1
|
Wang X, Sun L, Han X, Li Z, Xing Y, Chen X, Xi R, Sun Y, Wang G, Zhao P. The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review). Int J Mol Med 2025; 55:63. [PMID: 39950327 PMCID: PMC11878485 DOI: 10.3892/ijmm.2025.5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive and irreversible necrosis and apoptosis of retinal ganglion cells (RGCs). Deformation of the lamina cribrosa (LC) has been identified as a factor leading to damage to the optic nerve and capillaries passing through the LC, ultimately causing visual field defects and glaucoma development. Recent advancements in molecular biology, both domestically and internationally, have enabled a more comprehensive and in‑depth understanding of glaucoma pathogenesis. In the present review, the role of molecular signaling pathways associated with RGCs apoptosis, optic nerve protection and regeneration, and LC damage and remodeling in the development of glaucoma, are summarized and discussed. The insights provided herein may offer new targets and ideas for interventions and treatment strategies for glaucoma.
Collapse
Affiliation(s)
- Xiaotong Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xudong Han
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Zhanglong Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuqing Xing
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xinyue Chen
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Ruofan Xi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuecong Sun
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Guilong Wang
- Shandong Provincial Education Department, Jinan, Shandong 250012, P.R. China
| | - Ping Zhao
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
2
|
Vander Wall R, Basavarajappa D, Palanivel V, Sharma S, Gupta V, Klistoner A, Graham S, You Y. VEP Latency Delay Reflects Demyelination Beyond the Optic Nerve in the Cuprizone Model. Invest Ophthalmol Vis Sci 2024; 65:50. [PMID: 39576623 PMCID: PMC11587907 DOI: 10.1167/iovs.65.13.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/24/2024] [Indexed: 11/24/2024] Open
Abstract
Purpose Remyelination therapies are advancing for multiple sclerosis, focusing on visual pathways and using visual evoked potentials (VEPs) for de/remyelination processes. While the cuprizone (CZ) model and VEPs are core tools in preclinical trials, many overlook the posterior visual pathway. This study aimed to assess functional and structural changes across the murine visual pathway during de/remyelination. Methods One group of C57BL/6 mice underwent a CZ diet for 6 weeks to simulate demyelination, with a subset returning to a regular diet to induce remyelination. An additional group was fed a protracted CZ diet for 12 weeks to maintain chronic demyelination. Visual function was evaluated using electrophysiological recordings, including scotopic threshold responses (STRs) and electroretinograms (ERGs), with VEPs serving as a key biomarker for overall pathway health. Tissues from eyes, brains, and optic nerves (ONs) were collected at different time points for structural analysis. Results Our results demonstrated significant effects on VEPs, including increased N1 latencies and reduced amplitudes in the CZ mouse model. However, retinal function remained unaffected, as evidenced by unchanged STRs, ERGs, and retinal ganglion cell counts. Analysis of ONs revealed morphological changes, characterized by a significantly decreased axon diameter in the core region compared to the subpial region. Additionally, there was a significant increase in the g-ratio of the core region at 12 weeks CZ compared to controls. Immunofluorescence further demonstrated a decrease in myelin basic protein levels at 6 and 12 weeks in CZ animals. Interestingly, the dorsal lateral geniculate nucleus and primary visual cortex (V1) exhibited similar myelin changes, correlating with VEP latency alterations. Conclusions These data reveal that interpreting VEP latency solely as a marker for ON demyelination is incomplete. Previous preclinical studies have overlooked the posterior visual pathways, necessitating a broader interpretation of VEP latency to cover the entire visual pathway.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Viswanthram Palanivel
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Samridhi Sharma
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, Australia
| |
Collapse
|
3
|
Kucuksayan E, Kucuksayan H, Sozen ME, Sircan-Kucuksayan A. Elevated level of neuroserpin is an indication for the resistance to gambogic acid-induced apoptosis and oxidative stress in triple-negative breast cancer cells. ASIAN BIOMED 2024; 18:69-80. [PMID: 38708330 PMCID: PMC11063082 DOI: 10.2478/abm-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Background The triple-negative breast cancer (TNBC) subtype, characterized by loss of HER2, estrogen, and progesterone receptors, displays aggressive phenotype and poor prognosis compared to other BC subtypes. Since the TNBC cells are devoid of receptors, endocrine therapy is an ineffective option for TNBC patients, necessitating canonical chemotherapy strategies to treat TNBC. It is crucial to use alternative and natural agents to support chemotherapy in TNBC. Objectives To clarify the molecular mechanism of the tumorigenic effects of gambogic acid (GA) on TNBC cells with different epithelial character since GA has a wide spectrum of anticancer activity for most cancer types. Methods We determined the cytotoxic dose of GA incubation of TNBC cells (MDA-MB-231 and BT-20 cells) for 24 h. We performed the MTT test and toluidine blue (TB) staining protocol for TNBC cells. We analyzed E-cadherin, N-cadherin, Bax, and neuroserpin mRNAs in both cells by qPCR. We evaluated apoptosis using DAPI staining and assessed the ROS using the 2',7'-dichlorofluorescin diacetate (DCFH-DA) method. Results We determined the IC50 concentrations of GA in MDA-MB-231 and BT-20 cells to be 315.8 nM and 441.8 nM, respectively. TB staining showed that BT-20 cells survive at excessive cytotoxic doses of GA, while most of the MDA-MB-231 cells were killed. Also, we found that BT-20 cells are more resistant to GA-induced apoptosis and oxidative stress than the MDA-MB-231 cells. qPCR results showed that GA upregulated neuroserpin, an oxidative stress-relieving factor in the BT-20 cells, but not in the MDA-MB-231 cells. Conclusions The elevated level of neuroserpin could be a predictive marker to determine the development of resistance to chemotherapeutic agents.
