1
|
Vieira BM, Almeida BF, Machado MP. Eosinophil and B-cell dynamics in the milky spots from Schistosoma mansoni-infected mice: comparison with spleen and bone marrow, and extramedullary eosinopoiesis. Int Immunol 2025; 37:173-185. [PMID: 39423136 DOI: 10.1093/intimm/dxae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
The milky spots (MS) are structures found in the omentum of humans and other vertebrates, representing a fraction of the lymphomyeloid tissue associated with the celom. They majorly consist of B lymphocytes, T lymphocytes, and macrophages. Also found in smaller quantities are mesothelial, stromal, dendritic, and rare mast cells. In an experimental model of Schistosoma mansoni infection, there is significant activation of the omentum and MS, which exhibit numerous eosinophils. Despite being described for many years, the complete profile of cells found in MS and their functions remains largely unexplored. Here, we evaluate the leukocyte populations of the MS in homeostasis and a murine model of S. mansoni infection. The histopathological characterization, phenotypic profile analysis, and characterization of the eosinophilic potential of progenitors and precursors comparing the MS with the spleen and bone marrow showed significant activation of MS in infected mice, with changes in the profile over the analyzed times, showing signs of migration and activation of eosinophils, with local eosinopoiesis and maintenance of the eosinophilic population. In naive mice, B1a and B1b cells make up only a small fraction of B lymphocytes. However, B1b cells expand significantly during infection, peaking at 60 days post-infection (DPI) before stabilizing by 90 DPI. B1a cells also increase initially but decrease over time. The behavior of MS differs from other primary and secondary lymphoid organs, acting as a central lymphoid organ in cavity immunity.
Collapse
Affiliation(s)
- Bruno Marques Vieira
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Beatriz Fernandes Almeida
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marcelo Pelajo Machado
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Hu Y, Chakarov S. Eosinophils in obesity and obesity-associated disorders. DISCOVERY IMMUNOLOGY 2023; 2:kyad022. [PMID: 38567054 PMCID: PMC10917198 DOI: 10.1093/discim/kyad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 04/04/2024]
Abstract
Despite the rising prevalence and costs for the society, obesity etiology, and its precise cellular and molecular mechanisms are still insufficiently understood. The excessive accumulation of fat by adipocytes plays a key role in obesity progression and has many repercussions on total body physiology. In recent years the immune system as a gatekeeper of adipose tissue homeostasis has been evidenced and has become a focal point of research. Herein we focus on eosinophils, an important component of type 2 immunity, assuming fundamental, yet ill-defined, roles in the genesis, and progression of obesity and related metabolic disorders. We summarize eosinophilopoiesis and eosinophils recruitment into adipose tissue and discuss how the adipose tissue environments shape their function and vice versa. Finally, we also detail how obesity transforms the local eosinophil niche. Understanding eosinophil crosstalk with the diverse cell types within the adipose tissue environment will allow us to framework the therapeutic potential of eosinophils in obesity.
Collapse
Affiliation(s)
- Yanan Hu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| |
Collapse
|
3
|
Evans F, Alí-Ruiz D, Rego N, Negro-Demontel ML, Lago N, Cawen FA, Pannunzio B, Sanchez-Molina P, Reyes L, Paolino A, Rodríguez-Duarte J, Pérez-Torrado V, Chicote-González A, Quijano C, Marmisolle I, Mulet AP, Schlapp G, Meikle MN, Bresque M, Crispo M, Savio E, Malagelada C, Escande C, Peluffo H. CD300f immune receptor contributes to healthy aging by regulating inflammaging, metabolism, and cognitive decline. Cell Rep 2023; 42:113269. [PMID: 37864797 DOI: 10.1016/j.celrep.2023.113269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023] Open
Abstract
Emerging evidence suggests that immune receptors may participate in many aging-related processes such as energy metabolism, inflammation, and cognitive decline. CD300f, a TREM2-like lipid-sensing immune receptor, is an exceptional receptor as it integrates activating and inhibitory cell-signaling pathways that modulate inflammation, efferocytosis, and microglial metabolic fitness. We hypothesize that CD300f can regulate systemic aging-related processes and ultimately healthy lifespan. We closely followed several cohorts of two strains of CD300f-/- and WT mice of both sexes for 30 months and observed an important reduction in lifespan and healthspan in knockout mice. This was associated with systemic inflammaging, increased cognitive decline, reduced brain glucose uptake observed by 18FDG PET scans, enrichment in microglial aging/neurodegeneration phenotypes, proteostasis alterations, senescence, increased frailty, and sex-dependent systemic metabolic changes. Moreover, the absence of CD300f altered macrophage immunometabolic phenotype. Taken together, we provide strong evidence suggesting that myeloid cell CD300f immune receptor contributes to healthy aging.
