1
|
Mitolo M, Lombardi G, Manca R, Nacmias B, Venneri A. Association between blood-based protein biomarkers and brain MRI in the Alzheimer's disease continuum: a systematic review. J Neurol 2024; 271:7120-7140. [PMID: 39264441 PMCID: PMC11560990 DOI: 10.1007/s00415-024-12674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Blood-based biomarkers (BBM) are becoming easily detectable tools to reveal pathological changes in Alzheimer's disease (AD). A comprehensive and up-to-date overview of the association between BBM and brain MRI parameters is not available. This systematic review aimed to summarize the literature on the associations between the main BBM and MRI markers across the clinical AD continuum. A systematic literature search was carried out on PubMed and Web of Science and a total of 33 articles were included. Hippocampal volume was positively correlated with Aβ42 and Aβ42/Aβ40 and negatively with Aβ40 plasma levels. P-tau181 and p-tau217 concentrations were negatively correlated with temporal grey matter volume and cortical thickness. NfL levels were negatively correlated with white matter microstructural integrity, whereas GFAP levels were positively correlated with myo-inositol values in the posterior cingulate cortex/precuneus. These findings highlight consistent associations between various BBM and brain MRI markers even in the pre-clinical and prodromal stages of AD. This suggests a possible advantage in combining multiple AD-related markers to improve accuracy of early diagnosis, prognosis, progression monitoring and treatment response.
Collapse
Affiliation(s)
- Micaela Mitolo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Riccardo Manca
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Annalena Venneri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| |
Collapse
|
2
|
Lv H, Tang L, Jian C, Wei A, Li D, Jiang Y, Yang C, Mo S, Shang J, Li X. Prognostic value of plasma Aβ1-40 for Alzheimer's disease. Am J Transl Res 2024; 16:1962-1968. [PMID: 38883359 PMCID: PMC11170593 DOI: 10.62347/piyv4216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE To investigate the clinical significance of plasma p-amyloid 1-40 (Aβ1-40) in patients with Alzheimer's disease (AD). METHODS In this retrospective study, the clinical data of 305 patients, with or without Alzheimer's disease (AD), who were treated at the Affiliated Hospital of Youjiang Medical University for Nationalities and the People's Hospital of Baise between January 2018 and December 2021 were analyzed. Patients were divided into two groups: an AD group (n=147) and a non-AD group (without AD, n=158 cases). Blood test indices, including serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CRE), high-sensitivity C-reactive protein (hsCRP), and plasma β-amyloid 1-40 were collected and compared between the two groups. RESULTS The plasma β-amyloid 1-40 in the AD group was (3.71±3.45) mol/L, which was significantly higher than (2.8±1.35) mmol/L in the non-AD group (P<0.05). Similarly, hsCRP expression was significantly higher in the AD group than that in the non-AD group (P<0.05). There were no significant differences in AST, ALT, UA, T-tau, NFL or Cr levels between the two groups (all P>0.05). Moreover, univariate regression analysis showed that plasma β-amyloid 1-40 and hsCRP were significantly correlated with AD. Multiple regression analysis demonstrated that plasma p-amyloid 1-40 (P<0.0001) and hsCRP (P=0.002) were independent predictors of AD. CONCLUSION Plasma p-amyloid 1-40 and hsCRP are closely related to AD, and may serve as important clinical predictors of AD.