Collapse
Affiliation(s)
- Ertan Kucuksayan
- Department of Medical Biochemistry, School of Medicine, Alanya Alaaddin Keykubat University, Alanya07425, Turkey
| | - Hakan Kucuksayan
- Department of Medical Biology, School of Medicine, Kastamonu University, Kastamonu37200, Turkey
| | - Mehmet Enes Sozen
- Department of Histology and Embryology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya07425, Turkey
| | - Aslinur Sircan-Kucuksayan
- Department of Biophysics, School of Medicine, Alanya Alaaddin Keykubat University, Alanya07425, Turkey
| |
Collapse
|
4
|
Basavarajappa D, Galindo-Romero C, Gupta V, Agudo-Barriuso M, Gupta VB, Graham SL, Chitranshi N. Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology. Mol Aspects Med 2023; 94:101216. [PMID: 37856930 DOI: 10.1016/j.mam.2023.101216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is a complex multifactorial eye disease manifesting in retinal ganglion cell (RGC) death and optic nerve degeneration, ultimately causing irreversible vision loss. Research in recent years has significantly enhanced our understanding of RGC degenerative mechanisms in glaucoma. It is evident that high intraocular pressure (IOP) is not the only contributing factor to glaucoma pathogenesis. The equilibrium of pro-survival and pro-death signalling pathways in the retina strongly influences the function and survival of RGCs and optic nerve axons in glaucoma. Molecular evidence from human retinal tissue analysis and a range of experimental models of glaucoma have significantly contributed to unravelling these mechanisms. Accumulating evidence reveals a wide range of molecular signalling pathways that can operate -either alone or via intricate networks - to induce neurodegeneration. The roles of several molecules, including neurotrophins, interplay of intracellular kinases and phosphates, caveolae and adapter proteins, serine proteases and their inhibitors, nuclear receptors, amyloid beta and tau, and how their dysfunction affects retinal neurons are discussed in this review. We further underscore how anatomical alterations in various animal models exhibiting RGC degeneration and susceptibility to glaucoma-related neuronal damage have helped to characterise molecular mechanisms in glaucoma. In addition, we also present different regulated cell death pathways that play a critical role in RGC degeneration in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Caridad Galindo-Romero
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Agudo-Barriuso
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
5
|
Sen S, Udaya P, Jeya Maheshwari J, Kohli P, Parida H, Kannan NB, Ramasamy K, Dharmalingam K. Comparative proteomics of proliferative diabetic retinopathy in people with Type 2 diabetes highlights the role of inflammation, visual transduction, and extracellular matrix pathways. Indian J Ophthalmol 2023; 71:3069-3079. [PMID: 37530283 PMCID: PMC10538831 DOI: 10.4103/ijo.ijo_276_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose To explore the vitreous humor proteome from type 2 diabetes subjects with proliferative diabetic retinopathy (PDR) in the Indian population. Methods We performed mass spectrometry-based label-free quantitative analysis of vitreous proteome of PDR (n = 13) and idiopathic macular hole (IMH; control) subjects (n = 14). Nine samples of PDR and 10 samples of IMH were pooled as case and control, respectively, and compared. Four samples each of PDR and IMH were analyzed individually without pooling to validate the results of the pooled analysis. Comparative quantification was performed using Scaffold software which calculated the fold changes of differential expression. Bioinformatics analysis was performed using DAVID and STRING software. Results We identified 469 proteins in PDR and 517 proteins in IMH vitreous, with an overlap of 172 proteins. Also, 297 unique proteins were identified in PDR and 345 in IMH. In PDR vitreous, 37 proteins were upregulated (P < 0.05) and 19 proteins were downregulated compared to IMH. Protein distribution analysis clearly demonstrated a separation of protein expression in PDR and IMH. Significantly upregulated proteins included fibrinogen gamma chain, fibrinogen beta chain, and carbonic anhydrase 1 and downregulated proteins included alpha-1-antitrypsin, retinol-binding protein 3, neuroserpin, cystatin C, carboxypeptidase E and cathepsin-D. Conclusion Diabetic retinopathy pathogenesis involves proteins which belong to inflammation, visual transduction, and extracellular matrix pathways. Validation-based experiments using enzyme-linked immunosorbent assay (ELISA) or western blotting are needed to establish cause and effect relationships of these proteins to the disease state, to develop them as biomarkers or drug molecules.
Collapse
Affiliation(s)
- Sagnik Sen
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Prithviraj Udaya
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | | | - Piyush Kohli
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Haemoglobin Parida
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Naresh Babu Kannan
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Kim Ramasamy
- Department of Retina and Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | | |
Collapse
|
6
|
Kwong JMK, Caprioli J, Lee JCY, Song Y, Yu FJ, Bian J, Sze YH, Li KK, Do CW, To CH, Lam TC. Differential Responses of Retinal Neurons and Glia Revealed via Proteomic Analysis on Primary and Secondary Retinal Ganglion Cell Degeneration. Int J Mol Sci 2023; 24:12109. [PMID: 37569482 PMCID: PMC10418669 DOI: 10.3390/ijms241512109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
To explore the temporal profile of retinal proteomes specific to primary and secondary retinal ganglion cell (RGC) loss. Unilateral partial optic nerve transection (pONT) was performed on the temporal side of the rat optic nerve. Temporal and nasal retinal samples were collected at 1, 4 and 8 weeks after pONT (n = 4 each) for non-biased profiling with a high-resolution hybrid quadrupole time-of-flight mass spectrometry running on label-free SWATHTM acquisition (SCIEX). An information-dependent acquisition ion library was generated using ProteinPilot 5.0 and OneOmics cloud bioinformatics. Combined proteome analysis detected 2531 proteins with a false discovery rate of <1%. Compared to the nasal retina, 10, 25 and 61 significantly regulated proteins were found in the temporal retina at 1, 4, and 8 weeks, respectively (p < 0.05, FC ≥ 1.4 or ≤0.7). Eight proteins (ALDH1A1, TRY10, GFAP, HBB-B1, ALB, CDC42, SNCG, NEFL) were differentially expressed for at least two time points. The expressions of ALDH1A1 and SNCG at nerve fibers were decreased along with axonal loss. Increased ALDH1A1 localization in the inner nuclear layer suggested stress response. Increased GFAP expression demonstrated regional reactivity of astrocytes and Muller cells. Meta-analysis of gene ontology showed a pronounced difference in endopeptidase and peptidase inhibitor activity. Temporal proteomic profiling demonstrates established and novel protein targets associated with RGC damage.
