1
|
Yang K, Han D, Wen J, Liang C, Zhan C, You Y, Fu Y, Li L, Ye Z. Influence of Temperature and Host Plant on the Digestion of Frankliniella intonsa (Trybom) Revealed by Molecular Detection. INSECTS 2024; 15:806. [PMID: 39452382 PMCID: PMC11508231 DOI: 10.3390/insects15100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Frankliniella intonsa (Trybom) (Thysanoptera: Thripidae) is an important type of thrip and a polyphagous pest, which poses a serious threat to many crops, especially those in tropical regions of China. Its feeding behavior and the damage caused vary among different host plant species and are affected by ambient temperature and plant nutrients as well. The digestion rate is an important index for directly observing the digestion process, but there have been no studies directly measuring the digestion in thrips under the influence of different temperatures and host plants. Here, the digestion rate of F. intonsa was assessed by using a molecular diagnostic tool. We also determined the nutrient content in three host plant (mango, cowpea, and pepper), including soluble proteins, free fatty acids, soluble sugars, and water. The results showed that the high and low temperatures (16 °C and 32 °C) both seemed to accelerate the digestion of F. intonsa compared to the optimal temperature (26 °C) and the protein content of plants played an important role in the digestive response of F. intonsa to temperature changes. The findings can help reveal the feeding damage caused by F. intonsa to different plants and help to better understand its feeding ecology, according to its interaction with the host plant.
Collapse
Affiliation(s)
- Keqing Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.Y.); (J.W.); (Y.Y.)
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Sciences, Haikou 571101, China; (D.H.); (C.L.); (C.Z.); (Y.F.)
| | - Dongyin Han
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Sciences, Haikou 571101, China; (D.H.); (C.L.); (C.Z.); (Y.F.)
| | - Jian Wen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.Y.); (J.W.); (Y.Y.)
| | - Changshou Liang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Sciences, Haikou 571101, China; (D.H.); (C.L.); (C.Z.); (Y.F.)
| | - Canlan Zhan
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Sciences, Haikou 571101, China; (D.H.); (C.L.); (C.Z.); (Y.F.)
| | - Yiyangyang You
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.Y.); (J.W.); (Y.Y.)
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Sciences, Haikou 571101, China; (D.H.); (C.L.); (C.Z.); (Y.F.)
| | - Yueguan Fu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Sciences, Haikou 571101, China; (D.H.); (C.L.); (C.Z.); (Y.F.)
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Lei Li
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Sciences, Haikou 571101, China; (D.H.); (C.L.); (C.Z.); (Y.F.)
| | - Zhengpei Ye
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Sciences, Haikou 571101, China; (D.H.); (C.L.); (C.Z.); (Y.F.)
- Hainan Provincial Engineering Research Center for the Breeding and Industrialization of Natural Enemies, Haikou 571101, China
| |
Collapse
|
2
|
Mulio SÅ, Zwolińska A, Klejdysz T, Prus‐Frankowska M, Michalik A, Kolasa M, Łukasik P. Limited variation in microbial communities across populations of Macrosteles leafhoppers (Hemiptera: Cicadellidae). ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13279. [PMID: 38855918 PMCID: PMC11163331 DOI: 10.1111/1758-2229.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Microbial symbionts play crucial roles in insect biology, yet their diversity, distribution, and temporal dynamics across host populations remain poorly understood. In this study, we investigated the spatio-temporal distribution of bacterial symbionts within the widely distributed and economically significant leafhopper genus Macrosteles, with a focus on Macrosteles laevis. Using host and symbiont marker gene amplicon sequencing, we explored the intricate relationships between these insects and their microbial partners. Our analysis of the cytochrome oxidase subunit I (COI) gene data revealed several intriguing findings. First, there was no strong genetic differentiation across M. laevis populations, suggesting gene flow among them. Second, we observed significant levels of heteroplasmy, indicating the presence of multiple mitochondrial haplotypes within individuals. Third, parasitoid infections were prevalent, highlighting the complex ecological interactions involving leafhoppers. The 16S rRNA data confirmed the universal presence of ancient nutritional endosymbionts-Sulcia and Nasuia-in M. laevis. Additionally, we found a high prevalence of Arsenophonus, another common symbiont. Interestingly, unlike most previously studied species, M. laevis exhibited only occasional cases of infection with known facultative endosymbionts and other bacteria. Notably, there was no significant variation in symbiont prevalence across different populations or among sampling years within the same population. Comparatively, facultative endosymbionts such as Rickettsia, Wolbachia, Cardinium and Lariskella were more common in other Macrosteles species. These findings underscore the importance of considering both host and symbiont dynamics when studying microbial associations. By simultaneously characterizing host and symbiont marker gene amplicons in large insect collections, we gain valuable insights into the intricate interplay between insects and their microbial partners. Understanding these dynamics contributes to our broader comprehension of host-microbe interactions in natural ecosystems.