Collapse
Affiliation(s)
- Hui Lv
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities Baise 533000, Guangxi, China
- College of Nursing of Youjiang Medical University for Nationalities Baise 533000, Guangxi, China
| | - Lingjiao Tang
- College of Nursing of Youjiang Medical University for Nationalities Baise 533000, Guangxi, China
| | - Chongdong Jian
- Affiliated Hospital of Youjiang Medical University for Nationalities Baise 533000, Guangxi, China
| | - Anshang Wei
- The Second People's Hospital of Baise Baise 533000, Guangxi, China
| | - Dengxing Li
- The People's Hospital of Baise Baise 533000, Guangxi, China
| | - Yongming Jiang
- Affiliated Hospital of Youjiang Medical University for Nationalities Baise 533000, Guangxi, China
| | - Chengmin Yang
- Affiliated Hospital of Youjiang Medical University for Nationalities Baise 533000, Guangxi, China
| | - Shenglong Mo
- The Graduate College of Youjiang Medical University for Nationalities Baise 533000, Guangxi, China
| | - Jingwei Shang
- Affiliated Hospital of Youjiang Medical University for Nationalities Baise 533000, Guangxi, China
| | - Xinzhou Li
- Affiliated Hospital of Youjiang Medical University for Nationalities Baise 533000, Guangxi, China
| |
Collapse
|
3
|
Sano M, Cummings J, Auer S, Bergh S, Fischer CE, Gerritsen D, Grossberg G, Ismail Z, Lanctôt K, Lapid MI, Mintzer J, Palm R, Rosenberg PB, Splaine M, Zhong K, Zhu CW. Agitation in cognitive disorders: Progress in the International Psychogeriatric Association consensus clinical and research definition. Int Psychogeriatr 2024; 36:238-250. [PMID: 36880250 PMCID: PMC10684256 DOI: 10.1017/s1041610222001041] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
BACKGROUND The International Psychogeriatric Association (IPA) published a provisional consensus definition of agitation in cognitive disorders in 2015. As proposed by the original work group, we summarize the use and validation of criteria in order to remove "provisional" from the definition. METHODS This report summarizes information from the academic literature, research resources, clinical guidelines, expert surveys, and patient and family advocates on the experience of use of the IPA definition. The information was reviewed by a working group of topic experts to create a finalized definition. RESULTS We present a final definition which closely resembles the provisional definition with modifications to address special circumstances. We also summarize the development of tools for diagnosis and assessment of agitation and propose strategies for dissemination and integration into precision diagnosis and agitation interventions. CONCLUSION The IPA definition of agitation captures a common and important entity that is recognized by many stakeholders. Dissemination of the definition will permit broader detection and can advance research and best practices for care of patients with agitation.
Collapse
Affiliation(s)
- Mary Sano
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NYC NY and James J. Peters VAMC, Bronx NY
| | - Jeffrey Cummings
- Joy Chambers-Grundy Professor of Brain Science, Director, Chambers-Grundy Center for Transformative Neuroscience, Co-Director, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences. University of Nevada Las Vegas (UNLV)
| | - Stefanie Auer
- Centre for Dementia Studies, University for Continuing Education Krems, Austria
| | - Sverre Bergh
- The research centre for age-related functional decline and disease, Innlandet hospital trust, Ottestad, Norway
| | - Corinne E. Fischer
- Faculty of Medicine, Department of Psychiatry, University of Toronto, Canada
| | - Debby Gerritsen
- Department of Primary and Community Care, Radboud university medical center, Radboud Institute for Health Sciences, Radboud Alzheimer Center, Nijmegen, the Netherlands
| | - George Grossberg
- Department of Psychiatry & Behavioral Neuroscience, Division of Geriatric Psychiatry St Louis University School of Medicine
| | - Zahinoor Ismail
- Departments Psychiatry, Neurology, Epidemiology, and Pathology, Hotchkiss Brain Institute & O’Brien Institute for Public Health University of Calgary
| | - Krista Lanctôt
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute; and Departments of Psychiatry and Pharmacology/Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Maria I Lapid
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN, USA
| | - Jacobo Mintzer
- Psychiatrist, Ralph. H. Johnson VA Medical Center, Charleston, SC and Professor, College of Health Professions, Medical University of South Carolina, Charleston, SC
| | - Rebecca Palm
- Department of Nursing Science, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Paul B. Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | - Michael Splaine
- Owner Splaine Consulting, Managing Partner, Recruitment Partners LLC
| | - Kate Zhong
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas
| | - Carolyn W. Zhu
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine, NYC, NY and James J. Peters VAMC, Bronx NY
| |
Collapse
|
4
|