Collapse
Affiliation(s)
- Jacky M. K. Kwong
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Joseph Caprioli
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Joanne C. Y. Lee
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Yifan Song
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Feng-Juan Yu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Jingfang Bian
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Ying-Hon Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
| | - Chi-Wai Do
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, 17W, Hong Kong Science Park, Hong Kong, China
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, 17W, Hong Kong Science Park, Hong Kong, China
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, 17W, Hong Kong Science Park, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518052, China
| |
Collapse
|
7
|
Chitranshi N, Rajput R, Godinez A, Pushpitha K, Mirzaei M, Basavarajappa D, Gupta V, Sharma S, You Y, Galliciotti G, Salekdeh GH, Baker MS, Graham SL, Gupta VK. Neuroserpin gene therapy inhibits retinal ganglion cell apoptosis and promotes functional preservation in glaucoma. Mol Ther 2023; 31:2056-2076. [PMID: 36905120 PMCID: PMC10362384 DOI: 10.1016/j.ymthe.2023.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Our research has proven that the inhibitory activity of the serine protease inhibitor neuroserpin (NS) is impaired because of its oxidation deactivation in glaucoma. Using genetic NS knockout (NS-/-) and NS overexpression (NS+/+ Tg) animal models and antibody-based neutralization approaches, we demonstrate that NS loss is detrimental to retinal structure and function. NS ablation was associated with perturbations in autophagy and microglial and synaptic markers, leading to significantly enhanced IBA1, PSD95, beclin-1, and LC3-II/LC3-I ratio and reduced phosphorylated neurofilament heavy chain (pNFH) levels. On the other hand, NS upregulation promoted retinal ganglion cell (RGC) survival in wild-type and NS-/- glaucomatous mice and increased pNFH expression. NS+/+Tg mice demonstrated decreased PSD95, beclin-1, LC3-II/LC3-I ratio, and IBA1 following glaucoma induction, highlighting its protective role. We generated a novel reactive site NS variant (M363R-NS) resistant to oxidative deactivation. Intravitreal administration of M363R-NS was observed to rescue the RGC degenerative phenotype in NS-/- mice. These findings demonstrate that NS dysfunction plays a key role in the glaucoma inner retinal degenerative phenotype and that modulating NS imparts significant protection to the retina. NS upregulation protected RGC function and restored biochemical networks associated with autophagy and microglial and synaptic function in glaucoma.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Rashi Rajput
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Angela Godinez
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Samridhi Sharma
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghasem H Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Mark S Baker
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Shi L, Hou B. Urokinase Regulates Heat Shock Protein 27 to Treat Chronic Glaucoma Rats. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study explored urokinase’s effect on the production of heat shock protein 27 in chronic glaucoma rats. 45 SD rats were equally assigned into healthy group, glaucoma group, and urokinase group followed by analysis of intraocular pressure by TONO-PENAVVI tonometer, apoptosis
of retinal ganglion cells by TUNEL staining, pathological morphology by H&E staining, levels of SOD, MDA, and NO as well as the expression of HSP27 and p-p38MAPK. After treatment, the intraocular pressure was increased in glaucoma group and decreased in urokinase group (P < 0.05).
In addition, glaucoma group showed significantly increased apoptosis rate (P < 0.05) which was decreased in urokinase group (P < 0.05). In glaucoma group, the nerve fibers were disorderly arranged and ganglion cells were greatly reduced which were improved in urokinase
group. Compared to healthy group, glaucoma group had lower MDA level and higher SOD levels (P < 0.05) which were reversed in urokinase group (P < 0.05). HSP27 and P-P38MAPK levels in glaucoma group were higher than healthy group (P < 0.05) and urokinase group
(P < 0.05). In conclusion, urokinase can reduce the apoptosis of retinal ganglion cells in glaucoma rats and protect the function of the optic nerve by reducing the level of HSP27.
Collapse
Affiliation(s)
- Lei Shi
- Department of Outpatient, Jingnan Medical Treatment Area, Chinese the People’s Liberation Army (PLA) General Hospital, Beijing, 100036, China
| | - Baoke Hou
- Department of Ophthalmology, Chinese the People’s Liberation Army (PLA) General Hospital, Beijing, 100036, China
| |
Collapse
|
9
|
Luo S, Xu H, Yang L, Gong X, Shen J, Chen X, Wu Z. Quantitative proteomics analysis of human vitreous in rhegmatogenous retinal detachment associated with choroidal detachment by data-independent acquisition mass spectrometry. Mol Cell Biochem 2022; 477:1849-1863. [PMID: 35332395 DOI: 10.1007/s11010-022-04409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The prognosis of rhegmatogenous retinal detachment (RRD) with choroidal detachment (RRDCD) is often poor and complicated. This study focused on the identification of the characteristic proteins and signal pathways associated with the etiology of RRDCD and to provide guidance for diagnosis and treatment of RRDCD. In this study, vitreous humor samples were obtained from 16 RRDCD patients, 14 with RRD, 12 with idiopathic epiretinal macular membrane (IEMM), and 5 healthy controls from donated corpse eyes. Data-independent acquisition mass spectrometry and bioinformatics analysis were employed to identify differentially expressed proteins (DEPs). In the vitreous humor, 14,842 peptides were identified. Patients with RRDCD had 249 DEPs (93 upregulated and 156 downregulated), with 89 in patients with RRD and 61 in patients with IEMM. Enrichment analysis of the GO and Kyoto Encyclopedia of Genes and Genomes DEP databases indicated functional clusters related to inflammation and immunity, protein degradation and absorption, cell adhesion molecules (CAMs), the hedgehog signaling pathway, and lipid metabolism. Weighted gene co-expression network analysis showed that DEPs with positive co-expression of RRDCD participated in immune-related pathways led by the complement and coagulation cascade, whereas DEPs with negative co-expression of RRDCD participated in protein degradation and absorption, CAMs, and the hedgehog signaling pathway. In summary, our study provides important clues and the theoretical basis for exploring the pathogenesis, progression, and prognosis of ocular fundus disease.