Collapse
Affiliation(s)
- Frances Evans
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Daniela Alí-Ruiz
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay; Faculty of Sciences, UDELAR, Montevideo, Uruguay
| | - María Luciana Negro-Demontel
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fabio Andrés Cawen
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Bruno Pannunzio
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paula Sanchez-Molina
- Department of Cell Biology, Physiology and Immunology, and Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Reyes
- Uruguayan Center for Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Andrea Paolino
- Uruguayan Center for Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Jorge Rodríguez-Duarte
- Laboratory of Vascular Biology and Drug Development, INDICYO Program, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Valentina Pérez-Torrado
- Metabolic Diseases and Aging Laboratory, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Almudena Chicote-González
- Unitat de Bioquímica i Biologia Molecular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Celia Quijano
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Inés Marmisolle
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Paula Mulet
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Geraldine Schlapp
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Noel Meikle
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariana Bresque
- Metabolic Diseases and Aging Laboratory, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Eduardo Savio
- Uruguayan Center for Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Cristina Malagelada
- Unitat de Bioquímica i Biologia Molecular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain
| | - Carlos Escande
- Metabolic Diseases and Aging Laboratory, INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Peluffo
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay; Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Unitat de Bioquímica i Biologia Molecular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
4
|
O’Connell F, Mylod E, Donlon NE, Heeran AB, Butler C, Bhardwaj A, Ramjit S, Durand M, Lambe G, Tansey P, Welartne I, Sheahan KP, Yin X, Donohoe CL, Ravi N, Dunne MR, Brennan L, Reynolds JV, Roche HM, O’Sullivan J. Energy Metabolism, Metabolite, and Inflammatory Profiles in Human Ex Vivo Adipose Tissue Are Influenced by Obesity Status, Metabolic Dysfunction, and Treatment Regimes in Patients with Oesophageal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15061681. [PMID: 36980567 PMCID: PMC10046380 DOI: 10.3390/cancers15061681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Oesophageal adenocarcinoma (OAC) is a poor prognosis cancer with limited response rates to current treatment modalities and has a strong link to obesity. To better elucidate the role of visceral adiposity in this disease state, a full metabolic profile combined with analysis of secreted pro-inflammatory cytokines, metabolites, and lipid profiles were assessed in human ex vivo adipose tissue explants from obese and non-obese OAC patients. These data were then related to extensive clinical data including obesity status, metabolic dysfunction, previous treatment exposure, and tumour regression grades. Real-time energy metabolism profiles were assessed using the seahorse technology. Adipose explant conditioned media was screened using multiplex ELISA to assess secreted levels of 54 pro-inflammatory mediators. Targeted secreted metabolite and lipid profiles were analysed using Ultra-High-Performance Liquid Chromatography coupled with Mass Spectrometry. Adipose tissue explants and matched clinical data were collected from OAC patients (n = 32). Compared to visceral fat from non-obese patients (n = 16), visceral fat explants from obese OAC patients (n = 16) had significantly elevated oxidative phosphorylation metabolism profiles and an increase in Eotaxin-3, IL-17A, IL-17D, IL-3, MCP-1, and MDC and altered secretions of glutamine associated metabolites. Adipose explants from patients with metabolic dysfunction correlated with increased oxidative phosphorylation metabolism, and increases in IL-5, IL-7, SAA, VEGF-C, triacylglycerides, and metabolites compared with metabolically healthy patients. Adipose explants generated from patients who had previously received neo-adjuvant chemotherapy (n = 14) showed elevated secretions of pro-inflammatory mediators, IL-12p40, IL-1α, IL-22, and TNF-β and a decreased expression of triacylglycerides. Furthermore, decreased secreted levels of triacylglycerides were also observed in the adipose secretome of patients who received the chemotherapy-only regimen FLOT compared with patients who received no neo-adjuvant treatment or chemo-radiotherapy regimen CROSS. For those patients who showed the poorest response to currently available treatments, their adipose tissue was associated with higher glycolytic metabolism compared to patients who had good treatment responses. This study demonstrates that the adipose secretome in OAC patients is enriched with mediators that could prime the tumour microenvironment to aid tumour progression and attenuate responses to conventional cancer treatments, an effect which appears to be augmented by obesity and metabolic dysfunction and exposure to different treatment regimes.