Collapse
Affiliation(s)
- Sandra Åhlén Mulio
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Agnieszka Zwolińska
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
| | - Tomasz Klejdysz
- Institute of Plant Protection – National Research InstituteResearch Centre for Registration of AgrochemicalsPoznańPoland
| | - Monika Prus‐Frankowska
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Michał Kolasa
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
3
|
Tomanović Ž, Kavallieratos NG, Ye Z, Nika EP, Petrović A, Vollhardt IMG, Vorburger C. Cereal Aphid Parasitoids in Europe (Hymenoptera: Braconidae: Aphidiinae): Taxonomy, Biodiversity, and Ecology. INSECTS 2022; 13:1142. [PMID: 36555052 PMCID: PMC9785021 DOI: 10.3390/insects13121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Cereals are very common and widespread crops in Europe. Aphids are a diverse group of herbivorous pests on cereals and one of the most important limiting factors of cereal production. Here, we present an overview of knowledge about the taxonomy, biodiversity, and ecology of cereal aphid parasitoids in Europe, an important group of natural enemies contributing to cereal aphid control. We review the knowledge obtained from the integrative taxonomy of 26 cereal aphid primary parasitoid species, including two allochthonous species (Lysiphlebus testaceipes and Trioxys sunnysidensis) and two recently described species (Lipolexis labialis and Paralipsis brachycaudi). We further review 28 hyperparasitoid species belonging to three hymenopteran superfamilies and four families (Ceraphronoidea: Megaspillidae; Chalcidoidea: Pteromalidae, Encyrtidae; Cynipoidea: Figitidae). We also compile knowledge on the presence of secondary endosymbionts in cereal aphids, as these are expected to influence the community composition and biocontrol efficiency of cereal aphid parasitoids. To study aphid-parasitoid-hyperparasitoid food webs more effectively, we present two kinds of DNA-based approach: (i) diagnostic PCR (mainly multiplex PCR), and (ii) DNA sequence-based methods. Finally, we also review the effects of landscape complexity on the different trophic levels in the food webs of cereal aphids and their associated parasitoids, as well as the impacts of agricultural practices and environmental variation.
Collapse
Affiliation(s)
- Željko Tomanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Zhengpei Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China
| | - Erifili P. Nika
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Andjeljko Petrović
- Faculty of Biology, Institute of Zoology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
| | - Ines M. G. Vollhardt
- Agroecology, Department of Crop Science, Georg-August University Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany
| | - Christoph Vorburger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
4
|
Petrone JR, Muñoz-Beristain A, Glusberger PR, Russell JT, Triplett EW. Unamplified, Long-Read Metagenomic Sequencing Approach to Close Endosymbiont Genomes of Low-Biomass Insect Populations. Microorganisms 2022; 10:microorganisms10030513. [PMID: 35336091 PMCID: PMC8948638 DOI: 10.3390/microorganisms10030513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
With the current advancements in DNA sequencing technology, the limiting factor in long-read metagenomic assemblies is now the quantity and quality of input DNA. Although these requirements can be met through the use of axenic bacterial cultures or large amounts of biological material, insect systems that contain unculturable bacteria or that contain a low amount of available DNA cannot fully utilize the benefits of third-generation sequencing. The citrus greening disease insect vector Diaphorina citri is an example that exhibits both of these limitations. Although endosymbiont genomes have mostly been closed after the short-read sequencing of amplified template DNA, creating de novo long-read genomes from the unamplified DNA of an insect population may benefit communities using bioinformatics to study insect pathosystems. Here all four genomes of the infected D. citri microbiome were sequenced to closure using unamplified template DNA and two long-read sequencing technologies. Avoiding amplification bias and using long reads to assemble the bacterial genomes allowed for the circularization of the Wolbachia endosymbiont of Diaphorina citri for the first time and paralleled the annotation context of all four reference genomes without utilizing a traditional hybrid assembly. The strategies detailed here are suitable for the sequencing of other insect systems for which the input DNA, time, and cost are an issue.