Collapse
Affiliation(s)
- Shasha Luo
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Huiyan Xu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Lufei Yang
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuechun Gong
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Jinyan Shen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuan Chen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China. .,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Ribeiro M, McGrady NR, Baratta RO, Del Buono BJ, Schlumpf E, Calkins DJ. Intraocular Delivery of a Collagen Mimetic Peptide Repairs Retinal Ganglion Cell Axons in Chronic and Acute Injury Models. Int J Mol Sci 2022; 23:ijms23062911. [PMID: 35328332 PMCID: PMC8949359 DOI: 10.3390/ijms23062911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023] Open
Abstract
Vision loss through the degeneration of retinal ganglion cell (RGC) axons occurs in both chronic and acute conditions that target the optic nerve. These include glaucoma, in which sensitivity to intraocular pressure (IOP) causes early RGC axonal dysfunction, and optic nerve trauma, which causes rapid axon degeneration from the site of injury. In each case, degeneration is irreversible, necessitating new therapeutics that protect, repair, and regenerate RGC axons. Recently, we demonstrated the reparative capacity of using collagen mimetic peptides (CMPs) to heal fragmented collagen in the neuronal extracellular milieu. This was an important step in the development of neuronal-based therapies since neurodegeneration involves matrix metalloproteinase (MMP)-mediated remodeling of the collagen-rich environment in which neurons and their axons exist. We found that intraocular delivery of a CMP comprising single-strand fractions of triple helix human type I collagen prevented early RGC axon dysfunction in an inducible glaucoma model. Additionally, CMPs also promoted neurite outgrowth from dorsal root ganglia, challenged in vitro by partial digestion of collagen. Here, we compared the ability of a CMP sequence to protect RGC axons in both inducible glaucoma and optic nerve crush. A three-week +40% elevation in IOP caused a 67% degradation in anterograde transport to the superior colliculus, the primary retinal projection target in rodents. We found that a single intravitreal injection of CMP during the period of IOP elevation significantly reduced this degradation. The same CMP delivered shortly after optic nerve crush promoted significant axonal recovery during the two-week period following injury. Together, these findings support a novel protective and reparative role for the use of CMPs in both chronic and acute conditions affecting the survival of RGC axons in the optic projection to the brain.
Collapse
Affiliation(s)
- Marcio Ribeiro
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA; (M.R.); (N.R.M.)
| | - Nolan R. McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA; (M.R.); (N.R.M.)
| | - Robert O. Baratta
- Stuart Therapeutics, Inc., 411 SE Osceola St., Suite 203, Stuart, FL 34994, USA; (R.O.B.); (B.J.D.B.); (E.S.)
| | - Brian J. Del Buono
- Stuart Therapeutics, Inc., 411 SE Osceola St., Suite 203, Stuart, FL 34994, USA; (R.O.B.); (B.J.D.B.); (E.S.)
| | - Eric Schlumpf
- Stuart Therapeutics, Inc., 411 SE Osceola St., Suite 203, Stuart, FL 34994, USA; (R.O.B.); (B.J.D.B.); (E.S.)
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA; (M.R.); (N.R.M.)
- Correspondence: ; Tel.: +1-(615)-936-1424; Fax: +1-(615)-936-6410
| |
Collapse
|
11
|
Godinez A, Rajput R, Chitranshi N, Gupta V, Basavarajappa D, Sharma S, You Y, Pushpitha K, Dhiman K, Mirzaei M, Graham S, Gupta V. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell-cell interactions in the pathophysiology of neurological disease. Cell Mol Life Sci 2022; 79:172. [PMID: 35244780 PMCID: PMC8897380 DOI: 10.1007/s00018-022-04185-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/31/2023]
Abstract
Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.
Collapse
Affiliation(s)
- Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Rashi Rajput
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Samridhi Sharma
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
12
|
Auler N, Tonner H, Pfeiffer N, Grus FH. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. BIOLOGY 2021; 10:biology10121296. [PMID: 34943212 PMCID: PMC8698915 DOI: 10.3390/biology10121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Glaucoma is a chronic eye disease that is one of the leading causes of blindness worldwide. Currently, the only therapeutic option is to lower intraocular pressure. The onset of the disease is often delayed because patients do not notice visual impairment until very late, which is why glaucoma is also known as “the silent thief of sight”. Therefore, early detection and definition of specific markers, the so-called biomarkers, are immensely important. For the methodical implementation, high-throughput methods and omic-based methods came more and more into focus. Thus, interesting targets for possible biomarkers were already suggested by clinical research and basic research, respectively. This review article aims to join the findings of the two disciplines by collecting overlaps as well as differences in various clinical studies and to shed light on promising candidates concerning findings from basic research, facilitating conclusions on possible therapy options. Abstract Glaucoma represents a group of chronic neurodegenerative diseases, constituting the second leading cause of blindness worldwide. To date, chronically elevated intraocular pressure has been identified as the main risk factor and the only treatable symptom. However, there is increasing evidence in the recent literature that IOP-independent molecular mechanisms also play an important role in the progression of the disease. In recent years, it has become increasingly clear that glaucoma has an autoimmune component. The main focus nowadays is elucidating glaucoma pathogenesis, finding early diagnostic options and new therapeutic approaches. This review article summarizes the impact of different antibodies and proteins associated with glaucoma that can be detected for example by microarray and mass spectrometric analyzes, which (i) provide information about expression profiles and associated molecular signaling pathways, (ii) can possibly be used as a diagnostic tool in future and, (iii) can identify possible targets for therapeutic approaches.
Collapse
|
13
|
McGrady NR, Pasini S, Baratta RO, Del Buono BJ, Schlumpf E, Calkins DJ. Restoring the Extracellular Matrix: A Neuroprotective Role for Collagen Mimetic Peptides in Experimental Glaucoma. Front Pharmacol 2021; 12:764709. [PMID: 34795592 PMCID: PMC8592892 DOI: 10.3389/fphar.2021.764709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
Optic neuropathies are a major cause of visual disabilities worldwide, causing irreversible vision loss through the degeneration of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Chief among these is glaucoma, in which sensitivity to intraocular pressure (IOP) leads to RGC axon dysfunction followed by outright degeneration of the optic projection. Current treatments focus entirely on lowering IOP through topical hypotensive drugs, surgery to facilitate aqueous fluid outflow, or both. Despite this investment in time and resources, many patients continue to lose vision, underscoring the need for new therapeutics that target neurodegeneration directly. One element of progression in glaucoma involves matrix metalloproteinase (MMP) remodeling of the collagen-rich extracellular milieu of RGC axons as they exit the retina through the optic nerve head. Thus, we investigated the ability of collagen mimetic peptides (CMPs) representing various single strand fractions of triple helix human type I collagen to protect RGC axons in an inducible model of glaucoma. First, using dorsal root ganglia maintained in vitro on human type I collagen, we found that multiple CMPs significantly promote neurite outgrowth (+35%) compared to vehicle following MMP-induced fragmentation of the α1(I) and α2(I) chains. We then applied CMP to adult mouse eyes in vivo following microbead occlusion to elevate IOP and determined its influence on anterograde axon transport to the superior colliculus, the primary RGC projection target in rodents. In glaucoma models, sensitivity to IOP causes early degradation in axon function, including anterograde transport from retina to central brain targets. We found that CMP treatment rescued anterograde transport following a 3-week +50% elevation in IOP. These results suggest that CMPs generally may represent a novel therapeutic to supplement existing treatments or as a neuroprotective option for patients who do not respond to IOP-lowering regimens.