Li K, Gao Y, Liu M, Chen Y. Advances in Alzheimer's Disease Biomarkers. Curr Alzheimer Res 2024; 21:791-803. [PMID: 39757626 DOI: 10.2174/0115672050366767241223050957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual onset and complex pathological mechanisms. Clinically, it presents with progressive cognitive decline and behavioral impairments, making it one of the most common causes of dementia. The intricacies of its pathogenesis are not fully understood, and current treatment options are limited, with diagnosis typically occurring at intermediate to advanced stages. The development of new biomarkers offers a crucial avenue for the early diagnosis of AD and improving patient outcomes. Several biomarkers with high specificity have been identified. This article reviews biomarkers related to tau protein, β-amyloid, and blood cells to deepen our understanding of AD and emphasize the advantages and disadvantages of various biomarkers in order to explore further and mine new biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Kuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Yujie Gao
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Muxi Liu
- Department of Arts and Social Science, Philosophy Faculty, University of Zurich, Zurich, Switzerland
| | - Yizhao Chen
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| |
Collapse
|
5
|
Li K, Qu H, Ma M, Xia C, Cai M, Han F, Zhang Q, Gu X, Ma Q. Correlation Between Brain Structure Atrophy and Plasma Amyloid-β and Phosphorylated Tau in Patients With Alzheimer’s Disease and Amnestic Mild Cognitive Impairment Explored by Surface-Based Morphometry. Front Aging Neurosci 2022; 14:816043. [PMID: 35547625 PMCID: PMC9083065 DOI: 10.3389/fnagi.2022.816043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
ObjectiveTo investigate the changes in the cortical thickness of the region of interest (ROI) and plasma Aβ40, Aβ42, and phosphorylated Tau (P-Tau) concentrations in patients with Alzheimer’s disease (AD) and amnestic mild cognitive impairment (aMCI) as the disease progressed with surface-based morphometry (SBM), to analyze the correlation between ROI cortical thickness and measured plasma indexes and neuropsychological scales, and to explore the clinical value of ROI cortical thickness combined with plasma Aβ40, Aβ42, and P-Tau in the early recognition and diagnosis of AD.MethodsThis study enrolled 33 patients with AD, 48 patients with aMCI, and 33 healthy controls (normal control, NC). Concentration changes in plasma Aβ42, Aβ40, and P-Tau collected in each group were analyzed. Meanwhile, the whole brain T1 structure images (T1WI-3D-MPRAGE) of each group of patients were collected, and T1 image in AD-aMCI, AD-NC, and aMCI-NC group were analyzed and processed by SBM technology to obtain brain regions with statistical differences as clusters, and the cortical thickness of each cluster was extracted. Multivariate ordered logistic regression analysis was used to screen out the measured plasma indexes and the indexes with independent risk factors in the cortical thickness of each cluster. Three comparative receiver operating characteristic (ROC) curves of AD-aMCI, AD-NC, and aMCI-NC groups were plotted, respectively, to explore the diagnostic value of multi-factor combined prediction for cognitive impairment. The relationship between cortical thickness and plasma indexes, and between cortical thickness and Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores were clarified by Pearson correlation analysis.ResultsPlasma Aβ40, Aβ42, and P-Tau proteins in the NC, aMCI, and AD groups increased with the progression of AD (P < 0.01); cortical thickness reductions in the AD-aMCI groups and AD-NC groups mainly involved the bilateral superior temporal gyrus, transverse temporal gyrus, superior marginal gyrus, insula, right entorhinal cortex, right fusiform gyrus, and cingulate gyrus. However, there were no statistical significances in cortical thickness reductions in the aMCI and NC groups. The cortical thickness of the ROI was negatively correlated with plasma Aβ40, Aβ42, and P-Tau concentrations (P < 0.05), and the cortical thickness of the ROI was positively correlated with MMSE and MoCA scores. Independent risk factors such as Aβ40, Aβ42, P-Tau, and AD-NC cluster 1R (right superior temporal gyrus, temporal pole, entorhinal cortex, transverse temporal gyrus, fusiform gyrus, superior marginal gyrus, middle temporal gyrus, and inferior temporal gyrus) were combined to plot ROC curves. The diagnostic efficiency of plasma indexes was higher than that of cortical thickness indexes, the diagnostic efficiency of ROC curves after the combination of cortical thickness and plasma indexes was higher than that of cortical thickness or plasma indexes alone.ConclusionPlasma Aβ40, Aβ42, and P-Tau may be potential biomarkers for early prediction of AD. As the disease progressed, AD patients developed cortical atrophy characterized by atrophy of the medial temporal lobe. The combined prediction of these region and plasma Aβ40, Aβ42, and P-Tau had a higher diagnostic value than single-factor prediction for cognitive decline.
