1
|
Limone A, Di Napoli C, Napolitano F, Imbò B, Minopoli G, Bagnoli S, Izzo A, Paladino S, Nacmias B, De Matteis MA, Montuori N, Lavecchia A, Sarnataro D. Targeting RPSA to modulate endosomal trafficking and amyloidogenesis in genetic Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167753. [PMID: 40037473 DOI: 10.1016/j.bbadis.2025.167753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
The "amyloid cascade hypothesis" for Alzheimer's disease (AD) pathogenesis, highlights the accumulation of amyloid-β (Aβ) as a crucial trigger for the pathology. However, AD is an extremely complex disease influenced by multiple pathophysiological processes, making it impossible to attribute its onset to a single hypothesis. The endocytic pathway, where the amyloidogenic processing of APP occurs, has emerged as a pathogenic "hub" for AD. In this study, we found altered homeostasis and dynamics of endolysosomal compartments in fibroblasts from patients affected by a genetic form of AD (APP V717I mutation). These alterations corresponded to an abnormal trafficking of APP along the endolysosomal pathway, favouring its amyloidogenic processing. The identification of APP interactors involved in its trafficking and processing, and finding molecules able to interfere with these interactions, represents a promising therapeutic approach. However, the role of endosomal pathway and the possibility of modulating APP processing through it remains elusive. Among the proteins participating to APP metabolism, the RPSA receptor and its inhibitor molecule NSC47924 have been identified. In this study, we found that the inhibitor, likely by displacing APP from interaction with its receptor, reduced APP accumulation in EEs in AD cells, finally restoring both endosomal dynamics and APP distribution to those of unaffected cells. We also demonstrated that RPSA inhibition affected the aberrant APP cleavage, as it reduced the production of both APP-βCTF (C-Terminal Fragment) and Aβ in AD fibroblasts. These results highlight significant differences in endolysosomal compartments and APP processing in AD-affected cells, refining our understanding of APP/RPSA intersection.
Collapse
Affiliation(s)
- Adriana Limone
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Clelia Di Napoli
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Filomena Napolitano
- University of Naples "Federico II"- Dept. of Translational Medical Sciences, Via S. Pansini 5, 80131 Naples, Italy
| | - Barbara Imbò
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppina Minopoli
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Silvia Bagnoli
- University of Florence, Dept. of Neuroscience, Psychology, Drug Research and Child Health, Viale Pieraccini 6, 50139 Florence, Italy
| | - Antonella Izzo
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Simona Paladino
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Benedetta Nacmias
- University of Florence, Dept. of Neuroscience, Psychology, Drug Research and Child Health, Viale Pieraccini 6, 50139 Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Maria Antonietta De Matteis
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Nunzia Montuori
- University of Naples "Federico II"- Dept. of Translational Medical Sciences, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonio Lavecchia
- University of Naples "Federico II"- Dept. of Pharmacy, "Drug Discovery Lab", Via D. Montesano 49, 80131, Naples, Italy
| | - Daniela Sarnataro
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
2
|
Yan R, Zhang Y, Zhang H, Ma J. Nanobody fusion enhances production of difficult-to-produce secretory proteins. J Biol Chem 2025; 301:108292. [PMID: 39952409 PMCID: PMC11930436 DOI: 10.1016/j.jbc.2025.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Secretory protein expression in mammalian cells is widely used in various fields, including biomedical research and biopharmaceutical production. However, achieving high-level expression of certain secretory proteins/peptides can be challenging. The naturally occurring N1 fragment of the prion protein is one of these difficult-to-produce secretory proteins, which hinders our understanding of its biological functions and limits its potential as a therapeutic molecule. To improve N1 production, we screened several well-folded protein domains and found that fusing N1 with a camelid nanobody (Nb) improved its translocation into the endoplasmic reticulum and significantly enhanced its secretion. Nb fusion does not alter the translocation mechanism, which remains dependent on the Sec61-Sec62-Sec63 complex. This approach also resulted in a significant increase in N1 production in the mouse brain using recombinant adeno-associated virus. Furthermore, fusing Nb to another unstructured protein, Shadoo (without glycosylphosphatidylinositol anchor), or a peptide hormone, somatostatin, also greatly increased their production, demonstrating the applicability of this approach to other proteins and peptides. The enhancement of N1 production is comparable or better than Fc fusion, and the effect is observed with all tested camelid Nb but not with a shark Nb and to a lesser extent with a human immunoglobulin heavy chain variable region. Importantly, the Nb in the fusion protein retained its antigen-binding capability, paving the way for the development of a dual-functional protein. Collectively, we present a novel strategy for enhancing the production of secretory proteins, which holds great promise in creating functional biological molecules for a wide range of applications.