Collapse
Affiliation(s)
- Nolan R McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Silvia Pasini
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | | | - Eric Schlumpf
- Stuart Therapeutics, Inc., Stuart, FL, United States
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
14
|
Abbasi M, Gupta VK, Chitranshi N, Gupta V, Ranjbaran R, Rajput R, Pushpitha K, KB D, You Y, Salekdeh GH, Parton RG, Mirzaei M, Graham SL. Inner retinal injury in experimental glaucoma is prevented upon AAV mediated Shp2 silencing in a caveolin dependent manner. Am J Cancer Res 2021; 11:6154-6172. [PMID: 33995651 PMCID: PMC8120201 DOI: 10.7150/thno.55472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
SH2 domain containing tyrosine phosphatase 2 (Shp2; PTPN11) regulates several intracellular pathways downstream of multiple growth factor receptors. Our studies implicate that Shp2 interacts with Caveolin-1 (Cav-1) protein in retinal ganglion cells (RGCs) and negatively regulates BDNF/TrkB signaling. This study aimed to investigate the mechanisms underlying the protective effects of shp2 silencing in the RGCs in glaucomatous conditions. Methods: Shp2 was silenced in the Cav-1 deficient mice and the age matched wildtype littermates using adeno-associated viral (AAV) constructs. Shp2 expression modulation was performed in an acute and a chronic mouse model of experimental glaucoma. AAV2 expressing Shp2 eGFP-shRNA under a strong synthetic CAG promoter was administered intravitreally in the animals' eyes. The contralateral eye received AAV-eGFP-scramble-shRNA as control. Animals with Shp2 downregulation were subjected to either microbead injections or acute ocular hypertension experimental paradigm. Changes in inner retinal function were evaluated by measuring positive scotopic threshold response (pSTR) while structural and biochemical alterations were evaluated through H&E staining, western blotting and immunohistochemical analysis of the retinal tissues. Results: A greater loss of pSTR amplitudes was observed in the WT mice compared to Cav-1-/- retinas in both the models. Silencing of Shp2 phosphatase imparted protection against inner retinal function loss in chronic glaucoma model in WT mice. The functional rescue also translated to structural preservation of ganglion cell layer in the chronic glaucoma condition in WT mice which was not evident in Cav-1-/- mice retinas. Conclusions: This study indicates that protective effects of Shp2 ablation under chronic experimental glaucoma conditions are dependent on Cav-1 in the retina, suggesting in vivo interactions between the two proteins.
Collapse
|
15
|
Deng L, Gupta VK, Wu Y, Pushpitha K, Chitranshi N, Gupta VB, Fitzhenry MJ, Moghaddam MZ, Karl T, Salekdeh GH, Graham SL, Haynes PA, Mirzaei M. Mouse model of Alzheimer's disease demonstrates differential effects of early disease pathology on various brain regions. Proteomics 2021; 21:e2000213. [PMID: 33559908 DOI: 10.1002/pmic.202000213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
Abstract
Different parts of the brain are affected distinctively in various stages of the Alzheimer's disease (AD) pathogenesis. Identifying the biochemical changes in specific brain regions is key to comprehend the neuropathological mechanisms in early pre-symptomatic phases of AD. Quantitative proteomics profiling of four distinct areas of the brain of young APP/PS1 mouse model of AD was performed followed by biochemical pathway enrichment analysis. Findings revealed fundamental compositional and functional shifts even in the early stages of the disease. This novel study highlights unique proteome and biochemical pathway alterations in specific regions of the brain that underlie the early stages of AD pathology and will provide a framework for future longitudinal studies. The proteomics data were deposited into the ProteomeXchange Consortium via PRIDE with the identifier PXD019192.
Collapse
Affiliation(s)
- Liting Deng
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yunqi Wu
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Veer B Gupta
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Matthew J Fitzhenry
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, New South Wales, Australia
| | | | - Tim Karl
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Han S, Zhang D, Dong Q, Wang X, Wang L. Deficiency in Neuroserpin Exacerbates CoCl 2 Induced Hypoxic Injury in the Zebrafish Model by Increased Oxidative Stress. Front Pharmacol 2021; 12:632662. [PMID: 33737878 PMCID: PMC7960655 DOI: 10.3389/fphar.2021.632662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
Protective strategy against hypoxic-ischemic (H/I) induced injury has been intensively discussed. Neuroserpin, an inhibitor for tissue plasminogen activator (tPA), has been proved a vital neuroprotective agent in cerebral ischemia mouse model and oxygen-glucose deprivation and reoxygenation (OGD/R) cell model. Neuroserpin is a promising therapeutic hint for neonatal hypoxic-ischemia injury. Here, we established a neuroserpin deficient zebrafish to study its role in CoCl2 chemically induced hypoxic injury. CoCl2 exposure was beginning at the embryonic stage. Development defects, neuronal loss, and vascular malformation was assessed by imaging microscopy. Neuroserpin deficient zebrafish showed more development defects, neuronal loss and vascular malformation compared to wide-type. Apoptosis and oxidative stress were evaluated to further identify the possible mechanisms. These findings indicate that neuroserpin could protective against CoCl2 induced hypoxic injury by alleviating oxidative stress.
