1
|
Wang F, Zhou T, Zhou CX, Zhang QB, Wang H, Zhou Y. The worsening of skeletal muscle atrophy induced by immobilization at the early stage of remobilization correlates with BNIP3-dependent mitophagy. BMC Musculoskelet Disord 2023; 24:632. [PMID: 37542244 PMCID: PMC10401904 DOI: 10.1186/s12891-023-06759-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Recent studies have shown that immobilization enhances reactive oxygen species (ROS) production and mitophagy activity in atrophic skeletal muscle. However, there are relatively few studies examining the biological changes and underlying mechanisms of skeletal muscle during remobilization. In this study, we aimed to investigate the effects of remobilization on skeletal muscle and explore the role of BNIP3-dependent mitophagy in this process. METHODS Thirty rats were randomly divided into six groups based on immobilization and remobilization time: control (C), immobilization for two weeks (I-2w), and remobilization for one day (R-1d), three days (R-3d), seven days (R-7d), and two weeks (R-2w). At the end of the experimental period, the rectus femoris muscles were removed and weighed, and the measurements were expressed as the ratio of muscle wet weight to body weight (MWW/BW). Sirius Red staining was performed to calculate the values of cross-sectional area (CSA) of rectus femoris. Oxidative fluorescent dihydroethidium was used to evaluate the production of ROS, and the levels of superoxide dismutase (SOD) were also detected. The morphological changes of mitochondria and the formation of mitophagosomes in rectus femoris were examined and evaluated by transmission electron microscope. Immunofluorescence was employed to detect the co-localization of BNIP3 and LC3B, while Western blot analysis was performed to quantify the levels of proteins associated with mitophagy and mitochondrial biogenesis. The total ATP content of the rectus femoris was determined to assess mitochondrial function. RESULTS Within the first three days of remobilization, the rats demonstrated decreased MWW/BW, CSA, and ATP concentration, along with increased ROS production and HIF-1α protein levels in the rectus femoris. Results also indicated that remobilization triggered BNIP3-dependent mitophagy, supported by the accumulation of mitophagosomes, the degradation of mitochondrial proteins (including HSP60 and COX IV), the elevation of BNIP3-dependent mitophagy protein markers (including BNIP3, LC3B-II/LC3B-I, and Beclin-1), and the accumulation of puncta representing co-localization of BNIP3 with LC3B. Additionally, PGC-1α, which is involved in the regulation of mitochondrial biogenesis, was upregulated within the first seven days of remobilization to counteract this adverse effect. CONCLUSION Our findings suggested that BNIP3-denpendent mitophagy was sustained activated at the early stages of remobilization, and it might contribute to the worsening of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Feng Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chen Xu Zhou
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Quan Bing Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230032, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China.
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
2
|
Fang H, Xia ZF. [Application and research progress of permissive hypocaloric nutrition in nutritional therapy of severe burns]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:685-689. [PMID: 37805699 DOI: 10.3760/cma.j.cn501225-20221010-00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Nutritional therapy plays an important role in the treatment of severe burns. With the deepening understanding of metabolic patterns and body responses after severe burns, the concepts and measures of nutritional therapy are also constantly developing and improving. Permissive hypocaloric nutrition is a nutritional management approach for critically ill patients, which generally refers to a nutritional administration method in which energy intake is lower than 70% of caloric requirement. This article aims to review the metabolic characteristics after severe burns, as well as the implementation timing, duration, target calories, and nutritional content of permissive hypocaloric nutrition, in order to provide reference for clinical decision-making by clinical physicians, improve the efficacy of nutritional treatment for severe burn patients, and improve patients' prognosis.
Collapse
Affiliation(s)
- H Fang
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Z F Xia
- Burn Institute of PLA, Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
3
|
Prabhakaran HS, Hu D, He W, Luo G, Liou YC. Mitochondrial dysfunction and mitophagy: crucial players in burn trauma and wound healing. BURNS & TRAUMA 2023; 11:tkad029. [PMID: 37465279 PMCID: PMC10350398 DOI: 10.1093/burnst/tkad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 07/20/2023]
Abstract
Burn injuries are a significant cause of death worldwide, leading to systemic inflammation, multiple organ failure and sepsis. The progression of burn injury is explicitly correlated with mitochondrial homeostasis, which is disrupted by the hyperinflammation induced by burn injury, leading to mitochondrial dysfunction and cell death. Mitophagy plays a crucial role in maintaining cellular homeostasis by selectively removing damaged mitochondria. A growing body of evidence from various disease models suggest that pharmacological interventions targeting mitophagy could be a promising therapeutic strategy. Recent studies have shown that mitophagy plays a crucial role in wound healing and burn injury. Furthermore, chemicals targeting mitophagy have also been shown to improve wound recovery, highlighting the potential for novel therapeutic strategies based on an in-depth exploration of the molecular mechanisms regulating mitophagy and its association with skin wound healing.