Collapse
Affiliation(s)
- Runchuan Yan
- College of Biological Sciences, China Agricultural University, Beijing, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Yan Zhang
- College of Biological Sciences, China Agricultural University, Beijing, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Hui Zhang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Chinese Institute for Brain Research, Beijing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China
| | - Jiyan Ma
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
3
|
Avolio R, Agliarulo I, Criscuolo D, Sarnataro D, Auriemma M, De Lella S, Pennacchio S, Calice G, Ng MY, Giorgi C, Pinton P, Cooperman BS, Landriscina M, Esposito F, Matassa DS. Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins. Genome Res 2023; 33:1242-1257. [PMID: 37487647 PMCID: PMC10547376 DOI: 10.1101/gr.277755.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
Collapse
Affiliation(s)
- Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Ilenia Agliarulo
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"-IEOS, National Research Council of Italy (CNR), Naples 80131, Italy
| | - Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Sabrina De Lella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Sara Pennacchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture 85028, Italy
| | - Martin Y Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Matteo Landriscina
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"-IEOS, National Research Council of Italy (CNR), Naples 80131, Italy
- Department Medical and Surgical Science, University of Foggia, Foggia 71122, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy;
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy;
| |
Collapse
|
4
|
Limone A, Maggisano V, Sarnataro D, Bulotta S. Emerging roles of the cellular prion protein (PrP C) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell Mol Life Sci 2023; 80:207. [PMID: 37452879 PMCID: PMC10349719 DOI: 10.1007/s00018-023-04844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.
Collapse
Affiliation(s)
- Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| |
Collapse
|
5
|
Avolio R, Agliarulo I, Criscuolo D, Sarnataro D, Auriemma M, Pennacchio S, Calice G, Ng MY, Giorgi C, Pinton P, Cooperman B, Landriscina M, Esposito F, Matassa DS. Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524708. [PMID: 36712063 PMCID: PMC9882373 DOI: 10.1101/2023.01.19.524708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein we identify the molecular mechanisms involved, demonstrating that TRAP1: i) binds both mitochondrial and cytosolic ribosomes as well as translation elongation factors, ii) slows down translation elongation rate, and iii) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
Collapse
Affiliation(s)
- Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Ilenia Agliarulo
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” - IEOS, National Research Council of Italy (CNR), Naples, 80131, Italy
| | - Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Sara Pennacchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Giovanni Calice
- Laboratory of Pre-clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, 85028, Italy
| | - Martin Y. Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Carlotta Giorgi
- Dept. of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Paolo Pinton
- Dept. of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Barry Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Matteo Landriscina
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” - IEOS, National Research Council of Italy (CNR), Naples, 80131, Italy
- Department Medical and Surgical Science, University of Foggia, Foggia, 71122, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
6
|
Membrane Domain Localization and Interaction of the Prion-Family Proteins, Prion and Shadoo with Calnexin. MEMBRANES 2021; 11:membranes11120978. [PMID: 34940479 PMCID: PMC8704586 DOI: 10.3390/membranes11120978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
The cellular prion protein (PrPC) is renowned for its infectious conformational isoform PrPSc, capable of templating subsequent conversions of healthy PrPCs and thus triggering the group of incurable diseases known as transmissible spongiform encephalopathies. Besides this mechanism not being fully uncovered, the protein’s physiological role is also elusive. PrPC and its newest, less understood paralog Shadoo are glycosylphosphatidylinositol-anchored proteins highly expressed in the central nervous system. While they share some attributes and neuroprotective actions, opposing roles have also been reported for the two; however, the amount of data about their exact functions is lacking. Protein–protein interactions and membrane microdomain localizations are key determinants of protein function. Accurate identification of these functions for a membrane protein, however, can become biased due to interactions occurring during sample processing. To avoid such artifacts, we apply a non-detergent-based membrane-fractionation approach to study the prion protein and Shadoo. We show that the two proteins occupy similarly raft and non-raft membrane fractions when expressed in N2a cells and that both proteins pull down the chaperone calnexin in both rafts and non-rafts. These indicate their possible binding to calnexin in both types of membrane domains, which might be a necessary requisite to aid the inherently unstable native conformation during their lifetime.