Collapse
Affiliation(s)
- Kaidi Li
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hang Qu
- Department of Imaging, Yangzhou First People’s Hospital, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Mingyi Ma
- Department of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Chenyu Xia
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ming Cai
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Fang Han
- Department of Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Qing Zhang
- Department of Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xinyi Gu
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Qiang Ma
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Qiang Ma,
| |
Collapse
|
6
|
De Miguel Z, Khoury N, Betley MJ, Lehallier B, Willoughby D, Olsson N, Yang AC, Hahn O, Lu N, Vest RT, Bonanno LN, Yerra L, Zhang L, Saw NL, Fairchild JK, Lee D, Zhang H, McAlpine PL, Contrepois K, Shamloo M, Elias JE, Rando TA, Wyss-Coray T. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 2021; 600:494-499. [PMID: 34880498 PMCID: PMC9721468 DOI: 10.1038/s41586-021-04183-x] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Physical exercise is generally beneficial to all aspects of human and animal health, slowing cognitive ageing and neurodegeneration1. The cognitive benefits of physical exercise are tied to an increased plasticity and reduced inflammation within the hippocampus2-4, yet little is known about the factors and mechanisms that mediate these effects. Here we show that 'runner plasma', collected from voluntarily running mice and infused into sedentary mice, reduces baseline neuroinflammatory gene expression and experimentally induced brain inflammation. Plasma proteomic analysis revealed a concerted increase in complement cascade inhibitors including clusterin (CLU). Intravenously injected CLU binds to brain endothelial cells and reduces neuroinflammatory gene expression in a mouse model of acute brain inflammation and a mouse model of Alzheimer's disease. Patients with cognitive impairment who participated in structured exercise for 6 months had higher plasma levels of CLU. These findings demonstrate the existence of anti-inflammatory exercise factors that are transferrable, target the cerebrovasculature and benefit the brain, and are present in humans who engage in exercise.
Collapse
Affiliation(s)
- Zurine De Miguel
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Psychology Department, California State University, Monterey Bay, CA, USA
| | - Nathalie Khoury
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Michael J Betley
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Graduate Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Alkahest Inc, San Carlos, CA, USA
| | - Drew Willoughby
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Niclas Olsson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Calico Life Sciences, South San Francisco, CA, USA
| | - Andrew C Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Ryan T Vest
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Liana N Bonanno
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Lakshmi Yerra
- The Veterans Affairs Palo Alto HealthCare System, Palo Alto, CA, USA
| | | | - Nay Lui Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| | - J Kaci Fairchild
- The Veterans Affairs Palo Alto HealthCare System, Palo Alto, CA, USA
| | - Davis Lee
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Hui Zhang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Patrick L McAlpine
- Otolaryngology Head and Neck Surgery Research Division, Stanford University, Stanford, CA, USA
| | | | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- The Veterans Affairs Palo Alto HealthCare System, Palo Alto, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Feng L, Li J, Zhang R. Current research status of blood biomarkers in Alzheimer's disease: Diagnosis and prognosis. Ageing Res Rev 2021; 72:101492. [PMID: 34673262 DOI: 10.1016/j.arr.2021.101492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD), which mainly occurs in the elderly, is a neurodegenerative disease with a hidden onset, which leads to progressive cognitive and behavioral changes. The annually increasing prevalence rate and number of patients with AD exert great pressure on the society. No effective disease-modifying drug treatments are available; thus, there is no cure yet. The disease progression can only be delayed through early detection and drug assistance. Therefore, the importance of exploring associated biomarkers for the early diagnosis and prediction of the disease progress is highlighted. The National Institute on Aging- Alzheimer's Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, including Aβ42, p-tau, t-tau in cerebrospinal fluid (CSF), and positron emission tomography (PET). However, the invasiveness of lumbar puncture for CSF assessment and non-popularity of PET have prompted researchers to look for minimally invasive, easy to collect, and cost-effective biomarkers. Therefore, studies have largely focused on some novel molecules in the peripheral blood. This is an emerging research field, facing many obstacles and challenges while achieving some promising results.