Collapse
Affiliation(s)
- Harshini Sheeja Prabhakaran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science drive 4, 117543 Singapore, Singapore
| | - Dongxue Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science drive 4, 117543 Singapore, Singapore
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Gao Tan Yan Zheng Street, Sha Ping Ba District, Chongqing, 400038, People's Republic of China
- Chongqing Key Laboratory for Disease Proteomics, Gao Tan Yan Zheng Street, Sha Ping Ba District, Chongqing, 400038, People's Republic of China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Gao Tan Yan Zheng Street, Sha Ping Ba District, Chongqing, 400038, People's Republic of China
- Chongqing Key Laboratory for Disease Proteomics, Gao Tan Yan Zheng Street, Sha Ping Ba District, Chongqing, 400038, People's Republic of China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science drive 4, 117543 Singapore, Singapore
| |
Collapse
|
4
|
Hang T, Lumpuy-Castillo J, Goikoetxea-Usandizaga N, Azkargorta M, Aldámiz G, Martínez-Milla J, Forteza A, Cortina JM, Egido J, Elortza F, Martínez-Chantar M, Tuñón J, Lorenzo Ó. Potential Role of the mTORC1-PGC1α-PPARα Axis under Type-II Diabetes and Hypertension in the Human Heart. Int J Mol Sci 2023; 24:ijms24108629. [PMID: 37239977 DOI: 10.3390/ijms24108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Type-2 diabetes (T2DM) and arterial hypertension (HTN) are major risk factors for heart failure. Importantly, these pathologies could induce synergetic alterations in the heart, and the discovery of key common molecular signaling may suggest new targets for therapy. Intraoperative cardiac biopsies were obtained from patients with coronary heart disease and preserved systolic function, with or without HTN and/or T2DM, who underwent coronary artery bypass grafting (CABG). Control (n = 5), HTN (n = 7), and HTN + T2DM (n = 7) samples were analysed by proteomics and bioinformatics. Additionally, cultured rat cardiomyocytes were used for the analysis (protein level and activation, mRNA expression, and bioenergetic performance) of key molecular mediators under stimulation of main components of HTN and T2DM (high glucose and/or fatty acids and angiotensin-II). As results, in cardiac biopsies, we found significant alterations of 677 proteins and after filtering for non-cardiac factors, 529 and 41 were changed in HTN-T2DM and in HTN subjects, respectively, against the control. Interestingly, 81% of proteins in HTN-T2DM were distinct from HTN, while 95% from HTN were common with HTN-T2DM. In addition, 78 factors were differentially expressed in HTN-T2DM against HTN, predominantly downregulated proteins of mitochondrial respiration and lipid oxidation. Bioinformatic analyses suggested the implication of mTOR signaling and reduction of AMPK and PPARα activation, and regulation of PGC1α, fatty acid oxidation, and oxidative phosphorylation. In cultured cardiomyocytes, an excess of the palmitate activated mTORC1 complex and subsequent attenuation of PGC1α-PPARα transcription of β-oxidation and mitochondrial electron chain factors affect mitochondrial/glycolytic ATP synthesis. Silencing of PGC1α further reduced total ATP and both mitochondrial and glycolytic ATP. Thus, the coexistence of HTN and T2DM induced higher alterations in cardiac proteins than HTN. HTN-T2DM subjects exhibited a marked downregulation of mitochondrial respiration and lipid metabolism and the mTORC1-PGC1α-PPARα axis might account as a target for therapeutical strategies.