Collapse
|
7
|
Gupta N, Ramakrishnan S, Wajid S. Emerging role of metabolomics in protein conformational disorders. Expert Rev Proteomics 2021; 18:395-410. [PMID: 34227444 DOI: 10.1080/14789450.2021.1948330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Metabolomics focuses on interactions among different metabolites associated with various cellular functions in cells, tissues, and organs. In recent years, metabolomics has emerged as a powerful tool to identify perturbed metabolites, pathways influenced by the environment, for protein conformational diseases (PCDs) and also offers wide clinical application.Area Covered: This review provides a brief overview of recent advances in metabolomics as applied to identify metabolic variations in PCDs, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, prion disease, and cardiac amyloidosis. The 'PubMed' and 'Google Scholar' database search methods have been used to screen the published reports with key search terms: metabolomics, biomarkers, and protein conformational disorders.Expert opinion: Metabolomics is the large-scale study of metabolites and is deemed to overwhelm other omics. It plays a crucial role in finding variations in diseases due to protein conformational changes. However, many PCDs are yet to be identified. Metabolomics is still an emerging field; there is a need for new high-resolution analytical techniques and more studies need to be carried out to generate new information.
Collapse
Affiliation(s)
- Nimisha Gupta
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, India
| | | | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, India
| |
Collapse
|
8
|
Bhattacharya A, Izzo A, Mollo N, Napolitano F, Limone A, Margheri F, Mocali A, Minopoli G, Lo Bianco A, Di Maggio F, D’Argenio V, Montuori N, Lavecchia A, Sarnataro D. Inhibition of 37/67kDa Laminin-1 Receptor Restores APP Maturation and Reduces Amyloid-β in Human Skin Fibroblasts from Familial Alzheimer's Disease. J Pers Med 2020; 10:jpm10040232. [PMID: 33207563 PMCID: PMC7712490 DOI: 10.3390/jpm10040232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a fatal neurodegenerative disorder caused by protein misfolding and aggregation, affecting brain function and causing dementia. Amyloid beta (Aβ), a peptide deriving from amyloid precursor protein (APP) cleavage by-and γ-secretases, is considered a pathological hallmark of AD. Our previous study, together with several lines of evidence, identified a strict link between APP, Aβ and 37/67kDa laminin receptor (LR), finding the possibility to regulate intracellular APP localization and maturation through modulation of the receptor. Here, we report that in fibroblasts from familial AD (fAD), APP was prevalently expressed as an immature isoform and accumulated preferentially in the transferrin-positive recycling compartment rather than in the Golgi apparatus. Moreover, besides the altered mitochondrial network exhibited by fAD patient cells, the levels of pAkt and pGSK3 were reduced in respect to healthy control fibroblasts and were accompanied by an increased amount of secreted Aβ in conditioned medium from cell cultures. Interestingly, these features were reversed by inhibition of 37/67kDa LR by NSC47924 a small molecule that was able to rescue the “typical” APP localization in the Golgi apparatus, with consequences on the Aβ level and mitochondrial network. Altogether, these findings suggest that 37/67kDa LR modulation may represent a useful tool to control APP trafficking and Aβ levels with implications in Alzheimer’s disease.