Collapse
|
8
|
Meszaros M, Horvath P, Kis A, Kunos L, Tarnoki AD, Tarnoki DL, Lazar Z, Bikov A. Circulating levels of clusterin and complement factor H in patients with obstructive sleep apnea. Biomark Med 2021; 15:323-330. [PMID: 33666516 DOI: 10.2217/bmm-2020-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Obstructive sleep apnea (OSA) activates the complement system; however, the levels of membrane attack complex (MAC) are unaltered suggesting regulatory mechanisms. Our aim was to investigate complement factor H (CFH) and clusterin, two important complement regulators in OSA. Materials & methods: We analyzed clusterin and CFH levels in plasma of 86 patients with OSA and 33 control subjects. Results: There was no difference in CFH levels between patients (1099.4/784.6-1570.5/μg/ml) and controls (1051.4/652.0-1615.1/μg/ml, p = 0.72). Clusterin levels were higher in patients with OSA (309.7/217.2-763.2/μg/ml vs 276.1/131.0-424.3/μg/ml, p = 0.048) with a trend for a positive correlation with disease severity (p = 0.073). Conclusion: Increase in clusterin levels may be protective in OSA by blocking the MAC formation.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Peter Horvath
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Adrian Kis
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Laszlo Kunos
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Adam D Tarnoki
- Department of Radiology, Oncologic Imaging Diagnostic Center, National Institute of Oncology, Budapest, Hungary.,Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - David L Tarnoki
- Department of Radiology, Oncologic Imaging Diagnostic Center, National Institute of Oncology, Budapest, Hungary.,Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Zsofia Lazar
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Infection, Immunity & Respiratory Medicine, University of Manchester, UK
| |
Collapse
|
9
|
Wilczyńska K, Maciejczyk M, Zalewska A, Waszkiewicz N. Serum Amyloid Biomarkers, Tau Protein and YKL-40 Utility in Detection, Differential Diagnosing, and Monitoring of Dementia. Front Psychiatry 2021; 12:725511. [PMID: 34589009 PMCID: PMC8473887 DOI: 10.3389/fpsyt.2021.725511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023] Open
Abstract
Introduction: The diagnosis and treatment of dementia is one of the greatest challenges in contemporary health care. The widespread use of dementia biomarkers would improve the quality of life of patients and reduce the economic costs of the disease. The aim of the study was to evaluate the usefulness of proteins related to the Alzheimer's disease pathogenesis-amyloid beta isoform (Aβ) and total tau protein (t-tau), as well as the quite recently discovered marker YKL-40 in the most common types of dementia. Methods: 60 dementia (AD-Alzheimer's disease, VaD-vascular dementia, MxD-mixed dementia) and 20 cognitively normal subjects over 60 years old were examined. Subjects with dementia of etiology different than AD or VaD and with neoplastic or chronic inflammatory diseases were excluded. Concentrations of Aβ40, Aβ42, t-tau, and YKL-40 were measured in serum using ELISA kits on admission and after 4 weeks of inpatient treatment. ANOVA and Tukey's test or Dunn's test were used to perform comparison tests between groups. Correlations were measured using Pearson's coefficient. Biomarker diagnostic utility was assessed with ROC analysis. Results: YKL-40 differentiates between cognitively normal and mild dementia patients with 85% sensitivity and specificity and t-tau with 72% sensitivity and 70% specificity. YKL-40 and t-tau concentrations correlate with each other and with the severity of clinically observed cognitive decline. Conclusions: YKL-40 is a sensitive and specific biomarker of early dementia and, to a lesser extent, of dementia progression, however, many comorbidities may influence its levels. In such conditions, less specific but still reliable t-tau may serve as an alternative marker. Obtained results did not confirm the diagnostic utility of amyloid biomarkers.