Collapse
Affiliation(s)
- Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Eimear Mylod
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland
| | - Noel E. Donlon
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland
| | - Aisling B. Heeran
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Christine Butler
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Anshul Bhardwaj
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Sinead Ramjit
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Michael Durand
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Gerard Lambe
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Paul Tansey
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Ivan Welartne
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Kevin P. Sheahan
- Department of Radiology, Beaumont Hospital, D02 YN77 Dublin, Ireland
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Claire L. Donohoe
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Narayanasamy Ravi
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Margaret R. Dunne
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- School of Chemical & Biopharmaceutical Sciences, Technological University Dublin, Tallaght, D07 EWV4 Dublin, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 C1P1 Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- Correspondence:
| |
Collapse
|
5
|
Shah M, Knights AJ, Vohralik EJ, Psaila AM, Quinlan KGR. Blood and adipose-resident eosinophils are defined by distinct transcriptional profiles. J Leukoc Biol 2023; 113:191-202. [PMID: 36822180 DOI: 10.1093/jleuko/qiac009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are granular leukocytes of the innate immune system that play important functions in host defense. Inappropriate activation of eosinophils can occur in pathologies such as asthma and esophagitis. However, eosinophils also reside within adipose tissue, where they play homeostatic roles and are important in the activation of thermogenic beige fat. Here we performed bulk RNA sequencing in mouse adipose tissue-resident eosinophils isolated from both subcutaneous and gonadal depots, for the first time, and compared gene expression to blood eosinophils. We found a predominantly conserved transcriptional landscape in eosinophils between adipose depots that is distinct from blood eosinophils in circulation. Through exploration of differentially expressed transcription factors and transcription factors with binding sites enriched in adipose-resident eosinophil genes, we identified KLF, CEBP, and Fos/Jun family members that may drive functional specialization of eosinophils in adipose tissue. These findings increase our understanding of tissue-specific eosinophil heterogeneity, with implications for targeting eosinophil function to treat metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Manan Shah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| |
Collapse
|
6
|
Jhun J, Moon J, Kim SY, Cho KH, Na HS, Choi J, Jung YJ, Song KY, Min JK, Cho ML. Rebamipide treatment ameliorates obesity phenotype by regulation of immune cells and adipocytes. PLoS One 2022; 17:e0277692. [PMID: 36574392 PMCID: PMC9794058 DOI: 10.1371/journal.pone.0277692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/01/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity is a medical term used to describe an over-accumulation of adipose tissue. It causes abnormal physiological and pathological processes in the body. Obesity is associated with systemic inflammation and abnormalities in immune cell function. Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, has been used as a therapeutic for the protection from mucosal damage. Our previous studies have demonstrated that rebamipide treatment regulates lipid metabolism and inflammation, leading to prevention of weight gain in high-fat diet mice. In this study, mice were put on a high calorie diet for 11 weeks while receiving injections of rebamipide. Rebamipide treatment reduced the body weight, liver weight and blood glucose levels compared to control mice and reduced both glucose and insulin resistance. Fat accumulation has been shown to cause pro-inflammatory activity in mice. Treatment with rebamipide decreased the prevalence of inflammatory cells such as Th2, Th17 and M1 macrophages and increased anti-inflammatory Treg and M2 macrophages in epididymal fat tissue. Additionally, rebamipide addition inhibited adipocyte differentiation in 3T3-L1 cell lines. Taken together, our study demonstrates that rebamipide treatment is a novel and effective method to prevent diet-induced obesity.