Collapse
Affiliation(s)
- Antaripa Bhattacharya
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
| | - Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (F.N.); (N.M.)
| | - Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (F.M.); (A.M.)
| | - Alessandra Mocali
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (F.M.); (A.M.)
| | - Giuseppina Minopoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
| | - Alessandra Lo Bianco
- Department of Pharmacy, “Drug Discovery Lab”, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (A.L.B.); (A.L.)
| | - Federica Di Maggio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Naples, Italy;
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (F.N.); (N.M.)
| | - Antonio Lavecchia
- Department of Pharmacy, “Drug Discovery Lab”, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (A.L.B.); (A.L.)
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Naples, Italy;
- Correspondence:
| |
Collapse
|
9
|
Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association. Int J Mol Sci 2020; 21:ijms21145038. [PMID: 32708832 PMCID: PMC7403958 DOI: 10.3390/ijms21145038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast prions and mnemons are respectively transmissible and non-transmissible self-perpetuating protein assemblies, frequently based on cross-β ordered detergent-resistant aggregates (amyloids). Prions cause devastating diseases in mammals and control heritable traits in yeast. It was shown that the de novo formation of the prion form [PSI+] of yeast release factor Sup35 is facilitated by aggregates of other proteins. Here we explore the mechanism of the promotion of [PSI+] formation by Ste18, an evolutionarily conserved gamma subunit of a G-protein coupled receptor, a key player in responses to extracellular stimuli. Ste18 forms detergent-resistant aggregates, some of which are colocalized with de novo generated Sup35 aggregates. Membrane association of Ste18 is required for both Ste18 aggregation and [PSI+] induction, while functional interactions involved in signal transduction are not essential for these processes. This emphasizes the significance of a specific location for the nucleation of protein aggregation. In contrast to typical prions, Ste18 aggregates do not show a pattern of heritability. Our finding that Ste18 levels are regulated by the ubiquitin-proteasome system, in conjunction with the previously reported increase in Ste18 levels upon the exposure to mating pheromone, suggests that the concentration-dependent Ste18 aggregation may mediate a mnemon-like response to physiological stimuli.
Collapse
|
10
|
Bhattacharya A, Limone A, Napolitano F, Cerchia C, Parisi S, Minopoli G, Montuori N, Lavecchia A, Sarnataro D. APP Maturation and Intracellular Localization Are Controlled by a Specific Inhibitor of 37/67 kDa Laminin-1 Receptor in Neuronal Cells. Int J Mol Sci 2020; 21:ijms21051738. [PMID: 32143270 PMCID: PMC7084285 DOI: 10.3390/ijms21051738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is processed along both the nonamyloidogenic pathway preventing amyloid beta peptide (Aβ) production and the amyloidogenic pathway, generating Aβ, whose accumulation characterizes Alzheimer’s disease. Items of evidence report that the intracellular trafficking plays a key role in the generation of Aβ and that the 37/67 kDa LR (laminin receptor), acting as a receptor for Aβ, may mediate Aβ-pathogenicity. Moreover, findings indicating interaction between the receptor and the key enzymes involved in the amyloidogenic pathway suggest a strong link between 37/67 kDa LR and APP processing. We show herein that the specific 37/67 kDa LR inhibitor, NSC48478, is able to reversibly affect the maturation of APP in a pH-dependent manner, resulting in the partial accumulation of the immature APP isoforms (unglycosylated/acetylated forms) in the endoplasmic reticulum (ER) and in transferrin-positive recycling endosomes, indicating alteration of the APP intracellular trafficking. These effects reveal NSC48478 inhibitor as a novel small molecule to be tested in disease conditions, mediated by the 37/67 kDa LR and accompanied by inactivation of ERK1/2 (extracellular signal-regulated kinases) signalling and activation of Akt (serine/threonine protein kinase) with consequent inhibition of GSK3β.
Collapse
Affiliation(s)
- Antaripa Bhattacharya
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (F.N.); (N.M.)
| | - Carmen Cerchia
- Department of Pharmacy, “Drug Discovery Lab”, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.C.); (A.L.)