Collapse
Affiliation(s)
- Tianyu Hang
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, 28040 Madrid, Spain
- Biomedical Research Network on Diabetes and Associated Metabolic Disorders (CIBERDEM), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, 28040 Madrid, Spain
- Biomedical Research Network on Diabetes and Associated Metabolic Disorders (CIBERDEM), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Biomedical Research Network on Liver and Digestive Diseases (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Mikel Azkargorta
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Gonzalo Aldámiz
- Cardiovascular Surgery Department, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain
| | | | - Alberto Forteza
- Cardiovascular Surgery Department, Doce de Octubre Hospital, 28041 Madrid, Spain
| | - José M Cortina
- Cardiovascular Surgery Department, Doce de Octubre Hospital, 28041 Madrid, Spain
| | - Jesús Egido
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, 28040 Madrid, Spain
- Biomedical Research Network on Diabetes and Associated Metabolic Disorders (CIBERDEM), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Félix Elortza
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Malu Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Biomedical Research Network on Liver and Digestive Diseases (CIBERehd), Carlos III National Health Institute, 28029 Madrid, Spain
| | - José Tuñón
- Cardiology Department, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain
- Medicine Department, Universidad Autónoma, 28029 Madrid, Spain
- Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Carlos III National Health Institute, 28029 Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, 28040 Madrid, Spain
- Biomedical Research Network on Diabetes and Associated Metabolic Disorders (CIBERDEM), Carlos III National Health Institute, 28029 Madrid, Spain
| |
Collapse
|
5
|
Ono Y, Saito M, Sakamoto K, Maejima Y, Misaka S, Shimomura K, Nakanishi N, Inoue S, Kotani J. C188-9, a specific inhibitor of STAT3 signaling, prevents thermal burn-induced skeletal muscle wasting in mice. Front Pharmacol 2022; 13:1031906. [PMID: 36588738 PMCID: PMC9800842 DOI: 10.3389/fphar.2022.1031906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Burn injury is the leading cause of death and disability worldwide and places a tremendous economic burden on society. Systemic inflammatory responses induced by thermal burn injury can cause muscle wasting, a severe involuntary loss of skeletal muscle that adversely affects the survival and functional outcomes of these patients. Currently, no pharmacological interventions are available for the treatment of thermal burn-induced skeletal muscle wasting. Elevated levels of inflammatory cytokines, such as interleukin-6 (IL-6), are important hallmarks of severe burn injury. The levels of signal transducer and activator of transcription 3 (STAT3)-a downstream component of IL-6 inflammatory signaling-are elevated with muscle wasting in various pro-catabolic conditions, and STAT3 has been implicated in the regulation of skeletal muscle atrophy. Here, we tested the effects of the STAT3-specific signaling inhibitor C188-9 on thermal burn injury-induced skeletal muscle wasting in vivo and on C2C12 myotube atrophy in vitro after the administration of plasma from burn model mice. In mice, thermal burn injury severity dependently increased IL-6 in the plasma and tibialis anterior muscles and activated the STAT3 (increased ratio of phospho-STAT3/STAT3) and ubiquitin-proteasome proteolytic pathways (increased Atrogin-1/MAFbx and MuRF1). These effects resulted in skeletal muscle atrophy and reduced grip strength. In murine C2C12 myotubes, plasma from burn mice activated the same inflammatory and proteolytic pathways, leading to myotube atrophy. In mice with burn injury, the intraperitoneal injection of C188-9 (50 mg/kg) reduced activation of the STAT3 and ubiquitin-proteasome proteolytic pathways, reversed skeletal muscle atrophy, and increased grip strength. Similarly, pretreatment of murine C2C12 myotubes with C188-9 (10 µM) reduced activation of the same inflammatory and proteolytic pathways, and ameliorated myotube atrophy induced by plasma taken from burn model mice. Collectively, these results indicate that pharmacological inhibition of STAT3 signaling may be a novel therapeutic strategy for thermal burn-induced skeletal muscle wasting.