Collapse
Affiliation(s)
- Karolina Wilczyńska
- Department of Psychiatry, Medical University of Białystok, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Białystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Białystok, Białystok, Poland
| | | |
Collapse
|
10
|
Wilczyńska K, Waszkiewicz N. Diagnostic Utility of Selected Serum Dementia Biomarkers: Amyloid β-40, Amyloid β-42, Tau Protein, and YKL-40: A Review. J Clin Med 2020; 9:jcm9113452. [PMID: 33121040 PMCID: PMC7692800 DOI: 10.3390/jcm9113452] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Dementia is a group of disorders that causes dysfunctions in human cognitive and operating functions. Currently, it is not possible to conduct a fast, low-invasive dementia diagnostic process with the use of peripheral blood biomarkers, however, there is a great deal of research in progress covering this subject. Research on dementia biomarkers in serum validates anticipated health and economic benefits from early screening tests. Biomarkers are also essential for improving the process of developing new drugs. Methods: The result analysis, of current studies on selected biomarker concentrations (Aβ40, Aβ42, t-tau, and YKL-40) and their combination in the serum of patients with dementia and mild cognitive disorders, involved a search for papers available in Medline, PubMed, and Web of Science databases published from 2000 to 2020. Results: The results of conducted cross-sectional studies comparing Aβ40, Aβ42, and Aβ42/Aβ40 among people with cognitive disorders and a control group are incoherent. Most of the analyzed papers showed an increase in t-tau concentration in diagnosed Alzheimer’s disease (AD) patients’ serum, whereas results of mild cognitive impairment (MCI) groups did not differ from the control groups. In several papers on the concentration of YKL-40 and t-tau/Aβ42 ratio, the results were promising. To date, several studies have only covered the field of biomarker concentrations in dementia disorders other than AD. Conclusions: Insufficient amyloid marker test repeatability may result either from imperfection of the used laboratorial techniques or inadequate selection of control groups with their comorbidities. On the basis of current knowledge, t-tau, t-tau/Aβ42, and YKL-40 seem to be promising candidates as biomarkers of cognitive disorders in serum. YKL-40 seems to be a more useful biomarker in early MCI diagnostics, whereas t-tau can be used as a marker of progress of prodromal states in mild AD. Due to the insignificant number of studies conducted to date among patients with dementia disorders other than AD, it is not possible to make a sound assessment of their usefulness in dementia differential diagnostics.
Collapse
|
11
|
Bateman DR, Gill S, Hu S, Foster ED, Ruthirakuhan MT, Sellek AF, Mortby ME, Matušková V, Ng KP, Tarawneh RM, Freund-Levi Y, Kumar S, Gauthier S, Rosenberg PB, Ferreira de Oliveira F, Devanand DP, Ballard C, Ismail Z. Agitation and impulsivity in mid and late life as possible risk markers for incident dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12016. [PMID: 32995467 PMCID: PMC7507499 DOI: 10.1002/trc2.12016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
To identify knowledge gaps regarding new-onset agitation and impulsivity prior to onset of cognitive impairment or dementia the International Society to Advance Alzheimer's Research and Treatment Neuropsychiatric Syndromes (NPS) Professional Interest Area conducted a scoping review. Extending a series of reviews exploring the pre-dementia risk syndrome Mild Behavioral Impairment (MBI), we focused on late-onset agitation and impulsivity (the MBI impulse dyscontrol domain) and risk of incident cognitive decline and dementia. This scoping review of agitation and impulsivity pre-dementia syndromes summarizes the current biomedical literature in terms of epidemiology, diagnosis and measurement, neurobiology, neuroimaging, biomarkers, course and prognosis, treatment, and ongoing clinical trials. Validations for pre-dementia scales such as the MBI Checklist, and incorporation into longitudinal and intervention trials, are needed to better understand impulse dyscontrol as a risk factor for mild cognitive impairment and dementia.