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Giuseppina Minopoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (F.N.); (N.M.)
| | - Antonio Lavecchia
- Department of Pharmacy, “Drug Discovery Lab”, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.C.); (A.L.)
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
- Correspondence:
| |
Collapse
|
11
|
Mookherjee D, Majumder P, Mukherjee R, Chatterjee D, Kaul Z, Das S, Sougrat R, Chakrabarti S, Chakrabarti O. Cytosolic aggregates in presence of non‐translocated proteins perturb endoplasmic reticulum structure and dynamics. Traffic 2019; 20:943-960. [DOI: 10.1111/tra.12694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Debdatto Mookherjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
| | - Priyanka Majumder
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Department of Life Sciences, School of Natural SciencesShiv Nadar University Dadri UP India
| | - Rukmini Mukherjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Buchmann Institute for Molecular Life Sciences Frankfurt Am Main Germany
| | - Debmita Chatterjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
| | - Zenia Kaul
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of Virginia School of Medicine Charlottesville Virginia
| | - Subhrangshu Das
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Rachid Sougrat
- Imaging and Characterization Lab4700 King Abdullah University of Science and Technology Thuwal Kingdom of Saudi Arabia
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
12
|
D'Argenio V, Sarnataro D. Microbiome Influence in the Pathogenesis of Prion and Alzheimer's Diseases. Int J Mol Sci 2019; 20:E4704. [PMID: 31547531 PMCID: PMC6801937 DOI: 10.3390/ijms20194704] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022] Open
Abstract
Misfolded and abnormal β-sheets forms of wild-type proteins, such as cellular prion protein (PrPC) and amyloid beta (Aβ), are believed to be the vectors of neurodegenerative diseases, prion and Alzheimer's disease (AD), respectively. Increasing evidence highlights the "prion-like" seeding of protein aggregates as a mechanism for pathological spread in AD, tauopathy, as well as in other neurodegenerative diseases, such as Parkinson's. Mutations in both PrPC and Aβ precursor protein (APP), have been associated with the pathogenesis of these fatal disorders with clear evidence for their pathogenic significance. In addition, a critical role for the gut microbiota is emerging; indeed, as a consequence of gut-brain axis alterations, the gut microbiota has been involved in the regulation of Aβ production in AD and, through the microglial inflammation, in the amyloid fibril formation, in prion diseases. Here, we aim to review the role of microbiome ("the other human genome") alterations in AD and prion disease pathogenesis.
Collapse
Affiliation(s)
- Valeria D'Argenio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy.
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy.
| |
Collapse
|
13
|
Lévy E, El Banna N, Baïlle D, Heneman-Masurel A, Truchet S, Rezaei H, Huang ME, Béringue V, Martin D, Vernis L. Causative Links between Protein Aggregation and Oxidative Stress: A Review. Int J Mol Sci 2019; 20:ijms20163896. [PMID: 31405050 PMCID: PMC6719959 DOI: 10.3390/ijms20163896] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
Compelling evidence supports a tight link between oxidative stress and protein aggregation processes, which are noticeably involved in the development of proteinopathies, such as Alzheimer’s disease, Parkinson’s disease, and prion disease. The literature is tremendously rich in studies that establish a functional link between both processes, revealing that oxidative stress can be either causative, or consecutive, to protein aggregation. Because oxidative stress monitoring is highly challenging and may often lead to artefactual results, cutting-edge technical tools have been developed recently in the redox field, improving the ability to measure oxidative perturbations in biological systems. This review aims at providing an update of the previously known functional links between oxidative stress and protein aggregation, thereby revisiting the long-established relationship between both processes.