Collapse
Affiliation(s)
- Yuko Ono
- Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan,Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan,*Correspondence: Yuko Ono,
| | - Masafumi Saito
- Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shingen Misaka
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Nobuto Nakanishi
- Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Shigeaki Inoue
- Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Joji Kotani
- Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
6
|
Wu SH, Lu IC, Yang SM, Hsieh CF, Chai CY, Tai MH, Huang SH. Spinal Irisin Gene Delivery Attenuates Burn Injury-Induced Muscle Atrophy by Promoting Axonal Myelination and Innervation of Neuromuscular Junctions. Int J Mol Sci 2022; 23:ijms232415899. [PMID: 36555538 PMCID: PMC9784798 DOI: 10.3390/ijms232415899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Muscle loss and weakness after a burn injury are typically the consequences of neuronal dysregulation and metabolic change. Hypermetabolism has been noted to cause muscle atrophy. However, the mechanism underlying the development of burn-induced motor neuropathy and its contribution to muscle atrophy warrant elucidation. Current therapeutic interventions for burn-induced motor neuropathy demonstrate moderate efficacy and have side effects, which limit their usage. We previously used a third-degree burn injury rodent model and found that irisin-an exercise-induced myokine-exerts a protective effect against burn injury-induced sensory and motor neuropathy by attenuating neuronal damage in the spinal cord. In the current study, spinal irisin gene delivery was noted to attenuate burn injury-induced sciatic nerve demyelination and reduction of neuromuscular junction innervation. Spinal overexpression of irisin leads to myelination rehabilitation and muscular innervation through the modulation of brain-derived neurotrophic factor and glial-cell-line-derived neurotrophic factor expression along the sciatic nerve to the muscle tissues and thereby modulates the Akt/mTOR pathway and metabolic derangement and prevents muscle atrophy.
Collapse
Affiliation(s)
- Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - I-Cheng Lu
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Anesthesiology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan
| | - Chia-Fang Hsieh
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Chee-Yin Chai
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan
- Correspondence: (M.-H.T.); (S.-H.H.)
| | - Shu-Hung Huang
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
- Correspondence: (M.-H.T.); (S.-H.H.)
| |
Collapse
|
7
|
Farnesysltransferase Inhibitor Prevents Burn Injury-Induced Metabolome Changes in Muscle. Metabolites 2022; 12:metabo12090800. [PMID: 36144205 PMCID: PMC9506277 DOI: 10.3390/metabo12090800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 01/01/2023] Open
Abstract
Burn injury remains a significant public health issue worldwide. Metabolic derangements are a major complication of burn injury and negatively affect the clinical outcomes of severely burned patients. These metabolic aberrations include muscle wasting, hypermetabolism, hyperglycemia, hyperlactatemia, insulin resistance, and mitochondrial dysfunction. However, little is known about the impact of burn injury on the metabolome profile in skeletal muscle. We have previously shown that farnesyltransferase inhibitor (FTI) reverses burn injury-induced insulin resistance, mitochondrial dysfunction, and the Warburg effect in mouse skeletal muscle. To evaluate metabolome composition, targeted quantitative analysis was performed using capillary electrophoresis mass spectrometry in mouse skeletal muscle. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and hierarchical cluster analysis demonstrated that burn injury induced a global change in metabolome composition. FTI treatment almost completely prevented burn injury-induced alterations in metabolite levels. Pathway analysis revealed that the pathways most affected by burn injury were purine, glutathione, β-alanine, glycine, serine, and threonine metabolism. Burn injury induced a suppressed oxidized to reduced nicotinamide adenine dinucleotide (NAD+/NADH) ratio as well as oxidative stress and adenosine triphosphate (ATP) depletion, all of which were reversed by FTI. Moreover, our data raise the possibility that burn injury may lead to increased glutaminolysis and reductive carboxylation in mouse skeletal muscle.
Collapse
|
8
|
Freshly Isolated Mitochondria as Therapeutic Agents in Sepsis: Can They Go Home Again? Crit Care Med 2021; 49:1584-1587. [PMID: 34413274 DOI: 10.1097/ccm.0000000000005104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Sun P, Wang Y, Ding Y, Luo J, Zhong J, Xu N, Zhang Y, Xie W. Canagliflozin attenuates lipotoxicity in cardiomyocytes and protects diabetic mouse hearts by inhibiting the mTOR/HIF-1α pathway. iScience 2021; 24:102521. [PMID: 34142035 PMCID: PMC8188479 DOI: 10.1016/j.isci.2021.102521] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
Lipotoxicity plays an important role in the development of diabetic heart failure (HF). Canagliflozin (CAN), a marketed sodium-glucose co-transporter 2 inhibitor, has significantly beneficial effects on HF. In this study, we evaluated the protective effects and mechanism of CAN in the hearts of C57BL/6J mice induced by high-fat diet/streptozotocin (HFD/STZ) for 12 weeks in vivo and in HL-1 cells (a type of mouse cardiomyocyte line) induced by palmitic acid (PA) in vitro. The results showed that CAN significantly ameliorated heart functions and inflammatory responses in the hearts of the HFD/STZ-induced diabetic mice. CAN significantly attenuated the inflammatory injury induced by PA in the HL-1 cells. Furthermore, CAN seemed to bind to the mammalian target of rapamycin (mTOR) and then inhibit mTOR phosphorylation and hypoxia-inducible factor-1α (HIF-1α) expression. These results indicated that CAN might attenuate lipotoxicity in cardiomyocytes by inhibiting the mTOR/HIF-1α pathway and then show protective effects on diabetic hearts.
