond Yip
- ANU Medical School, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
- Department of Medical Oncology, The Canberra Hospital, Canberra Health Services, Garran, ACT, Australia
| | - Laeeq Malik
- ANU Medical School, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
- Department of Medical Oncology, The Canberra Hospital, Canberra Health Services, Garran, ACT, Australia
| | - Thiru Prasanna
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Department of Medical Oncology, The Canberra Hospital, Canberra Health Services, Garran, ACT, Australia
| | - Peter Milburn
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Melanie Swan Memorial Translational Centre, Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
23
|
Jovčevska I. Next Generation Sequencing and Machine Learning Technologies Are Painting the Epigenetic Portrait of Glioblastoma. Front Oncol 2020; 10:798. [PMID: 32500035 PMCID: PMC7243123 DOI: 10.3389/fonc.2020.00798] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
Even with a rare occurrence of only 1.35% of cancer cases in the United States of America, brain tumors are considered as one of the most lethal malignancies. The most aggressive and invasive type of brain tumor, glioblastoma, accounts for 60–70% of all gliomas and presents with life expectancy of only 12–18 months. Despite trimodal treatment and advances in diagnostic and therapeutic methods, there are no significant changes in patient outcome. Our understanding of glioblastoma was significantly improved with the introduction of next generation sequencing technologies. This led to the identification of different genetic and molecular subtypes, which greatly improve glioblastoma diagnosis. Still, because of the poor life expectancy, novel diagnostic, and treatment methods are broadly explored. Epigenetic modifications like methylation and changes in histone acetylation are such examples. Recently, in addition to genetic and molecular characteristics, epigenetic profiling of glioblastomas is also used for sample classification. Further advancement of next generation sequencing technologies is expected to identify in detail the epigenetic signature of glioblastoma that can open up new therapeutic opportunities for glioblastoma patients. This should be complemented with the use of computational power i.e., machine and deep learning algorithms for objective diagnostics and design of individualized therapies. Using a combination of phenotypic, genotypic, and epigenetic parameters in glioblastoma diagnostics will bring us closer to precision medicine where therapies will be tailored to suit the genetic profile and epigenetic signature of the tumor, which will grant longer life expectancy and better quality of life. Still, a number of obstacles including potential bias, availability of data for minorities in heterogeneous populations, data protection, and validation and independent testing of the learning algorithms have to be overcome on the way.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
LSD1/KDM1A, a Gate-Keeper of Cancer Stemness and a Promising Therapeutic Target. Cancers (Basel) 2019; 11:cancers11121821. [PMID: 31756917 PMCID: PMC6966601 DOI: 10.3390/cancers11121821] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
A new exciting area in cancer research is the study of cancer stem cells (CSCs) and the translational implications for putative epigenetic therapies targeted against them. Accumulating evidence of the effects of epigenetic modulating agents has revealed their dramatic consequences on cellular reprogramming and, particularly, reversing cancer stemness characteristics, such as self-renewal and chemoresistance. Lysine specific demethylase 1 (LSD1/KDM1A) plays a well-established role in the normal hematopoietic and neuronal stem cells. Overexpression of LSD1 has been documented in a variety of cancers, where the enzyme is, usually, associated with the more aggressive types of the disease. Interestingly, recent studies have implicated LSD1 in the regulation of the pool of CSCs in different leukemias and solid tumors. However, the precise mechanisms that LSD1 uses to mediate its effects on cancer stemness are largely unknown. Herein, we review the literature on LSD1's role in normal and cancer stem cells, highlighting the analogies of its mode of action in the two biological settings. Given its potential as a pharmacological target, we, also, discuss current advances in the design of novel therapeutic regimes in cancer that incorporate LSD1 inhibitors, as well as their future perspectives.
Collapse
|
25
|
Lin WH, Dai WG, Xu XD, Yu QH, Zhang B, Li J, Li HP. Downregulation of DPF3 promotes the proliferation and motility of breast cancer cells through activating JAK2/STAT3 signaling. Biochem Biophys Res Commun 2019; 514:639-644. [PMID: 31076105 DOI: 10.1016/j.bbrc.2019.04.170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
It is reported that the genetic variation of DPF3 is a risk factor of breast cancer through large-scale association research. However, the expression, function and mechanism in breast cancer is unknown. We applied qPCR and western blotting to detect the levels of DPF3 in breast cancer tissues. MTT and Anchorage-independent growth ability assay were used to evaluate the effect of DPF3 on cell proliferation. Wound healing and transwell invasion assay were performed to detect the role of DPF3 on cell motility ability. Herein, we found that the mRNA and protein levels of DPF3 are both significantly downregulated in breast cancer tissues. And downregulation of DPF3 can promote the proliferation and motility of breast cancer cells. Further investigation illustrated that downregulation of DPF3 can activate the JAK2/STAT3 signaling. In conclusion, we found that the downregulation of DPF3 plays an indispensable function in the progression of breast cancer, and may be served as a novel therapeutic target to therapy breast cancer.