Collapse
Affiliation(s)
- Elise Lévy
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Nadine El Banna
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Dorothée Baïlle
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Amélie Heneman-Masurel
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Sandrine Truchet
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Human Rezaei
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Vincent Béringue
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Davy Martin
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Laurence Vernis
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
14
|
Proteasomal Inhibition Redirects the PrP-Like Shadoo Protein to the Nucleus. Mol Neurobiol 2019; 56:7888-7904. [PMID: 31129810 PMCID: PMC6815274 DOI: 10.1007/s12035-019-1623-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The Shadoo protein (Sho) exhibits homology to the hydrophobic region of the cellular isoform of prion protein (PrPC). As prion-infected brains gradually accumulate infectivity-associated isoforms of prion protein (PrPSc), levels of mature endogenous Sho become reduced. To study the regulatory effect of the proteostatic network on Sho expression, we investigated the action of lactacystin, MG132, NH4Cl, and 3-methyladenine (3-MA) in two cell culture models. In primary mixed neuronal and glial cell cultures (MNGCs) from transgenic mice expressing wild-type Sho from the PrP gene promoter (Tg.Sprn mice), lactacystin- and MG132-mediated inhibition of proteasomal activity shifted the repertoire of Sho species towards unglycosylated forms appearing in the nuclei; conversely, the autophagic modulators NH4Cl and 3-MA did not affect Sho or PrPC glycosylation patterns. Mouse N2a neuroblastoma cells expressing Sho under control of a housekeeping gene promoter treated with MG132 or lactacystin also showed increased nuclear localization of unglycosylated Sho. As two proteasomal inhibitors tested in two cell paradigms caused redirection of Sho to nuclei at the expense of processing through the secretory pathway, our findings define a balanced shift in subcellular localization that thereby differs from the decreases in net Sho species seen in prion-infected brains. Our data are indicative of a physiological pathway to access Sho functions in the nucleus under conditions of impaired proteasomal activity. We also infer that these conditions would comprise a context wherein Sho’s N-terminal nucleic acid–binding RGG repeat region is brought into play.
Collapse
|
15
|
Sarnataro D. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases. Int J Mol Sci 2018; 19:ijms19103081. [PMID: 30304819 PMCID: PMC6213118 DOI: 10.3390/ijms19103081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
The misfolding and aggregation of proteins is the neuropathological hallmark for numerous diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. It is believed that misfolded and abnormal β-sheets forms of wild-type proteins are the vectors of these diseases by acting as seeds for the aggregation of endogenous proteins. Cellular prion protein (PrPC) is a glycosyl-phosphatidyl-inositol (GPI) anchored glycoprotein that is able to misfold to a pathogenic isoform PrPSc, the causative agent of prion diseases which present as sporadic, dominantly inherited and transmissible infectious disorders. Increasing evidence highlights the importance of prion-like seeding as a mechanism for pathological spread in Alzheimer's disease and Tauopathy, as well as other neurodegenerative disorders. Here, we report the latest findings on the mechanisms controlling protein folding, focusing on the ER (Endoplasmic Reticulum) quality control of GPI-anchored proteins and describe the "prion-like" properties of amyloid-β and tau assemblies. Furthermore, we highlight the importance of pathogenic assemblies interaction with protein and lipid membrane components and their implications in both prion and Alzheimer's diseases.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, School of Medicine, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
16
|
Lebreton S, Zurzolo C, Paladino S. Organization of GPI-anchored proteins at the cell surface and its physiopathological relevance. Crit Rev Biochem Mol Biol 2018; 53:403-419. [PMID: 30040489 DOI: 10.1080/10409238.2018.1485627] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. The presence of both glycolipid anchor and protein portion confers them unique features. GPI-APs are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, neuritogenesis, and immune response. Likewise other plasma membrane proteins, the spatio-temporal organization of GPI-APs is critical for their biological activities in physiological conditions. In this review, we will summarize the latest findings on plasma membrane organization of GPI-APs and the mechanism of its regulation in different cell types. We will also examine the involvement of specific GPI-APs namely the prion protein PrPC, the Folate Receptor alpha and the urokinase plasminogen activator receptor in human diseases focusing on neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Stéphanie Lebreton
- a Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur , Paris , France
| | - Chiara Zurzolo
- a Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur , Paris , France
| | - Simona Paladino
- b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II , Napoli , Italy.,c CEINGE Biotecnologie Avanzate , Napoli , Italy
| |
Collapse
|