Collapse
Affiliation(s)
- Pengbo Sun
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yangyang Wang
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yipei Ding
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jingyi Luo
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhong
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
10
|
Knuth CM, Auger C, Jeschke MG. Burn-induced hypermetabolism and skeletal muscle dysfunction. Am J Physiol Cell Physiol 2021; 321:C58-C71. [PMID: 33909503 DOI: 10.1152/ajpcell.00106.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Critical illnesses, including sepsis, cancer cachexia, and burn injury, invoke a milieu of systemic metabolic and inflammatory derangements that ultimately results in increased energy expenditure leading to fat and lean mass catabolism. Burn injuries present a unique clinical challenge given the magnitude and duration of the hypermetabolic response compared with other forms of critical illness, which drastically increase the risk of morbidity and mortality. Skeletal muscle metabolism is particularly altered as a consequence of burn-induced hypermetabolism, as it primarily provides a main source of fuel in support of wound healing. Interestingly, muscle catabolism is sustained long after the wound has healed, indicating that additional mechanisms beyond wound healing are involved. In this review, we discuss the distinctive pathophysiological response to burn injury with a focus on skeletal muscle function and metabolism. We first examine the diverse consequences on skeletal muscle dysfunction between thermal, electrical, and chemical burns. We then provide a comprehensive overview of the known mechanisms underlying skeletal muscle dysfunction that may be attributed to hypermetabolism. Finally, we review the most promising current treatment options to mitigate muscle catabolism, and by extension improve morbidity and mortality, and end with future directions that have the potential to significantly improve patient care.
Collapse
Affiliation(s)
- Carly M Knuth
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Auger
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Protective effects of farnesyltransferase inhibitor on sepsis-induced morphological aberrations of mitochondria in muscle and increased circulating mitochondrial DNA levels in mice. Biochem Biophys Res Commun 2021; 556:93-98. [PMID: 33845310 PMCID: PMC8757346 DOI: 10.1016/j.bbrc.2021.03.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
Sepsis remains a leading cause of mortality in critically ill patients and is characterized by multi-organ dysfunction. Mitochondrial damage has been proposed to be involved in the pathophysiology of sepsis. In addition to metabolic impairments resulting from mitochondrial dysfunction, mitochondrial DNA (mtDNA) causes systemic inflammation as a damage-associated molecular pattern when it is released to the circulation. Metabolic derangements in skeletal muscle are a major complication of sepsis and negatively affects clinical outcomes of septic patients. However, limited knowledge is available about sepsis-induced mitochondrial damage in skeletal muscle. Here, we show that sepsis induced profound abnormalities in cristae structure, rupture of the inner and outer membranes and enlargement of the mitochondria in mouse skeletal muscle in a time-dependent manner, which was associated with increased plasma mtDNA levels. Farnesyltransferase inhibitor, FTI-277, prevented sepsis-induced morphological aberrations of the mitochondria, and blocked the increased plasma mtDNA levels along with improved survival. These results indicate that protein farnesylation plays a role in sepsis-induced damage of the mitochondria in mouse skeletal muscle. Our findings suggest that mitochondrial disintegrity in skeletal muscle may contribute to elevated circulating mtDNA levels in sepsis.