Collapse
Affiliation(s)
- JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeonghyeon Moon
- Departments of Immunobiology and Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Se-Young Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - JeongWon Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Ju Jung
- Division of Gastrointestinal Surgery, Department of Surgery, Yeouido St. Mary’s Hospital, Seoul, Korea
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of General Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jun-Ki Min
- Department of Internal Medicine, and the Clinical Medicine Research Institute of Bucheon St. Mary’s Hospital, Bucheon si, Gyeonggi-do, Republic of Korea
- * E-mail: (JKM); (MLC)
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (JKM); (MLC)
| |
Collapse
|
7
|
Dolitzky A, Hazut I, Avlas S, Grisaru-Tal S, Itan M, Zaffran I, Levi-Schaffer F, Gerlic M, Munitz A. Differential regulation of Type 1 and Type 2 mouse eosinophil activation by apoptotic cells. Front Immunol 2022; 13:1041660. [PMID: 36389786 PMCID: PMC9662748 DOI: 10.3389/fimmu.2022.1041660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/07/2022] [Indexed: 08/18/2023] Open
Abstract
Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis, host defense and cancer. Although eosinophils have been studied mostly in the context of Type 2 inflammatory responses, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Notably, both Type 1- and Type 2 inflammatory environments are characterized by tissue damage and cell death. Collectively, this raises the possibility that eosinophils can interact with apoptotic cells, which can alter eosinophil activation in the inflammatory milieu. Herein, we demonstrate that eosinophils can bind and engulf apoptotic cells. We further show that exposure of eosinophils to apoptotic cells induces marked transcriptional changes in eosinophils, which polarize eosinophils towards an anti-inflammatory phenotype that is associated with wound healing and cell migration. Using an unbiased RNA sequencing approach, we demonstrate that apoptotic cells suppress the inflammatory responses of eosinophils that were activated with IFN-γ + E. coli (e.g., Type 1 eosinophils) and augment IL-4-induced eosinophil activation (e.g., Type 2 eosinophils). These data contribute to the growing understanding regarding the heterogeneity of eosinophil activation patterns and highlight apoptotic cells as potential regulators of eosinophil polarization.
Collapse
Affiliation(s)
- Avishay Dolitzky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazut
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmulik Avlas
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Zaffran
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Agueda-Oyarzabal M, Emanuelli B. Immune Cells in Thermogenic Adipose Depots: The Essential but Complex Relationship. Front Endocrinol (Lausanne) 2022; 13:839360. [PMID: 35360060 PMCID: PMC8963988 DOI: 10.3389/fendo.2022.839360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/28/2022] [Indexed: 01/09/2023] Open
Abstract
Brown adipose tissue (BAT) is a unique organ in mammals capable of dissipating energy in form of heat. Additionally, white adipose tissue (WAT) can undergo browning and perform thermogenesis. In recent years, the research community has aimed to harness thermogenic depot functions for new therapeutic strategies against obesity and the metabolic syndrome; hence a comprehensive understanding of the thermogenic fat microenvironment is essential. Akin to WAT, immune cells also infiltrate and reside within the thermogenic adipose tissues and perform vital functions. As highly plastic organs, adipose depots rely on crucial interplay with these tissue resident cells to conserve their healthy state. Evidence has accumulated to show that different immune cell populations contribute to thermogenic adipose tissue homeostasis and activation through complex communicative networks. Furthermore, new studies have identified -but still not fully characterized further- numerous immune cell populations present in these depots. Here, we review the current knowledge of this emerging field by describing the immune cells that sway the thermogenic adipose depots, and the complex array of communications that influence tissue performance.
Collapse
|
9
|
Bidirectional crosstalk between eosinophils and esophageal epithelial cells regulates inflammatory and remodeling processes. Mucosal Immunol 2021; 14:1133-1143. [PMID: 33972688 PMCID: PMC8380647 DOI: 10.1038/s41385-021-00400-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/04/2023]
Abstract
Eosinophils accumulate adjacent to epithelial cells in the mucosa of patients with eosinophilic esophagitis (EoE), yet the bidirectional communication between these cells is not well understood. Herein, we investigated the crosstalk between human eosinophils and esophageal epithelial cells. We report that blood-derived eosinophils have prolonged survival when cocultured with epithelial cells; 96 ± 1% and 30 ± 6% viability was observed after 7 and 14 days of coculture, respectively, compared with 1 ± 0% and 0 ± 0% of monoculture. In the presence of IL-13 and epithelial cells, eosinophils had greater survival (68 ± 1%) at 14 days compared with cocultures lacking IL-13. Prolonged eosinophil viability did not require cellular contact and was observed when eosinophils were cultured in conditioned media from esophageal epithelial cells; neutralizing GM-CSF attenuated eosinophil survival. The majority of eosinophil transcripts (58%) were dysregulated in cocultured eosinophils compared with freshly isolated cells. Analysis of epithelial cell transcripts indicated that exposure to eosinophils induced differential expression of a subset of genes that were part of the EoE esophageal transcriptome. Collectively, these results uncover a network of crosstalk between eosinophils and esophageal epithelial cells involving epithelial mediated eosinophil survival and reciprocal changes in cellular transcripts, events likely to occur in EoE.