Collapse
Affiliation(s)
- Wei-Hao Lin
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Wei-Gang Dai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Xiang-Dong Xu
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Qiu-Hua Yu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Jie Li
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| | - He-Ping Li
- Department of Medical Oncology of the Eastern Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
26
|
Ganguly D, Sims M, Cai C, Fan M, Pfeffer LM. Chromatin Remodeling Factor BRG1 Regulates Stemness and Chemosensitivity of Glioma Initiating Cells. Stem Cells 2018; 36:1804-1815. [PMID: 30171737 DOI: 10.1002/stem.2909] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 08/18/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor that is refractory to existing therapeutic regimens, which reflects the presence of stem-like cells, termed glioma-initiating cells (GICs). The complex interactions between different signaling pathways and epigenetic regulation of key genes may be critical in the maintaining GICs in their stem-like state. Although several signaling pathways have been identified as being dysregulated in GBM, the prognosis of GBM patients remains miserable despite improvements in targeted therapies. In this report, we identified that BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, plays a fundamental role in maintaining GICs in their stem-like state. In addition, we identified a novel mechanism by which BRG1 regulates glycolysis genes critical for GICs. BRG1 downregulates the expression of TXNIP, a negative regulator of glycolysis. BRG1 knockdown also triggered the STAT3 pathway, which led to TXNIP activation. We further identified that TXNIP is an STAT3-regulated gene. Moreover, BRG1 suppressed the expression of interferon-stimulated genes, which are negatively regulated by STAT3 and regulate tumorigenesis. We further demonstrate that BRG1 plays a critical role in the drug resistance of GICs and in GIC-induced tumorigenesis. By genetic and pharmacological means, we found that inhibiting BRG1 can sensitize GICs to chemotherapeutic drugs, temozolomide and carmustine. Our studies suggest that BRG1 may be a novel therapeutic target in GBM. The identification of the critical role that BRG1 plays in GIC stemness and chemosensitivity will inform the development of better targeted therapies in GBM and possibly other cancers. Stem Cells 2018;36:1806-12.
Collapse
Affiliation(s)
- Debolina Ganguly
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Michelle Sims
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Chun Cai
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Meiyun Fan
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
27
|
Romani M, Pistillo MP, Banelli B. Epigenetic Targeting of Glioblastoma. Front Oncol 2018; 8:448. [PMID: 30386738 PMCID: PMC6198064 DOI: 10.3389/fonc.2018.00448] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is one of the first tumors where the biological changes accompanying a single epigenetic modification, the methylation of the MGMT gene, were found to be of clinical relevance. The exploration of the epigenomic landscape of glioblastoma has allowed to identify patients carrying a diffuse hypermethylation at gene promoters and with better outcome. Epigenetic and genetic data have led to the definition of major subgroups of glioma and were the basis of the current WHO classification of CNS tumors and of a novel classification based solely on DNA methylation data that shows a remarkable diagnostic precision.The reversibility of epigenetic modifications is considered a therapeutic opportunity in many tumors also because these alterations have been mechanistically linked to the biological characteristics of glioblastoma. Several alterations like IDH1/2 mutations that interfere with "epigenetic modifier" enzymes, the mutations of the histone 3 variants H3.1 and H3.3 that alter the global H3K27me3 levels and the altered expression of histone methyltransferases and demethylases are considered potentially druggable targets in glioma and molecules targeting these alterations are being tested in preclinical and clinical trials. The recent advances on the knowledge of the players of the "epigenetic orchestra" and of their mutual interactions are indicating new paths that may eventually open new therapeutic options for this invariably lethal cancer.
Collapse
Affiliation(s)
- Massimo Romani
- Laboratory of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Pia Pistillo
- Laboratory of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Barbara Banelli
- Laboratory of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Health Sciences, University of Genoa, Genova, Italy
| |
Collapse
|
28
|
Kobayashi K, Hiramatsu H, Nakamura S, Kobayashi K, Haraguchi T, Iba H. Tumor suppression via inhibition of SWI/SNF complex-dependent NF-κB activation. Sci Rep 2017; 7:11772. [PMID: 28924147 PMCID: PMC5603518 DOI: 10.1038/s41598-017-11806-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NF-κB is constitutively activated in many epithelial tumors but few NF-κB inhibitors are suitable for cancer therapy because of its broad biological effects. We previously reported that the d4-family proteins (DPF1, DPF2, DPF3a/b) function as adaptor proteins linking NF-κB with the SWI/SNF complex. Here, using epithelial tumor cell lines, A549 and HeLaS3, we demonstrate that exogenous expression of the highly-conserved N-terminal 84-amino acid region (designated "CT1") of either DPF2 or DPF3a/b has stronger inhibitory effects on anchorage-independent growth than the single knockdown of any d4-family protein. This indicates that CT1 can function as an efficient dominant-negative mutant of the entire d4-family proteins. By in situ proximity ligation assay, CT1 was found to retain full adaptor function, indicating that the C-terminal region of d4-family proteins lacking in CT1 would include essential domains for SWI/SNF-dependent NF-κB activation. Microarray analysis revealed that CT1 suppresses only a portion of the NF-κB target genes, including representative SWI/SNF-dependent genes. Among these genes, IL6 was shown to strongly contribute to anchorage-independent growth. Finally, exogenous CT1 expression efficiently suppressed tumor formation in a mouse xenograft model, suggesting that the d4-family proteins are promising cancer therapy targets.
Collapse
Affiliation(s)
- Kazuyoshi Kobayashi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Hiroaki Hiramatsu
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Shinya Nakamura
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kyousuke Kobayashi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Takeshi Haraguchi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Hideo Iba
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan.
| |
Collapse
|