Collapse
|
12
|
Kobayashi M, Kasamatsu S, Shinozaki S, Yasuhara S, Kaneki M. Myostatin deficiency not only prevents muscle wasting but also improves survival in septic mice. Am J Physiol Endocrinol Metab 2021; 320:E150-E159. [PMID: 33284091 PMCID: PMC8194407 DOI: 10.1152/ajpendo.00161.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
Sepsis remains a leading cause of mortality in critically ill patients. Muscle wasting is a major complication of sepsis and negatively affects clinical outcomes. Despite intense investigation for many years, the molecular mechanisms underlying sepsis-related muscle wasting are not fully understood. In addition, a potential role of muscle wasting in disease development of sepsis has not been studied. Myostatin is a myokine that downregulates skeletal muscle mass. We studied the effects of myostatin deficiency on muscle wasting and other clinically relevant outcomes, including mortality and bacterial clearance, in mice. Myostatin deficiency prevented muscle atrophy along with inhibition of increases in muscle-specific RING finger protein 1 (MuRF-1) and atrogin-1 expression and phosphorylation of signal transducer and activator of transcription protein 3 (STAT3; major players of muscle wasting) in septic mice. Moreover, myostatin deficiency improved survival and bacterial clearance of septic mice. Sepsis-induced liver dysfunction, acute kidney injury, and neutrophil infiltration into the liver and kidney were consistently mitigated by myostatin deficiency, as indicated by plasma concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase activity in the organs. Myostatin deficiency also inhibited sepsis-induced increases in plasma high-mobility group protein B1 (HMGB1) and macrophage inhibitory cytokine (MIC)-1/growth differentiation factor (GDF)-15 concentrations. These results indicate that myostatin plays an important role not only in muscle wasting but also in other clinically relevant outcomes in septic mice. Furthermore, our data raise the possibility that muscle wasting may not be simply a complication, but myostatin-mediated muscle cachexia and related changes in muscle may actually drive the development of sepsis as well.NEW & NOTEWORTHY Muscle wasting is a major complication of sepsis, but its role in the disease development is not known. Myostatin deficiency improved bacterial clearance and survival and mitigated damage in the liver and kidney in septic mice, which paralleled prevention of muscle wasting. These results raise the possibility that muscle wasting may not simply be a complication of sepsis, but myostatin-mediated cachexic changes may have a role in impaired bacterial clearance and mortality in septic mice.
Collapse
Affiliation(s)
- Masayuki Kobayashi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, Massachusetts
| | - Shingo Kasamatsu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, Massachusetts
| | - Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, Massachusetts
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, Massachusetts
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
13
|
Chen CA, Huang YC, Lo JJ, Wang SH, Huang SH, Wu SH. Hyperbaric Oxygen Therapy Attenuates Burn-Induced Denervated Muscle Atrophy. Int J Med Sci 2021; 18:3821-3830. [PMID: 34790058 PMCID: PMC8579280 DOI: 10.7150/ijms.65976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/07/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Neuronal apoptosis and inflammation in the ventral horn of the spinal cord contribute to denervated muscle atrophy post-burn. Hyperbaric oxygen therapy (HBOT) exerts anti-inflammation and neuroprotection. Furthermore, hypoxia-inducible factor (HIF)-1α has been reported to promote inflammation and apoptosis. We investigated the therapeutic potential of HBOT and the role of HIF-1α post-burn. Methods: Sprague-Dawley rats were divided into three groups: a control group, an untreated burn group receiving burn and sham treatment, and a HBOT group receiving burn injury and HBOT. The burn injury was induced with 75ºC ± 5ºC at the right hindpaw. HBOT (100% oxygen at 2.5 atmosphere, 90 min/day) and sham HBOT (21% oxygen at 1 atmosphere, 90 min/day) was started on day 28 after burn injury and continued for 14 treatments (days 28-41). Incapacitance (hind limb weight bearing) testing was conducted before burn and weekly after burn. At day 42 post-burn, the gastrocnemius muscle and the spinal cord ventral horn were analyzed. Results: HBOT improved burn-induced weight bearing imbalance. At day 42 post-burn, less gastrocnemius muscle atrophy and fibrosis were noted in the HBOT group than in the untreated burn group. In the ventral horn, HBOT attenuated the neuronal apoptosis and glial activation post-burn. The increases in phosphorylated AKT/mTOR post-burn were reduced after HBOT. HBOT also inhibited HIF-1α signaling, as determined by immunofluorescence and western blot. Conclusions: HBOT reduces burn-induced neuronal apoptosis in the ventral horn, possibly through HIF-1α signaling.