Collapse
|
10
|
Jacobsen EA, Jackson DJ, Heffler E, Mathur SK, Bredenoord AJ, Pavord ID, Akuthota P, Roufosse F, Rothenberg ME. Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annu Rev Immunol 2021; 39:719-757. [PMID: 33646859 PMCID: PMC8317994 DOI: 10.1146/annurev-immunol-093019-125918] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enigmatic eosinophil has emerged as an exciting component of the immune system, involved in a plethora of homeostatic and inflammatory responses. Substantial progress has been achieved through experimental systems manipulating eosinophils in vivo, initially in mice and more recently in humans. Researchers using eosinophil knockout mice have identified a contributory role for eosinophils in basal and inflammatory processes and protective immunity. Primarily fueled by the purported proinflammatory role of eosinophils in eosinophil-associated diseases, a series of anti-eosinophil therapeutics have emerged as a new class of drugs. These agents, which dramatically deplete eosinophils, provide a valuable opportunity to characterize the consequences of eosinophil knockout humans. Herein, we comparatively describe mouse and human eosinophil knockouts. We put forth the view that human eosinophils negatively contribute to a variety of diseases and, unlike mouse eosinophils, do not yet have an identified role in physiological health; thus, clarifying all roles of eosinophils remains an ongoing pursuit.
Collapse
Affiliation(s)
- Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona 85259, USA;
| | - David J Jackson
- Guy's and St Thomas' Hospitals, London WC2R 2LS, United Kingdom;
- Department of Immunobiology, King's College London, London WC2R 2LS, United Kingdom
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
- Personalized Medicine, Asthma and Allergy Unit, Humanitas Clinical and Research Center IRCCS, 20089 Milan, Italy;
| | - Sameer K Mathur
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792, USA;
| | - Albert J Bredenoord
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ian D Pavord
- Respiratory Medicine Unit, Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, Oxford OX3 9DU, United Kingdom;
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Florence Roufosse
- Médecine Interne, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA;
| |
Collapse
|
11
|
Cao Y, Ao T, Wang X, Wei W, Fan J, Tian X. CD300a and CD300f molecules regulate the function of leukocytes. Int Immunopharmacol 2021; 93:107373. [PMID: 33548578 DOI: 10.1016/j.intimp.2021.107373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The CD300 molecule family is a type I transmembrane glycoprotein expressed on cell membrane of human and other mammals, and of its eight members, only CD300a and CD300f are classified as inhibitory receptors. CD300a and CD300f play an important role in regulating the function of leukocytes, such as activation, proliferation, differentiation, migration and immunity function. They are considered as potential targets for studying the development and progression of inflammation, infection and other diseases. Here, we review the expression and regulatory mechanisms of CD300a and CD300f on leukocytes, as well as their effects on relevant diseases.
Collapse
Affiliation(s)
- Yue Cao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Tianrang Ao
- Department of Cardiology, Peking Union Medical College Hospital, Tsinghua University, Beijing 100730, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Wumei Wei
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
12
|
Vohralik EJ, Psaila AM, Knights AJ, Quinlan KGR. EoTHINophils: Eosinophils as key players in adipose tissue homeostasis. Clin Exp Pharmacol Physiol 2020; 47:1495-1505. [PMID: 32163614 DOI: 10.1111/1440-1681.13304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Eosinophils are granular cells of the innate immune system that are found in almost all vertebrates and some invertebrates. Knowledge of their wide-ranging roles in health and disease has largely been attained through studies in mice and humans. Although eosinophils are typically associated with helminth infections and allergic diseases such as asthma, there is building evidence that beneficial homeostatic eosinophils residing in specific niches are important for tissue development, remodelling and metabolic control. In recent years, the importance of immune cells in the regulation of adipose tissue homeostasis has been a focal point of research efforts. There is an abundance of anti-inflammatory innate immune cells in lean white adipose tissue, including macrophages, eosinophils and group 2 innate lymphoid cells, which promote energy homeostasis and stimulate the development of thermogenic beige adipocytes. This review will evaluate evidence for the role of adipose-resident eosinophils in local tissue homeostasis, beiging and systemic metabolism, highlighting where more research is needed to establish the specific effector functions that adipose eosinophils perform in response to different internal and external cues.