Collapse
|
5
|
Vorburger C. Defensive Symbionts and the Evolution of Parasitoid Host Specialization. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:329-346. [PMID: 34614366 DOI: 10.1146/annurev-ento-072621-062042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect host-parasitoid interactions abound in nature and are characterized by a high degree of host specialization. In addition to their behavioral and immune defenses, many host species rely on heritable bacterial endosymbionts for defense against parasitoids. Studies on aphids and flies show that resistance conferred by symbionts can be very strong and highly specific, possibly as a result of variation in symbiont-produced toxins. I argue that defensive symbionts are therefore an important source of diversifying selection, promoting the evolution of host specialization by parasitoids. This is likely to affect the structure of host-parasitoid food webs. I consider potential changes in terms of food web complexity, although the nature of these effects will also be influenced by whether maternally transmitted symbionts have some capacity for lateral transfer. This is discussed in the light of available evidence for horizontal transmission routes. Finally, I propose that defensive mutualisms other than microbial endosymbionts may also exert diversifying selection on insect parasitoids.
Collapse
Affiliation(s)
- Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600 Dübendorf, Switzerland;
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Abstract
Hyperparasitoids are some of the most diverse members of insect food webs. True hyperparasitoids parasitize the larvae of other parasitoids, reaching these larvae with their ovipositor through the herbivore that hosts the parasitoid larva. During pupation, primary parasitoids also may be attacked by pseudohyperparasitoids that lay their eggs on the parasitoid (pre)pupae. By attacking primary parasitoids, hyperparasitoids may affect herbivore population dynamics, and they have been identified as a major challenge in biological control. Over the past decades, research, especially on aphid- and caterpillar-associated hyperparasitoids, has revealed that hyperparasitoids challenge rules on nutrient use efficiency in trophic chains, account for herbivore outbreaks, or stabilize competitive interactions in lower trophic levels, and they may use cues derived from complex interaction networks to locate their hosts. This review focuses on the fascinating ecology of hyperparasitoids related to how they exploit and locate their often inconspicuous hosts and the insect community processes in which hyperparasitoids are prominent players.
Collapse
Affiliation(s)
- Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, 6700 AA Wageningen, The Netherlands;
| | - Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Jetske G de Boer
- Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands;
- Aeres University of Applied Sciences, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Yang F, Liu B, Zhu Y, Desneux N, Liu L, Li C, Wyckhuys KA, Lu Y. Transgenic Cry1Ac + CpTI cotton does not compromise parasitoid-mediated biological control: An eight-year case study. PEST MANAGEMENT SCIENCE 2022; 78:240-245. [PMID: 34476893 DOI: 10.1002/ps.6627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The on-farm deployment of genetically modified crops may negatively affect nontarget arthropods, potentially disrupting food web structure and ecosystem functions. Aphid-parasitoid interactions are well-suited to study these potential impacts in agro-ecosystems. Over the span of 8 years, we systematically compared infestation levels of the aphid Aphis gossypii, its associated parasitoid community and overall parasitism rate between transgenic Cry1Ac + CpTI cotton and nontransgenic cotton. Furthermore, we measured the impact of transgenic Cry1Ac + CpTI cotton on structural traits and interspecies interactions within quantitative aphid-parasitoid food webs. RESULTS Transgenic Cry1Ac + CpTI cotton did not affect the abundance of aphids and parasitoids, or in-field parasitism rates. Despite weak interannual variability, transgenic Cry1Ac + CpTI cotton also did not alter food web architecture or biological control services. CONCLUSIONS Our work not only elucidates the impact of transgenic Cry1Ac + CpTI cotton on different nontarget arthropods (i.e. aphids, parasitoids, hyperparasitoids) and their associated ecosystem services or disservices, but also diversifies the ecological risk assessment toolbox for transgenic insecticidal crops. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulin Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Lituo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kris Ag Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Jeavons E, Baaren J, Le Ralec A, Buchard C, Duval F, Llopis S, Postic E, Le Lann C. Third and fourth trophic level composition shift in an aphid–parasitoid–hyperparasitoid food web limits aphid control in an intercropping system. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Emma Jeavons