Collapse
Affiliation(s)
- Daniel R Bateman
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
- Indiana University Center for Aging Research Regenstrief Institute Indianapolis Indiana
| | - Sascha Gill
- Department of Clinical Neurosciences; and the Ron and Rene Ward Centre for Healthy Brain Aging Research; Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
| | - Sophie Hu
- Community Health Sciences, and O'Brien Institute for Public Health University of Calgary Calgary Alberta Canada
| | - Erin D Foster
- Ruth Lilly Medical Library Indiana University School of Medicine Indianapolis Indiana
- University of California Berkeley Berkeley CA
| | - Myuri T Ruthirakuhan
- Hurvitz Brain Sciences Research Program Sunnybrook Research Institute Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Ontario Canada
| | | | - Moyra E Mortby
- School of Psychology University of New South Wales Sydney New South Wales Australia
- Neuroscience Research Australia University of New South Wales Sydney New South Wales Australia
| | - Veronika Matušková
- International Clinical Research Center St. Anne's University Hospital Brno Brno Czech Republic
- Memory Disorders Clinic, Department of Neurology, 2nd Faculty of Medicine Charles University in Prague and Motol University Hospital Prague Czech Republic
| | - Kok Pin Ng
- Department of Neurology National Neuroscience Institute Singapore Singapore
| | - Rawan M Tarawneh
- Department of Neurology, College of Medicine The Ohio State University Columbus Ohio USA
| | - Yvonne Freund-Levi
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society Karolinska Institute Stockholm Sweden
- School of Medical Sciences Örebro University Örebro Sweden
| | - Sanjeev Kumar
- Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Ontario Canada
| | - Serge Gauthier
- McGill Center for Studies in Aging McGill University Montreal Quebec Canada
| | - Paul B Rosenberg
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral, Sciences Johns Hopkins University School of Medicine Baltimore Maryland
| | - Fabricio Ferreira de Oliveira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina Federal University of São Paulo (UNIFESP), São Paulo São Paulo Brazil
| | - D P Devanand
- New York State Psychiatric Institute and Department of Psychiatry and Department of Psychiatry, College of Physicians and Surgeons Columbia University New York New York
| | - Clive Ballard
- College of Medicine and Health The University of Exeter Exeter UK
| | - Zahinoor Ismail
- Department of Clinical Neurosciences; and the Ron and Rene Ward Centre for Healthy Brain Aging Research; Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
- Community Health Sciences, and O'Brien Institute for Public Health University of Calgary Calgary Alberta Canada
- Department of Psychiatry, and the Mathison Centre for Mental Health Research & Education Cumming School of Medicine, University of Calgary Calgary Alberta Canada
| |
Collapse
|
12
|
Azimbagirad M, Simozo FH, Senra Filho ACS, Murta Junior LO. Tsallis-Entropy Segmentation through MRF and Alzheimer anatomic reference for Brain Magnetic Resonance Parcellation. Magn Reson Imaging 2019; 65:136-145. [PMID: 31726210 DOI: 10.1016/j.mri.2019.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 02/04/2023]
Abstract
Quantifying the intracranial tissue volume changes in magnetic resonance imaging (MRI) assists specialists to analyze the effects of natural or pathological changes. Since these changes can be subtle, the accuracy of the automatic compartmentalization method is always criticized by specialists. We propose and then evaluate an automatic segmentation method based on modified q-entropy (Mqe) through a modified Markov Random Field (MMRF) enhanced by Alzheimer anatomic reference (AAR) to provide a high accuracy brain tissues parcellation approach (Mqe-MMRF). We underwent two strategies to evaluate Mqe-MMRF; a simulation of different levels of noise and non-uniformity effect on MRI data (7 subjects) and a set of twenty MRI data available from MRBrainS13 as patient brain tissue segmentation challenge. We accessed eleven quality metrics compared to reference tissues delineations to evaluate Mqe-MMRF. MRI segmentation scores decreased by only 4.6% on quality metrics after noise and non-uniformity simulations of 40% and 9%, respectively. We found significant mean improvements in the metrics of the five training subjects, for whole-brain 0.86%, White Matter 3.20%, Gray Matter 3.99%, and Cerebrospinal Fluid 4.16% (p-values < 0.02) when Mqe-MMRF compared to the other reference methods. We also processed the Mqe-MMRF on 15 evaluation subjects group from MRBrainS13 online challenge, and the results held a higher rank than the reference tools; FreeSurfer, SPM, and FSL. Since the proposed method improved the precision of brain segmentation, specifically, for GM, and thus one can use it in quantitative and morphological brain studies.
Collapse
Affiliation(s)
- Mehran Azimbagirad
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, Ribeirao Preto, SP, Brazil; Department of Physics, FFCLRP, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Fabrício H Simozo
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Antonio C S Senra Filho
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Luiz O Murta Junior
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|