Collapse
Affiliation(s)
- Sha Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongyang Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Research Institute Fudan University Shanghai Cancer Center, Shanghai, China
| | - Liang Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Mirzaei M, Gupta VK, Chitranshi N, Deng L, Pushpitha K, Abbasi M, Chick JM, Rajput R, Wu Y, McKay MJ, Salekdeh GH, Gupta VB, Haynes PA, Graham SL. Retinal proteomics of experimental glaucoma model reveal intraocular pressure-induced mediators of neurodegenerative changes. J Cell Biochem 2020; 121:4931-4944. [PMID: 32692886 DOI: 10.1002/jcb.29822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Current evidence suggests that exposure to chronically induced intraocular pressure (IOP) leads to neurodegenerative changes in the inner retina. This study aimed to determine retinal proteomic alterations in a rat model of glaucoma and compared findings with human retinal proteomics changes in glaucoma reported previously. We developed an experimental glaucoma rat model by subjecting the rats to increased IOP (9.3 ± 0.1 vs 20.8 ± 1.6 mm Hg) by weekly microbead injections into the eye (8 weeks). The retinal tissues were harvested from control and glaucomatous eyes and protein expression changes analysed using a multiplexed quantitative proteomics approach (TMT-MS3). Immunofluorescence was performed for selected protein markers for data validation. Our study identified 4304 proteins in the rat retinas. Out of these, 139 proteins were downregulated (≤0.83) while the expression of 109 proteins was upregulated (≥1.2-fold change) under glaucoma conditions (P ≤ .05). Computational analysis revealed reduced expression of proteins associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, cytoskeleton, and actin filament organisation, along with increased expression of proteins in coagulation cascade, apoptosis, oxidative stress, and RNA processing. Further functional network analysis highlighted the differential modulation of nuclear receptor signalling, cellular survival, protein synthesis, transport, and cellular assembly pathways. Alterations in crystallin family, glutathione metabolism, and mitochondrial dysfunction associated proteins shared similarities between the animal model of glaucoma and the human disease condition. In contrast, the activation of the classical complement pathway and upregulation of cholesterol transport proteins were exclusive to human glaucoma. These findings provide insights into the neurodegenerative mechanisms that are specifically affected in the retina in response to chronically elevated IOP.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | | | - Kanishka Pushpitha
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Mojdeh Abbasi
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Rashi Rajput
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Yunqi Wu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| |
Collapse
|
18
|
Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, Basavarajappa D, Godinez A, Di Angelantonio S, Sachdev P, Salekdeh GH, Bouwman F, Graham S, Gupta V. Retinal changes in Alzheimer's disease- integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res 2020; 82:100899. [PMID: 32890742 DOI: 10.1016/j.preteyeres.2020.100899] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made. While several imaging, cognitive, CSF and blood-based biomarkers have been proposed for the early detection of AD; their sensitivity and specificity in the symptomatic stages is highly variable and it is difficult to justify their use in even earlier, pre-clinical stages of the disease. Research has identified potentially measurable functional, structural, metabolic and vascular changes in the retina during early stages of AD. Retina offers a distinctively accessible insight into brain pathology and current and developing ophthalmic technologies have provided us with the possibility of detecting and characterising subtle, disease-related changes. Recent human and animal model studies have further provided mechanistic insights into the biochemical pathways that are altered in the retina in disease, including amyloid and tau deposition. This information coupled with advances in molecular imaging has allowed attempts to monitor biochemical changes and protein aggregation pathology in the retina in AD. This review summarises the existing knowledge that informs our understanding of the impact of AD on the retina and highlights some of the gaps that need to be addressed. Future research will integrate molecular imaging innovation with functional and structural changes to enhance our knowledge of the AD pathophysiological mechanisms and establish the utility of monitoring retinal changes as a potential biomarker for AD.
Collapse
Affiliation(s)
- Veer B Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jurre den Haan
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Mehdi Mirzaei
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jeremiah Kh Lim
- Optometry and Vision Science, College of Nursing and Health Sciences, Bedford Park, South Australia, 5042, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Angela Godinez
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Perminder Sachdev
- Centre for Healthy Brain and Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Femke Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia.
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
19
|
Abbasi M, Gupta VK, Chitranshi N, Gupta VB, Mirzaei M, Dheer Y, Garthwaite L, Zaw T, Parton RG, You Y, Graham SL. Caveolin-1 Ablation Imparts Partial Protection Against Inner Retinal Injury in Experimental Glaucoma and Reduces Apoptotic Activation. Mol Neurobiol 2020; 57:3759-3784. [PMID: 32578008 DOI: 10.1007/s12035-020-01948-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Retinal ganglion cell degeneration is a characteristic feature of glaucoma, and accordingly, protection of these cells constitutes a major therapeutic objective in the disease. Here, we demonstrate the key influence of caveolin (Cav) in regulating the inner retinal homeostasis in two models of experimentally elevated intraocular pressure (IOP). Two groups of Cav-1-/- and wild-type mice were used in the study. Animals were subjected to experimentally induced chronic and acutely elevated IOP and any changes in their retinal function were assessed by positive scotopic threshold response recordings. TUNEL and cleaved caspase-3 assays were performed to evaluate apoptotic changes in the retina while Brn3a immunostaining was used as a marker to assess and quantify ganglion cell layer (GCL) changes. H&E staining was carried out on retinal sections to evaluate histological differences in retinal laminar structure. Cav-1 ablation partially protected the inner retinal function in both chronic and acute models of elevated IOP. The protective effects of Cav-1 loss were also evident histologically by reduced loss of GCL density in both models. The phenotypic protection in Cav-1-/- glaucoma mice paralleled with increased TrkB phosphorylation and reduced endoplasmic reticulum stress markers and apoptotic activation in the inner retinas. This study corroborated previous findings of enhanced Shp2 phosphorylation in a chronic glaucoma model and established a novel role of Cav-1 in mediating activation of this phosphatase in the inner retina in vivo. Collectively, these findings highlight the critical involvement of Cav-1 regulatory mechanisms in ganglion cells in response to increased IOP, implicating Cav-1 as a potential therapeutic target in glaucoma.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Department of Molecular Science, Macquarie University, North Ryde, NSW, 2109, Australia.,Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Linda Garthwaite
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Thiri Zaw
- Department of Molecular Science, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
20
|
Deng L, Haynes PA, Wu Y, Amirkhani A, Kamath KS, Wu JX, Pushpitha K, Gupta V, Graham S, Gupta VK, Mirzaei M. Amyloid-beta peptide neurotoxicity in human neuronal cells is associated with modulation of insulin-like growth factor transport, lysosomal machinery and extracellular matrix receptor interactions. Neural Regen Res 2020; 15:2131-2142. [PMID: 32394972 PMCID: PMC7716038 DOI: 10.4103/1673-5374.282261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular deposits of the amyloid-beta peptide (Aβ) are known as the main pathological hallmark of Alzheimer’s disease. In Alzheimer’s disease, neurons are injured and die throughout the brain, a process in which Aβ neurotoxicity is considered to play an important role. However, the molecular mechanisms underlying Aβ toxicity that lead to neurodegeneration are not clearly established. Here we have elucidated the molecular pathways and networks which are impacted by Aβ in neurons using SH-SY5Y human neuroblastoma cells as a model. These cells were treated with Aβ1–42 peptides to study changes in biochemical networks using tandem mass tag labeled quantitative proteomic technique followed by computational analysis of the data. The molecular impacts of Aβ on cells were evident in a time- and dose-dependent manner, albeit the duration of treatment induced greater differential changes in cellular proteome compared to the effects of concentration. Aβ induced early changes in proteins associated with lysosomes, collagen chain trimerization and extracellular matrix receptor interaction, complement and coagulation cascade, oxidative stress induced senescence, ribosome biogenesis, regulation of insulin-like growth factor transport and uptake by insulin-like growth factor-binding protein. These novel findings provide molecular insights on the effects of Aβ on neurons, with implications for better understanding the impacts of Aβ on early neurodegeneration in Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Liting Deng
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia
| | | | - Jemma X Wu
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Stuart Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Faculty of Science and Engineering; Australian Proteome Analysis Facility (APAF); Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Bonnemaijer PWM, Leeuwen EMV, Iglesias AI, Gharahkhani P, Vitart V, Khawaja AP, Simcoe M, Höhn R, Cree AJ, Igo RP, Gerhold-Ay A, Nickels S, Wilson JF, Hayward C, Boutin TS, Polašek O, Aung T, Khor CC, Amin N, Lotery AJ, Wiggs JL, Cheng CY, Hysi PG, Hammond CJ, Thiadens AAHJ, MacGregor S, Klaver CCW, Duijn CMV. Multi-trait genome-wide association study identifies new loci associated with optic disc parameters. Commun Biol 2019; 2:435. [PMID: 31798171 PMCID: PMC6881308 DOI: 10.1038/s42003-019-0634-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
A new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH.