- University of RennesCNRSECOBIO [(Ecosystèmes, Biodiversité, Evolution)] ‐ UMR Rennes France
- Laboratoire de Biologie Végétale Yves Rocher La Gacilly France
- LTSER « Zone Atelier Armorique »CNRS Rennes France
| | - Joan Baaren
- University of RennesCNRSECOBIO [(Ecosystèmes, Biodiversité, Evolution)] ‐ UMR Rennes France
| | - Anne Le Ralec
- IGEPPInstitut AgroINRAEUniversité de Rennes 1Université Bretagne‐Loire Rennes France
| | | | - Franck Duval
- IGEPPInstitut AgroINRAEUniversité de Rennes 1 Le Rheu France
| | - Stéphanie Llopis
- University of RennesCNRSECOBIO [(Ecosystèmes, Biodiversité, Evolution)] ‐ UMR Rennes France
| | - Estelle Postic
- IGEPPInstitut AgroINRAEUniversité de Rennes 1Université Bretagne‐Loire Rennes France
| | - Cécile Le Lann
- University of RennesCNRSECOBIO [(Ecosystèmes, Biodiversité, Evolution)] ‐ UMR Rennes France
| |
Collapse
|
9
|
Effect of the Genotypic Variation of an Aphid Host on the Endosymbiont Associations in Natural Host Populations. INSECTS 2021; 12:insects12030217. [PMID: 33806260 PMCID: PMC8001399 DOI: 10.3390/insects12030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The host–endosymbiont complex could be a key determinant in spread and maintenance of the infection polymorphism of endosymbionts. Variation among host–endosymbiont complexes can contribute to genetic variation of a host species and then provide the necessary material for the operating coevolutionary dynamics. We studied the seasonal dynamic of facultative endosymbiont infections among different host clones of the grain aphid Sitobion avenae and whether their presence affects the total hymenopteran parasitism of aphid hosts at the field level. We observed that aphid infections in the field with endosymbionts increase over time, by favoring particular aphid clones closely associated with endosymbionts, but without an effect of endosymbionts on parasitism rate in the host populations. Our results highlight the importance of host–endosymbiont couples in shaping the prevalence and distributions of symbionts throughout nature and the success of their hosts as pests. Abstract Understanding the role of facultative endosymbionts on the host’s ecology has been the main aim of the research in symbiont–host systems. However, current research on host–endosymbiont dynamics has failed to examine the genetic background of the hosts and its effect on host–endosymbiont associations in real populations. We have addressed the seasonal dynamic of facultative endosymbiont infections among different host clones of the grain aphid Sitobion avenae, on two cereal crops (wheat and oat) and whether their presence affects the total hymenopteran parasitism of aphid hosts at the field level. We present evidence of rapid seasonal shifts in the endosymbiont frequency, suggesting a positive selection of endosymbionts at the host-level (aphids) through an agricultural growing season, by two mechanisms; (1) an increase of aphid infections with endosymbionts over time, and (2) the seasonal replacement of host clones within natural populations by increasing the prevalence of aphid clones closely associated to endosymbionts. Our results highlight how genotypic variation of hosts can affect the endosymbiont prevalence in the field, being an important factor for understanding the magnitude and direction of the adaptive and/or maladaptive responses of hosts to the environment.
Collapse
|
10
|
Traugott M, Thalinger B, Wallinger C, Sint D. Fish as predators and prey: DNA-based assessment of their role in food webs. JOURNAL OF FISH BIOLOGY 2021; 98:367-382. [PMID: 32441321 PMCID: PMC7891366 DOI: 10.1111/jfb.14400] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 05/04/2023]
Abstract
Fish are both consumers and prey, and as such part of a dynamic trophic network. Measuring how they are trophically linked, both directly and indirectly, to other species is vital to comprehend the mechanisms driving alterations in fish communities in space and time. Moreover, this knowledge also helps to understand how fish communities respond to environmental change and delivers important information for implementing management of fish stocks. DNA-based methods have significantly widened our ability to assess trophic interactions in both marine and freshwater systems and they possess a range of advantages over other approaches in diet analysis. In this review we provide an overview of different DNA-based methods that have been used to assess trophic interactions of fish as consumers and prey. We consider the practicalities and limitations, and emphasize critical aspects when analysing molecular derived trophic data. We exemplify how molecular techniques have been employed to unravel food web interactions involving fish as consumers and prey. In addition to the exciting opportunities DNA-based approaches offer, we identify current challenges and future prospects for assessing fish food webs where DNA-based approaches will play an important role.