Collapse
Affiliation(s)
- Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Vitallé J, Terrén I, Orrantia A, Bilbao A, Gamboa PM, Borrego F, Zenarruzabeitia O. The Expression and Function of CD300 Molecules in the Main Players of Allergic Responses: Mast Cells, Basophils and Eosinophils. Int J Mol Sci 2020; 21:ijms21093173. [PMID: 32365988 PMCID: PMC7247439 DOI: 10.3390/ijms21093173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Allergy is the host immune response against non-infectious substances called allergens. The prevalence of allergic diseases is increasing worldwide. However, while some drugs counteract the symptomatology caused by allergic reactions, no completely effective treatments for allergic diseases have been developed yet. In this sense, the ability of surface activating and inhibitory receptors to modulate the function of the main effector cells of allergic responses makes these molecules potential pharmacological targets. The CD300 receptor family consists of members with activating and inhibitory capabilities mainly expressed on the surface of immune cells. Multiple studies in the last few years have highlighted the importance of CD300 molecules in several pathological conditions. This review summarizes the literature on CD300 receptor expression, regulation and function in mast cells, basophils and eosinophils, the main players of allergic responses. Moreover, we review the involvement of CD300 receptors in the pathogenesis of certain allergic diseases, as well as their prospective use as therapeutic targets for the treatment of IgE-dependent allergic responses.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Agurtzane Bilbao
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Pediatrics Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Pedro M. Gamboa
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Allergology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Correspondence: ; Tel.: +34-699-227-735
| |
Collapse
|
14
|
Maimaitiaili G, Kahaer K, Tang L, Zhang J. The Effect of Vidian Neurectomy on Pulmonary Function in Patients with Allergic Rhinitis and Chronic Rhinosinusitis with Nasal Polyps. Am J Med Sci 2020; 360:137-145. [PMID: 32423746 DOI: 10.1016/j.amjms.2020.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/18/2019] [Accepted: 04/18/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND At present, the effect of operation intervention on pulmonary function is not clear in patients with allergic rhinitis and chronic rhinosinusitis with nasal polyps (AR&CRSwNP). This study was conducted to investigate the effect of vidian neurectomy on pulmonary function and airway hyperresponsiveness (AHR) in patients with AR&CRSwNP. METHODS The incidences of AHR, bronchial asthma (BA) and pulmonary function impairment in 112 patients with AR&CRSwNP were investigated. Subsequently, we evaluated the outcome of vidian neurectomy and its effect on pulmonary function and AHR. Furthermore, we explored the correlation between postoperative level of eosinophilic cationic protein (ECP) and the changes of pulmonary function indices or dose of methacholine. RESULTS In this study, the incidences of pulmonary function impairment, bronchial asthma, and AHR in patients with AR&CRSwNP were 61.61%, 69.64%, and 66.96%, respectively. Particularly, vidian neurectomy effectively alleviated nasal symptoms, improved pulmonary function, and reduced AHR in AR&CRSwNP patients. Furthermore, the postoperative level of ECP, IgE, Interleukin-4 and Interleukin-IL-5 was dramatically decreased, and there was an obvious inverse correlation between ECP level and pulmonary function index or dose of methacholine. CONCLUSIONS Vidian neurectomy is effective in alleviating nasal symptoms, improving pulmonary function, and reducing the risk of AHR of patients with AR&CRSwNP by decreasing the level of ECP.
Collapse
Affiliation(s)
| | - Kayisaier Kahaer
- ENT Department, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Liang Tang
- ENT Department, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China.
| | - Jin Zhang
- ENT Department, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China.
| |
Collapse
|
15
|
Abstract
The human eosinophil has long been thought to favorably influence innate mucosal immunity but at times has also been incriminated in disease pathophysiology. Research into eosinophil biology has uncovered a number of interesting contributions by eosinophils to health and disease. However, it appears that not all eosinophils from all species are created equal. It remains unclear, for example, exactly how having eosinophils benefits the human host when helminth infections in the developed world have become scarce. This review focuses on our current state of knowledge as it relates to human eosinophils. When information is lacking, we discuss lessons learned from mouse studies that may or may not directly apply to human biology and disease. It is an exciting time to be an "eosinophilosopher" because the use of biologic agents that selectively target eosinophils provides an unprecedented opportunity to define the contribution of this cell to eosinophil-associated human diseases.