Collapse
Affiliation(s)
- Chin-An Chen
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Kaohsiung Medical University, Taiwan
| | - Yi-Chen Huang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Jou Lo
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hung Wang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Hyperbaric Oxygen Therapy Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Kaohsiung Medical University, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Wen JJ, Cummins CB, Williams TP, Radhakrishnan RS. The Genetic Evidence of Burn-Induced Cardiac Mitochondrial Metabolism Dysfunction. Biomedicines 2020; 8:biomedicines8120566. [PMID: 33287280 PMCID: PMC7761708 DOI: 10.3390/biomedicines8120566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Burn-induced cardiac dysfunction is thought to involve mitochondrial dysfunction, although the mechanisms responsible are unclear. In this study, we used our established model of in vivo burn injury to understand the genetic evidence of burn-induced mitochondrial confusion dysfunction by describing cardiac mitochondrial metabolism-related gene expression after burn. Cardiac tissue was collected at 24 hours after burn injury. An O2K respirometer system was utilized to measure the cardiac mitochondrial function. Oxidative phosphorylation complex activities were determined using enzyme activity assays. RT Profiler PCR array was used to identify the differential regulation of genes involved in mitochondrial biogenesis and metabolism. The quantitative qPCR and Western blotting were applied to validate the differentially expressed genes. Burn-induced cardiac mitochondrial dysfunction was supported by the finding of decreased state 3 respiration, decreased mitochondrial electron transport chain activity in complex I, III, IV, and V, and decreased mitochondrial DNA-encoded gene expression as well as decreased levels of the corresponding proteins after burn injury. Eighty-four mitochondrial metabolism-related gene profiles were measured. The mitochondrial gene profile showed that 29 genes related to mitochondrial energy and metabolism was differentially expressed. Of these 29 genes, 16 were more than 2-fold upregulated and 13 were more than 2-fold downregulated. All genes were validated using qPCR and partial genes were correlated with their protein levels. This study provides preliminary evidence that a large percentage of mitochondrial metabolism-related genes in cardiomyocytes were significantly affected by burn injury.
Collapse
Affiliation(s)
- Jake J. Wen
- Correspondence: (J.J.W.); (R.S.R.); Tel.: +1-409-772-5666 (J.J.W. & R.S.R.)
| | | | | | | |
Collapse
|
15
|
PINK1/PRKN-dependent mitophagy in the burn injury model. Burns 2020; 47:628-633. [PMID: 32900550 DOI: 10.1016/j.burns.2020.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Burn injury leads to mitochondrial dysfunction and autophagy, also known as mitophagy. The alleviation of mitochondrial damage may be a potential method for the treatment of burn injury and complications. In this animal study, we analyzed the expression of mitochondrial damage- and mitophagy-related factors, specifically PINK1 and PRKN. The results showed mitochondria damage in the skin; compared with the normal control group, genes involved in the mitochondrial damage, such as Nrf-1, UQCRC2, CYC1, and NDUFA9, as well as in the mitophagy, including PINK1, PRKN, MFN1, and USP30, were differentially expressed. Furthermore, PINK1 interacted with PRKN and participated in mitophagy in the skin. In conclusion, our data reveal more about the mechanism underlying mitophagy in burns, providing a potential clinical treatment.
Collapse
|
16
|
Guo Y, You Y, Lv D, Yan J, Shang FF, Wang X, Zhang C, Fan Q, Luo S. Inducible nitric oxide synthase contributes to insulin resistance and cardiac dysfunction after burn injury in mice. Life Sci 2019; 239:116912. [PMID: 31634465 DOI: 10.1016/j.lfs.2019.116912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 11/18/2022]
Abstract
AIMS Cardiac dysfunction is a major cause of multi-organ dysfunction in critical care units following severe burns. The purpose of this study was to investigate the role of inducible nitric oxide synthase (iNOS) in cardiac dysfunction in burned mice. MATERIALS AND METHODS Wild-type and iNOS-knockout mice were subjected to 30% total body surface area burns. Next, the expression of iNOS was measured at 1, 3 and 7 days post-burn. Cardiac function, insulin sensitivity, inflammation, oxidative stress, and apoptosis in the hearts of the mice were assessed at 3 days post-burn. KEY FINDINGS Compared to control mice, iNOS expression was increased and reached a maximum in the heart of burned mice at 3 days post-burn. iNOS deficiency significantly alleviated the cardiac dysfunction and insulin resistance in burned mice. In addition, burn-induced inflammation, oxidative stress, and apoptosis in the heart were markedly reduced in iNOS-knockout burned mice when compared to corresponding values in wild-type burned mice. SIGNIFICANCE Our study demonstrates that iNOS contributes to insulin resistance in the hearts of mice following burn injury, and iNOS deficiency protects cardiac function against burn injury in mice, suggesting iNOS as a potential therapeutic target to treat burn injuries.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yuehua You
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Dingyi Lv
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Jianghong Yan
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qingdan Fan