Collapse
Affiliation(s)
- Michael Traugott
- Applied Animal Ecology, Department of ZoologyUniversity of InnsbruckInnsbruckAustria
| | - Bettina Thalinger
- Applied Animal Ecology, Department of ZoologyUniversity of InnsbruckInnsbruckAustria
- Centre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Corinna Wallinger
- Institute of Interdisciplinary Mountain Research, Austrian Academy of ScienceInnsbruckAustria
| | - Daniela Sint
- Applied Animal Ecology, Department of ZoologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
11
|
Zhu YL, Yang F, Yao ZW, Wu YK, Liu B, Yuan HB, Lu YH. A molecular detection approach for a cotton aphid-parasitoid complex in northern China. Sci Rep 2019; 9:15836. [PMID: 31676842 PMCID: PMC6825200 DOI: 10.1038/s41598-019-52266-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Aphid-parasitoid interactions have been widely used as a model system in research studies on the structure and functions of arthropod food web. Research on aphid-parasitoid food webs is hindered by their micromorphological characteristics and the high amount of labor associated with their development. Species-specific primers for cotton aphids and their parasitoids were designed and integrated into two multiplex PCRs and six singleplex PCRs, and all PCRs were optimized to achieve high specificity and sensitivity (100-10,000 DNA copies). One cotton aphid (Aphis gossypii) as well as three primary parasitoid and seven hyperparasitoid species or genera were detected using this molecular approach. This group comprises all the primary parasitoids and 97.2-99.6% of the hyperparasitoids reported in cotton fields in northern China. A tritrophic aphid-primary parasitoid-hyperparasitoid food web was then established. The described method constitutes an efficient tool for quantitatively describing the aphid-primary parasitoid-hyperparasitoid food webs and assessing the efficiency of the biological control of parasitoids in cotton fields in northern China.
Collapse
Affiliation(s)
- Yu-Lin Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Wen Yao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue-Kun Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hai-Bin Yuan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Yan-Hui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
12
|
Frei B, Guenay Y, Bohan DA, Traugott M, Wallinger C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. JOURNAL OF PEST SCIENCE 2019; 92:935-942. [PMID: 31178674 PMCID: PMC6528783 DOI: 10.1007/s10340-019-01109-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Carabid beetles are abundant in temperate agroecosystems and can play a pivotal role as biocontrol agents. While there is good knowledge regarding their effects on invertebrate pests in some systems, comparably little is known on the rate of seed feeding under field conditions. Molecular approaches are ideally suited for investigating carabid feeding interactions; to date, however, they have only been applied to animal prey. We sampled adult carabid beetles in organic cereal fields in three regions along a Central European transect. Regurgitates from populations of the three most common species, Poecilus cupreus, Pseudoophonus rufipes and Pterostichus melanarius, were screened for plant DNA, cereal aphids, collembolans and earthworms. The frequency of carabid individuals positive for plant DNA was high (> 70%) and independent of carabid species, sex, region and the time point of sampling. Detections for non-pest and pest prey were comparably lower, with 21.6% for collembolans, 18.1% for earthworms and 4.2% for aphids, respectively. Despite the prolonged detection period of plant DNA in carabid guts, as compared to animal prey, these first results suggest that weed seeds form an important part of the adult carabid diet. It would also lend support to the hypothesis that seed-feeding carabids are biocontrol agents of weeds, with effects of regulation on the weed seedbank that depend on behavioural and contextual factors including carabid species preferences for weed seed species, their life stage and tillage practices.