Collapse
Affiliation(s)
- Amy D Klion
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
16
|
DeVallance E, Li Y, Jurczak MJ, Cifuentes-Pagano E, Pagano PJ. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. Antioxid Redox Signal 2019; 31:687-709. [PMID: 31250671 PMCID: PMC6909742 DOI: 10.1089/ars.2018.7674] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Highly prevalent in Western cultures, obesity, metabolic syndrome, and diabetes increase the risk of cardiovascular morbidity and mortality and cost health care systems billions of dollars annually. At the cellular level, obesity, metabolic syndrome, and diabetes are associated with increased production of reactive oxygen species (ROS). Increased levels of ROS production in key organ systems such as adipose tissue, skeletal muscle, and the vasculature cause disruption of tissue homeostasis, leading to increased morbidity and risk of mortality. More specifically, growing evidence implicates the nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzymes in these pathologies through impairment of insulin signaling, inflammation, and vascular dysfunction. The NOX family of enzymes is a major driver of redox signaling through its production of superoxide anion, hydrogen peroxide, and attendant downstream metabolites acting on redox-sensitive signaling molecules. Recent Advances: The primary goal of this review is to highlight recent advances and survey our present understanding of cell-specific NOX enzyme contributions to metabolic diseases. Critical Issues: However, due to the short half-lives of individual ROS and/or cellular defense systems, radii of ROS diffusion are commonly short, often restricting redox signaling and oxidant stress to localized events. Thus, special emphasis should be placed on cell type and subcellular location of NOX enzymes to better understand their role in the pathophysiology of metabolic diseases. Future Directions: We discuss the targeting of NOX enzymes as potential therapy and bring to light potential emerging areas of NOX research, microparticles and epigenetics, in the context of metabolic disease.
Collapse
Affiliation(s)
- Evan DeVallance
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yao Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Bolus WR, Hasty AH. Contributions of innate type 2 inflammation to adipose function. J Lipid Res 2019; 60:1698-1709. [PMID: 29891508 PMCID: PMC6795076 DOI: 10.1194/jlr.r085993] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
A critical contributor to the health consequences of the obesity epidemic is dysregulated adipose tissue (AT) homeostasis. While white, brown, and beige AT function is altered in obesity-related disease, white AT is marked by progressive inflammation and adipocyte dysfunction and has been the focus of extensive "immunometabolism" research in the past decade. The exact triggering events initiating and sustaining AT inflammation are still under study, but it has been shown that reducing inflammation improves insulin action in AT. Scientific efforts seeking interventions to mitigate obesity-associated AT inflammation continue, and many groups are now determining how lean healthy AT homeostasis is maintained in order to leverage these mechanisms as therapeutic targets. Such studies have revealed that an elaborate network of immune cells, cytokines, and other cellular mediators coordinate AT function. Recent studies elucidated the involvement of the innate immune system in AT homeostasis (e.g., beiging and insulin sensitivity), including M2-like macrophages, eosinophils, innate lymphoid type 2 cells, and several others. In this review, we summarize the existing literature on innate type 2 inflammation in AT; additionally, we draw attention to areas of debate where seemingly conflicting data promises to yield more surprising and elegant biology as studies continue to dissect AT physiology.
Collapse
Affiliation(s)
- W Reid Bolus
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232
- Veterans Affairs Tennessee Valley Healthcare System, Nashville TN 37212
| |
Collapse
|
18
|
Knights AJ, Vohralik EJ, Hoehn KL, Crossley M, Quinlan KGR. Defining Eosinophil Function in Adiposity and Weight Loss. Bioessays 2018; 40:e1800098. [PMID: 30132936 DOI: 10.1002/bies.201800098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/21/2018] [Indexed: 12/18/2022]
Abstract
Despite promising early work into the role of immune cells such as eosinophils in adipose tissue (AT) homeostasis, recent findings revealed that elevating the number of eosinophils in AT alone is insufficient for improving metabolic impairments in obese mice. Eosinophils are primarily recognized for their role in allergic immunity and defence against parasitic worms. They have also been detected in AT and appear to contribute to adipose homeostasis and drive energy expenditure, but the underlying mechanisms remain elusive. It has long been recognized that immune cells such as macrophages respond to external signals to regulate adipose homeostasis and energy balance, however, less is known about the relevance of eosinophil activity in AT. As the authors propose in this review, given recent debate over the relative importance of their tissue-specific abundance, the stage is now set for exploring the functionality and activation states of AT eosinophils.