Collapse
Affiliation(s)
- Pieter W. M. Bonnemaijer
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Elisabeth M. van Leeuwen
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Mark Simcoe
- Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - René Höhn
- Department of Ophthalmology, Inselspital, University Hospital Bern, University of Bern, Bern, Germany
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Angela J. Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rob P. Igo
- Department of Ophthalmology, Harvard Medical School, Boston, MA USA
| | - Aslihan Gerhold-Ay
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Mainz, Germany
| | - Stefan Nickels
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - James F. Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, The Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Thibaud S. Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ozren Polašek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pirro G. Hysi
- Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | | | - Alberta A. H. J. Thiadens
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud Medical Center, Nijmegen, The Netherlands
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Nuffield Department of Public Health, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Peng H, Hulleman JD. Prospective Application of Activity-Based Proteomic Profiling in Vision Research-Potential Unique Insights into Ocular Protease Biology and Pathology. Int J Mol Sci 2019; 20:ijms20163855. [PMID: 31398819 PMCID: PMC6720450 DOI: 10.3390/ijms20163855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Activity-based proteomic profiling (ABPP) is a powerful tool to specifically target and measure the activity of a family of enzymes with the same function and reactivity, which provides a significant advantage over conventional proteomic strategies that simply provide abundance information. A number of inherited and age-related eye diseases are caused by polymorphisms/mutations or abnormal expression of proteases including serine proteases, cysteine proteases, and matrix metalloproteinases, amongst others. However, neither conventional genomic, transcriptomic, nor traditional proteomic profiling directly interrogate protease activities. Thus, leveraging ABPP to probe the activity of these enzyme classes as they relate to normal function and pathophysiology of the eye represents a unique potential opportunity for disease interrogation and possibly intervention.
Collapse
Affiliation(s)
- Hui Peng
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Chitranshi N, Dheer Y, Kumar S, Graham SL, Gupta V. Molecular docking, dynamics, and pharmacology studies on bexarotene as an agonist of ligand-activated transcription factors, retinoid X receptors. J Cell Biochem 2019; 120:11745-11760. [PMID: 30746761 DOI: 10.1002/jcb.28455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Retinoid X receptors (RXRs) belong to the nuclear receptor superfamily, and upon ligand activation, these receptors control gene transcription via either homodimerization with themselves or heterodimerization with the partner-nuclear receptor. The protective effects of RXRs and RXR agonists have been reported in several neurodegenerative diseases, including in the retina. This study was aimed to prioritize compounds from natural and synthetic origin retinoids as potential RXR agonists by molecular docking and molecular dynamic simulation strategies. The docking studies indicated bexarotene as a lead compound that can activate various RXR receptor isoforms (α, β, and γ) and has a strong binding affinity to the receptor protein than retinoic acid, which is known as a natural endogenous RXR agonist. Dynamic simulation studies confirmed that the hydrogen bonding and hydrophobic interactions were highly stable in all the three isoforms of the RXR-bexarotene complex. To further validate the significance of the RXR receptor in neurons, in vitro pharmacological treatment of neuronal SH-SY5Y cells with bexarotene was performed. In vitro data from SH-SY5Y cells confirmed that bexarotene activated RXR-simulated neurite outgrowth significantly. We conclude that bexarotene could be potentially used as an exogenous activator of RXRs and emerge as a good drug target for several neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
| | - Sanjay Kumar
- Bioinformatics Centre, Biotech Park, Jankipuram, Lucknow, Uttar Pradesh, India
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
- Save Sight Institute, Sydney University, Sydney, New South Wales, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales
| |
Collapse
|
24
|
Deng L, Pushpitha K, Joseph C, Gupta V, Rajput R, Chitranshi N, Dheer Y, Amirkhani A, Kamath K, Pascovici D, Wu JX, Salekdeh GH, Haynes PA, Graham SL, Gupta VK, Mirzaei M. Amyloid β Induces Early Changes in the Ribosomal Machinery, Cytoskeletal Organization and Oxidative Phosphorylation in Retinal Photoreceptor Cells. Front Mol Neurosci 2019; 12:24. [PMID: 30853886 PMCID: PMC6395395 DOI: 10.3389/fnmol.2019.00024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/21/2019] [Indexed: 01/20/2023] Open
Abstract
Amyloid β (Aβ) accumulation and its aggregation is characteristic molecular feature of the development of Alzheimer's disease (AD). More recently, Aβ has been suggested to be associated with retinal pathology associated with AD, glaucoma and drusen deposits in age related macular degeneration (AMD). In this study, we investigated the proteins and biochemical networks that are affected by Aβ in the 661 W photoreceptor cells in culture. Time and dose dependent effects of Aβ on the photoreceptor cells were determined utilizing tandem mass tag (TMT) labeling-based quantitative mass-spectrometric approach. Bioinformatic analysis of the data revealed concentration and time dependent effects of the Aβ peptide stimulation on various key biochemical pathways that might be involved in mediating the toxicity effects of the peptide. We identified increased Tau phosphorylation, GSK3β dysregulation and reduced cell viability in cells treated with Aβ in a dose and time dependent manner. This study has delineated for the first-time molecular networks in photoreceptor cells that are impacted early upon Aβ treatment and contrasted the findings with a longer-term treatment effect. Proteins associated with ribosomal machinery homeostasis, mitochondrial function and cytoskeletal organization were affected in the initial stages of Aβ exposure, which may provide key insights into AD effects on the photoreceptors and specific molecular changes induced by Aβ peptide.