Collapse
Affiliation(s)
- Britta Frei
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
- Agroecologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comte, 21000 Dijon, France
| | - Yasemin Guenay
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
- Institute of Interdisciplinary Mountain Research, IGF, Austrian Academy of Sciences, Technikerstraße 21a, 6020 Innsbruck, Austria
| | - David A. Bohan
- Agroecologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comte, 21000 Dijon, France
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Corinna Wallinger
- Institute of Interdisciplinary Mountain Research, IGF, Austrian Academy of Sciences, Technikerstraße 21a, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Rennstam Rubbmark O, Sint D, Cupic S, Traugott M. When to use next generation sequencing or diagnostic PCR in diet analyses. Mol Ecol Resour 2019; 19:388-399. [PMID: 30506979 PMCID: PMC6446722 DOI: 10.1111/1755-0998.12974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 11/29/2022]
Abstract
Next‐generation sequencing (NGS) is increasingly used for diet analyses; however, it may not always describe diet samples well. A reason for this is that diet samples contain mixtures of food DNA in different amounts as well as consumer DNA which can reduce the food DNA characterized. Because of this, detections will depend on the relative amount and identity of each type of DNA. For such samples, diagnostic PCR will most likely give more reliable results, as detection probability is only marginally dependent on other copresent DNA. We investigated the reliability of each method to test (a) whether predatory beetle regurgitates, supposed to be low in consumer DNA, allow to retrieve prey sequences using general barcoding primers that co‐amplify the consumer DNA, and (b) to assess the sequencing depth or replication needed for NGS and diagnostic PCR to give stable results. When consumer DNA is co‐amplified, NGS is better suited to discover the range of possible prey, than for comparing co‐occurrences of diet species between samples, as retested samples were repeatedly different in prey detections with this approach. This shows that samples were incompletely described, as prey detected by diagnostic PCR frequently were missed by NGS. As the sequencing depth needed to reliably describe the diet in such samples becomes very high, the cost‐efficiency and reliability of diagnostic PCR make diagnostic PCR better suited for testing large sample‐sets. Especially if the targeted prey taxa are thought to be of ecological importance, as diagnostic PCR gave more nested and consistent results in repeated testing of the same sample.
Collapse
Affiliation(s)
- Oskar Rennstam Rubbmark
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Daniela Sint
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Sandra Cupic
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Ye Z, Vollhardt IMG, Parth N, Rubbmark O, Traugott M. Facultative bacterial endosymbionts shape parasitoid food webs in natural host populations: A correlative analysis. J Anim Ecol 2018; 87:1440-1451. [PMID: 29928757 PMCID: PMC6099228 DOI: 10.1111/1365-2656.12875] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
Facultative bacterial endosymbionts can protect their aphid hosts from natural enemies such as hymenopteran parasitoids. As such, they have the capability to modulate interactions between aphids, parasitoids and hyperparasitoids. However, the magnitude of these effects in natural aphid populations and their associated parasitoid communities is currently unknown. Moreover, environmental factors such as plant fertilization and landscape complexity are known to affect aphid–parasitoid interactions but it remains unclear how such environmental factors affect the interplay between aphids, parasitoids and endosymbionts. Here, we tested whether facultative endosymbionts confer protection to parasitoids in natural populations of the English grain aphid, Sitobion avenae, and if this is affected by plant fertilization and landscape complexity. Furthermore, we examined whether the effects of facultative endosymbionts can cascade up to the hyperparasitoid level and increase primary‐hyperparasitoid food web specialization. Living aphids and mummies were collected in fertilized and unfertilized plots within 13 wheat fields in Central Germany. We assessed the occurrence of primary parasitoid, hyperparasitoid and endosymbiont species in aphids and mummies using a newly established molecular approach. Facultative endosymbiont infection rates were high across fields (~80%), independent of whether aphids were parasitized or unparasitized. Aphid mummies exhibited a significantly lower share of facultative endosymbiont infection (~38%). These findings suggest that facultative endosymbionts do not affect parasitoid oviposition behaviour, but decrease parasitoid survival in the host. Facultative endosymbiont infection rates were lower in mummies collected from fertilized compared to unfertilized plants, indicating that plant fertilization boosts the facultative endosymbiont protective effect. Furthermore, we found strong evidence for species‐specific and negative cascading effects of facultative endosymbionts on primary and hyperparasitoids, respectively. Facultative endosymbionts impacted parasitoid assemblages and increased the specialization of primary‐hyperparasitoid food webs: these effects were independent from and much stronger than other environmental factors. The current findings strongly suggest that facultative endosymbionts act as a driving force in aphid–parasitoid–hyperparasitoid networks: they shape insect community composition at different trophic levels and modulate, directly and indirectly, the interactions between aphids, parasitoids and their environment.