Collapse
Affiliation(s)
- Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Eosinophils support adipocyte maturation and promote glucose tolerance in obesity. Sci Rep 2018; 8:9894. [PMID: 29967467 PMCID: PMC6028436 DOI: 10.1038/s41598-018-28371-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating data have indicated a fundamental role of eosinophils in regulating adipose tissue homeostasis. Here, we performed whole-genome RNA sequencing of the small intestinal tract, which suggested the presence of impaired lipid metabolism in eosinophil-deficient ΔdblGATA mice. ΔdblGATA mice fed a high-fat diet (HFD) showed reduced body fat mass, impaired enlargement of adipocytes, decreased expression of adipogenic genes, and developed glucose intolerance. HFD induced accumulation of eosinophils in the perigonadal white adipose tissue. Concordantly, adipocyte-differentiated 3T3-L1 cells promoted the migration of eosinophils through the expression of CCL11 (eotaxin-1) and likely promoted their survival through the expression of interleukin (IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor. HFD-fed ΔdblGATA mice showed increased infiltration of macrophages, CD4+ T-cells, and B-cells, increased expression of interferon-γ, and decreased expression of IL-4 and IL-13 in white adipose tissue. Interferon-γ treatment significantly decreased lipid deposition in adipocyte-differentiated 3T3-L1 cells, while IL-4 treatment promoted lipid accumulation. Notably, HFD-fed ΔdblGATA mice showed increased lipid storage in the liver as compared with wild-type mice. We propose that obesity promotes the infiltration of eosinophils into adipose tissue that subsequently contribute to the metabolic homeostasis by promoting adipocyte maturation.
Collapse
|
20
|
Rozenberg P, Reichman H, Moshkovits I, Munitz A. CD300 family receptors regulate eosinophil survival, chemotaxis, and effector functions. J Leukoc Biol 2017; 104:21-29. [PMID: 29345367 DOI: 10.1002/jlb.2mr1117-433r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022] Open
Abstract
The CD300 family of receptors is an evolutionary conserved receptor family that belongs to the Ig superfamily and is expressed predominantly by the myeloid lineage. Over the past couple of years, accumulating data have shown that eosinophils express various Ig superfamily receptors that regulate key checkpoints in their biology including their maturation, transition from the bone marrow to the peripheral blood, migration, adhesion, survival, and effector functions in response to numerous activating signals such as IL-4, IL-33, and bacteria. In this review, we will present the emerging roles of CD300 family receptors and specifically CD300a and CD300f in the regulation of these eosinophil activities. The structure and expression pattern of these molecules will be discussed and their involvement in suppressing or co-activating eosinophil functions in health and disease will be illustrated.
Collapse
Affiliation(s)
- Perri Rozenberg
- Department of Clinical Microbiology and Immunology, the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Itay Moshkovits
- Department of Internal Medicine "T" and the Research Center for Digestive Disorders and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Bolus WR, Peterson KR, Hubler MJ, Kennedy AJ, Gruen ML, Hasty AH. Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab 2017; 8:86-95. [PMID: 29306658 PMCID: PMC5985044 DOI: 10.1016/j.molmet.2017.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/02/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Objective Obesity is a metabolic disorder that has reached epidemic proportions worldwide and leads to increased risk for diabetes, cardiovascular disease, asthma, certain cancers, and various other diseases. Obesity and its comorbidities are associated with impaired adipose tissue (AT) function. In the last decade, eosinophils have been identified as regulators of proper AT function. Our study aimed to determine whether normalizing the number of AT eosinophils in obese mice, to those of lean healthy mice, would reduce obesity and/or improve metabolic fitness. Methods C57BL/6J mice fed a high fat diet (HFD) were simultaneously given recombinant interleukin-5 (rIL5) for 8 weeks to increase AT eosinophils. Metabolic fitness was tested by evaluating weight gain, AT inflammation, glucose, lipid, and mixed-meal tolerance, AT insulin signaling, energy substrate utilization, energy expenditure, and white AT beiging capacity. Results Eosinophils were increased ∼3-fold in AT of obese HFD-fed mice treated with rIL5, and thus were restored to levels observed in lean healthy mice. However, there were no significant differences in rIL5-treated mice among the above listed comprehensive set of metabolic assays, despite the increased AT eosinophils. Conclusions We have shown that restoring obese AT eosinophils to lean healthy levels is not sufficient to allow for improvement in any of a range of metabolic features otherwise impaired in obesity. Thus, the mechanisms that identified eosinophils as positive regulators of AT function, and therefore systemic health, are more complex than initially understood and will require further study to fully elucidate. Adipose tissue eosinophils declined with high fat diet induced weight gain. Recombinant interleukin 5 treatment restored adipose eosinophils during obesity. Restoring adipose eosinophils didn't reduce weight gain or adipose mass. Restoring adipose eosinophils didn't rescue glucose tolerance or insulin signaling. Restoring adipose eosinophils didn't alter energy expenditure or beiging capacity.
Author Video Watch what authors say about their articles
Collapse
Affiliation(s)
- W Reid Bolus
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kristin R Peterson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Merla J Hubler
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Marnie L Gruen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
| |
Collapse
|