Collapse
Affiliation(s)
- Liting Deng
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chitra Joseph
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Rashi Rajput
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ardeshir Amirkhani
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia
| | - Karthik Kamath
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia
| | - Dana Pascovici
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia
| | - Jemma X. Wu
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Paul A. Haynes
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Stuart L. Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K. Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
25
|
Mirzaei M, Pushpitha K, Deng L, Chitranshi N, Gupta V, Rajput R, Mangani AB, Dheer Y, Godinez A, McKay MJ, Kamath K, Pascovici D, Wu JX, Salekdeh GH, Karl T, Haynes PA, Graham SL, Gupta VK. Upregulation of Proteolytic Pathways and Altered Protein Biosynthesis Underlie Retinal Pathology in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2019; 56:6017-6034. [PMID: 30707393 DOI: 10.1007/s12035-019-1479-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Increased amyloid β (Aβ) aggregation is a hallmark feature of Alzheimer's disease (AD) pathology. The APP/PS1 mouse model of AD exhibits accumulation of Aβ in the retina and demonstrates reduced retinal function and other degenerative changes. The overall molecular effects of AD pathology on the retina remain undetermined. Using a proteomics approach, this study assessed the molecular effects of Aβ accumulation and progression of AD pathology on the retina. Retinal tissues from younger (2.5 months) and older 8-month APP/PS1 mice were analysed for protein expression changes. A multiplexed proteomics approach using chemical isobaric tandem mass tags was applied followed by functional and protein-protein interaction analyses using Ingenuity pathway (IPA) and STRING computational tools. We identified approximately 2000 proteins each in the younger (upregulated 50; downregulated 36) and older set of APP/PS1 (upregulated 85; downregulated 79) mice retinas. Amyloid precursor protein (APP) was consistently upregulated two to threefold in both younger and older retinas (p < 0.0001). Mass spectrometry data further revealed that older APP/PS1 mice retinas had elevated levels of proteolytic enzymes cathepsin D, presenilin 2 and nicastrin that are associated with APP processing. Increased levels of proteasomal proteins Psma5, Psmd3 and Psmb2 were also observed in the older AD retinas. In contrast to the younger animals, significant downregulation of protein synthesis and elongation associated proteins such as Eef1a1, Rpl35a, Mrpl2 and Eef1e1 (p < 0.04) was identified in the older mice retinas. This study reports for the first time that not only old but also young APP/PS1 animals demonstrate increased amyloid protein levels in their retinas. Quantitative proteomics reveals new molecular insights which may represent a cellular response to clear amyloid build-up. Further, downregulation of ribosomal proteins involved in protein biosynthesis was observed which might be considered a toxicity effect.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia. .,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia. .,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia.
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Liting Deng
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Rashi Rajput
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Abu Bakr Mangani
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Angela Godinez
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Karthik Kamath
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Dana Pascovici
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Jemma X Wu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Dheer Y, Chitranshi N, Gupta V, Sharma S, Pushpitha K, Abbasi M, Mirzaei M, You Y, Graham SL, Gupta V. Retinoid x receptor modulation protects against ER stress response and rescues glaucoma phenotypes in adult mice. Exp Neurol 2019; 314:111-125. [PMID: 30703361 DOI: 10.1016/j.expneurol.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/23/2018] [Accepted: 01/22/2019] [Indexed: 11/26/2022]
Abstract
Retinoid X receptors (RXRs) play an important role in transcription, are involved in numerous cellular networks from cell proliferation to lipid metabolism and are essential for normal eye development. RXRs form homo or heterodimers with other nuclear receptors, bind to DNA response elements and regulate several biological processes including neurogenesis. Mounting evidence suggests that RXR activation by selective RXR modulators (sRXRms) may be neuroprotective in the central nervous system. However, their potential neuroprotective role in the retina and specifically in glaucoma remains unexplored. This study investigated changes in RXR expression in the human and mouse retina under glaucomatous stress conditions and investigated the effect of RXR modulation on the RGCs using pharmacological approaches. RXR protein levels in retina were downregulated in both human glaucoma and experimental RGC injury models while RXR agonist, bexarotene treatment resulted in upregulation of RXR expression particularly in the inner retinal layers. Retinal electrophysiological recordings and histological analysis indicated that inner retinal function and retinal laminar structure were preserved upon treatment with bexarotene. These protective effects were associated with downregulation of ER stress marker response upon bexarotene treatment under glaucoma conditions. Overall, retinal RXR modulation by bexarotene significantly protected RGCs in vivo in both acute and chronic glaucoma models.
Collapse
Affiliation(s)
- Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, Australia
| | - Samridhi Sharma
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Department of Molecular Science, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| |
Collapse
|
27
|
Chitranshi N, Dheer Y, Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL, Gupta V. PTPN11 induces endoplasmic stress and apoptosis in SH-SY5Y cells. Neuroscience 2017; 364:175-189. [PMID: 28947394 DOI: 10.1016/j.neuroscience.2017.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022]
Abstract
PTPN11 is associated with regulation of growth factor signaling pathways in neuronal cells. Using SH-SY5Y neuroblastoma cells, we showed that adeno-associated virus (AAV)-mediated PTPN11 upregulation was associated with TrkB antagonism, reduced neuritogenesis and enhanced endoplasmic reticulum (ER) stress response leading to apoptotic changes. Genetic knock-down of PTPN11 on the other hand leads to increased TrkB phosphorylation in SH-SY5Y cells. ER stress response induced by PTPN11 upregulation was alleviated pharmacologically by a TrkB agonist. Conversely the enhanced ER stress response induced by TrkB receptor antagonism was ameliorated by PTPN11 suppression, providing evidence of cross-talk of PTPN11 effects with TrkB actions. BDNF treatment of neuronal cells with PTPN11 upregulation also resulted in reduced expression of ER stress protein markers. This study provides evidence of molecular interactions between PTPN11 and the TrkB receptor in SH-SY5Y cells. The results reinforce the role played by PTPN11 in regulating neurotrophin protective signaling in neuronal cells and highlight that PTPN11 dysregulation promotes apoptotic activation. Based on these findings we suggest that blocking PTPN11 could have potential beneficial effects to limit the progression of neuronal loss in neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Veer Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Roger Chung
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| |
Collapse
|