Collapse
Affiliation(s)
- Zhengpei Ye
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Ines M G Vollhardt
- Agroecology, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Nadia Parth
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Oskar Rubbmark
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Rondoni G, Fenjan S, Bertoldi V, Ielo F, Djelouah K, Moretti C, Buonaurio R, Ricci C, Conti E. Molecular detection of field predation among larvae of two ladybird beetles is partially predicted from laboratory experiments. Sci Rep 2018; 8:2594. [PMID: 29416074 PMCID: PMC5803220 DOI: 10.1038/s41598-018-20830-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/17/2018] [Indexed: 11/26/2022] Open
Abstract
Despite the fact that natural enemies can synergistically contribute to herbivore pest suppression, sometimes predators engage in intraguild predation (IGP) that might dampen trophic cascades. DNA-based gut-content analysis has become common in assessing trophic connections and biocontrol potential by predators in field systems. Here, we developed a molecular technique that can be used to unravel predation among two ladybirds, Coccinella septempunctata and Hippodamia variegata, and their shared prey, Aphis gossypii. Both ladybirds may provide effective control of the pest. Therefore, understanding their likelihood to engage in IGP is crucial for conservation biological control. Ladybird specimens were collected in melon crop. DNA extraction, primer design and evaluation were conducted. Detectability of prey DNA did not differ significantly between the two ladybirds. H. variegata exhibited higher predation on A. gossypii than C. septempunctata (90.6% vs. 70.9%) and data correction based on DNA detectability confirmed this ranking. IGP was similar among the two species, although corrected data might suggest a stronger predation by C. septempunctata. Intriguingly, IGP by C. septempunctata was lower than predicted by laboratory bioassays, possibly due to the high complexity that arises under field conditions. Implications of our results for biological control and perspectives for ecological network analysis are discussed.
Collapse
Affiliation(s)
- Gabriele Rondoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, 06121, Perugia, PG, Italy.
| | - Saleh Fenjan
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, 06121, Perugia, PG, Italy
- CIHEAM, Mediterranean Agronomic Institute, Via Ceglie 9, 70010, Valenzano, BA, Italy
| | - Valeria Bertoldi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, 06121, Perugia, PG, Italy
| | - Fulvio Ielo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, 06121, Perugia, PG, Italy
| | - Khaled Djelouah
- CIHEAM, Mediterranean Agronomic Institute, Via Ceglie 9, 70010, Valenzano, BA, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, 06121, Perugia, PG, Italy
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, 06121, Perugia, PG, Italy
| | - Carlo Ricci
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, 06121, Perugia, PG, Italy
| | - Eric Conti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, 06121, Perugia, PG, Italy
| |
Collapse
|
16
|
Ye Z, Vollhardt IMG, Tomanovic Z, Traugott M. Evaluation of three molecular markers for identification of European primary parasitoids of cereal aphids and their hyperparasitoids. PLoS One 2017; 12:e0177376. [PMID: 28562603 PMCID: PMC5451020 DOI: 10.1371/journal.pone.0177376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/26/2017] [Indexed: 12/02/2022] Open
Abstract
Aphids are major pests of cereal crops and a suite of hymenopteran primary parasitoids play an important role in regulating their populations. However, hyperparasitoids may disrupt the biocontrol services provided by primary parasitoids. As such, understanding cereal aphid-primary parasitoid-hyperparasitoid interactions is vital for a reliable parasitoid-based control of cereal aphids. For this, the ability to identify the different primary and hyperparasitoid species is necessary. Unfortunately, this is often difficult due to a lack of morphologically diagnostic features. DNA sequence-based species identification of parasitoids can overcome these hurdles. However, comprehensive DNA sequence information is lacking for many of these groups, particularly for hyperparasitoids. Here we evaluate three genes [cytochrome c oxidase subunit I (COI), 16S ribosomal RNA (16S) and 18S ribosomal RNA (18S)] for their suitability to identify 24 species of primary parasitoids and 16 species of hyperparasitoids associated with European cereal aphids. To identify aphelinid primary parasitoid species and hyperparasitoids, we found 16S to be more suitable compared to COI sequences. In contrast, the Aphidiinae are best identified using COI due to better species-level resolution and a more comprehensive DNA sequence database compared to 16S. The 18S gene was better suited for group-specific identification of parasitoids, but did not provide resolution at the species level. Our results provide a DNA sequence database for cereal aphid primary parasitoids and their associated hyperparasitoids in Central Europe, which will allow further improvement of our understanding of cereal aphid-primary parasitoid-hyperparasitoid interactions in relation to aphid biological control.
Collapse
Affiliation(s)
- Zhengpei Ye
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
- * E-mail: ,
| | - Ines M. G. Vollhardt
- Agroecology, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Zeljko Tomanovic
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|