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Suxin Luo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
17
|
Owen AM, Patel SP, Smith JD, Balasuriya BK, Mori SF, Hawk GS, Stromberg AJ, Kuriyama N, Kaneki M, Rabchevsky AG, Butterfield TA, Esser KA, Peterson CA, Starr ME, Saito H. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. eLife 2019; 8:e49920. [PMID: 31793435 PMCID: PMC6890461 DOI: 10.7554/elife.49920] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic critical illness is a global clinical issue affecting millions of sepsis survivors annually. Survivors report chronic skeletal muscle weakness and development of new functional limitations that persist for years. To delineate mechanisms of sepsis-induced chronic weakness, we first surpassed a critical barrier by establishing a murine model of sepsis with ICU-like interventions that allows for the study of survivors. We show that sepsis survivors have profound weakness for at least 1 month, even after recovery of muscle mass. Abnormal mitochondrial ultrastructure, impaired respiration and electron transport chain activities, and persistent protein oxidative damage were evident in the muscle of survivors. Our data suggest that sustained mitochondrial dysfunction, rather than atrophy alone, underlies chronic sepsis-induced muscle weakness. This study emphasizes that conventional efforts that aim to recover muscle quantity will likely remain ineffective for regaining strength and improving quality of life after sepsis until deficiencies in muscle quality are addressed.
Collapse
Affiliation(s)
- Allison M Owen
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Samir P Patel
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonUnited States
| | - Jeffrey D Smith
- Department of Biosystems and Agricultural EngineeringUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
| | - Beverly K Balasuriya
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Stephanie F Mori
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Gregory S Hawk
- Department of StatisticsUniversity of KentuckyLexingtonUnited States
| | | | - Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical SchoolCharlestownUnited States
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical SchoolCharlestownUnited States
| | - Alexander G Rabchevsky
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonUnited States
| | - Timothy A Butterfield
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
| | - Karyn A Esser
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Charlotte A Peterson
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
- Department of Rehabilitation SciencesUniversity of KentuckyLexingtonUnited States
| | - Marlene E Starr
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonUnited States
| | - Hiroshi Saito
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
| |
Collapse
|
18
|
Nakazawa H, Ikeda K, Shinozaki S, Yasuhara S, Yu YM, Martyn JAJ, Tompkins RG, Yorozu T, Inoue S, Kaneki M. Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle. FEBS Open Bio 2019; 9:348-363. [PMID: 30761259 PMCID: PMC6356165 DOI: 10.1002/2211-5463.12580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial dysfunction is associated with metabolic alterations in various disease states, including major trauma (e.g., burn injury). Metabolic derangements, including muscle insulin resistance and hyperlactatemia, are a clinically significant complication of major trauma. Coenzyme Q10 (CoQ10) is an essential cofactor for mitochondrial electron transport, and its reduced form acts as a lipophilic antioxidant. Here, we report that burn injury induces impaired muscle insulin signaling, hyperlactatemia, mitochondrial dysfunction (as indicated by suppressed mitochondrial oxygen consumption rates), morphological alterations of the mitochondria (e. g., enlargement, and loss of cristae structure), mitochondrial oxidative stress, and disruption of mitochondrial integrity (as reflected by increased mitochondrial DNA levels in the cytosol and circulation). All of these alterations were significantly alleviated by CoQ10 treatment compared with vehicle alone. These findings indicate that CoQ10 treatment is efficacious in protecting against mitochondrial dysfunction and insulin resistance in skeletal muscle of burned mice. Our data highlight CoQ10 as a potential new strategy to prevent mitochondrial damage and metabolic dysfunction in burn patients.
Collapse
Affiliation(s)
- Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA.,Department of Anesthesiology Kyorin University School of Medicine Tokyo Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction Research Center for Genomic Medicine Saitama Medical University Japan
| | - Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA.,Department of Life Sciences and Bioethics Tokyo Medical and Dental University Japan
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| | - Yong-Ming Yu
- Shriners Hospitals for Children Boston MA USA.,Department of Surgery Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| | - Ronald G Tompkins
- Shriners Hospitals for Children Boston MA USA.,Department of Surgery Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Tomoko Yorozu
- Department of Anesthesiology Kyorin University School of Medicine Tokyo Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction Research Center for Genomic Medicine Saitama Medical University Japan.,Tokyo Metropolitan Institute of Gerontology Japan
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| |
Collapse
|