1
|
Tort ABL, Laplagne DA, Draguhn A, Gonzalez J. Global coordination of brain activity by the breathing cycle. Nat Rev Neurosci 2025:10.1038/s41583-025-00920-7. [PMID: 40204908 DOI: 10.1038/s41583-025-00920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Neuronal activities that synchronize with the breathing rhythm have been found in humans and a host of mammalian species, not only in brain areas closely related to respiratory control or olfactory coding but also in areas linked to emotional and higher cognitive functions. In parallel, evidence is mounting for modulations of perception and action by the breathing cycle. In this Review, we discuss the extent to which brain activity locks to breathing across areas, levels of organization and brain states, and the physiological origins of this global synchrony. We describe how waves of sensory activity evoked by nasal airflow spread through brain circuits, synchronizing neuronal populations to the breathing cycle and modulating faster oscillations, cell assembly formation and cross-area communication, thereby providing a mechanistic link from breathing to neural coding, emotion and cognition. We argue that, through evolution, the breathing rhythm has come to shape network functions across species.
Collapse
Affiliation(s)
- Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Diego A Laplagne
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Joaquin Gonzalez
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Neuroscience Institute and Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Levichkina E, Grayden DB, Petrou S, Cook MJ, Vidyasagar TR. Sleep links hippocampal propensity for epileptiform activity to its viscerosensory inputs. Front Neurosci 2025; 19:1559529. [PMID: 40182148 PMCID: PMC11965934 DOI: 10.3389/fnins.2025.1559529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
The development of a seizure relies on two factors. One is the existence of an overexcitable neuronal network and the other is a trigger that switches normal activity of that network into a paroxysmal state. While mechanisms of local overexcitation have been the focus of many studies, the process of triggering remains poorly understood. We suggest that, apart from the known exteroceptive sources of reflex epilepsy such as visual, auditory or olfactory signals, there is a range of interoceptive triggers, which are relevant for seizure development in Temporal Lobe Epilepsy (TLE). The hypothesis proposed here aims to explain the prevalence of epileptic activity in sleep and in drowsiness states and to provide a detailed mechanism of seizures triggered by interoceptive signals.
Collapse
Affiliation(s)
- Ekaterina Levichkina
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - David B. Grayden
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- Graeme Clark Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Mark J. Cook
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- Graeme Clark Institute, The University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Trichur R. Vidyasagar
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
- Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Ghibaudo V, Juventin M, Buonviso N, Peter-Derex L. The timing of sleep spindles is modulated by the respiratory cycle in humans. Clin Neurophysiol 2024; 166:252-261. [PMID: 39030100 DOI: 10.1016/j.clinph.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Coupling of sleep spindles with cortical slow waves and hippocampus sharp-waves ripples is crucial for sleep-related memory consolidation. Recent literature evidenced that nasal respiration modulates neural activity in large-scale brain networks. In rodents, this respiratory drive strongly varies according to vigilance states. Whether sleep oscillations are also respiration-modulated in humans remains open. In this work, we investigated the influence of breathing on sleep spindles during non-rapid-eye-movement sleep in humans. METHODS Full night polysomnography of twenty healthy participants were analysed. Spindles and slow waves were automatically detected during N2 and N3 stages. Spindle-related sigma power as well as spindle and slow wave events were analysed according to the respiratory phase. RESULTS We found a significant coupling between both slow and fast spindles and the respiration cycle, with enhanced sigma activity and occurrence probability of spindles during the middle part of the expiration phase. A different coupling was observed for slow waves negative peaks which were rather distributed around the two respiration phase transitions. CONCLUSION Our findings suggest that breathing cycle influences the dynamics of brain activity during non-rapid-eye-movement sleep. SIGNIFICANCE This coupling may enable sleep spindles to synchronize with other sleep oscillations and facilitate information transfer between distributed brain networks.
Collapse
Affiliation(s)
- Valentin Ghibaudo
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Maxime Juventin
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Laure Peter-Derex
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France; Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon 1 University, Lyon, France.
| |
Collapse
|
4
|
Shahsavar P, Ghazvineh S, Raoufy MR. From nasal respiration to brain dynamic. Rev Neurosci 2024; 35:639-650. [PMID: 38579456 DOI: 10.1515/revneuro-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
While breathing is a vital, involuntary physiological function, the mode of respiration, particularly nasal breathing, exerts a profound influence on brain activity and cognitive processes. This review synthesizes existing research on the interactions between nasal respiration and the entrainment of oscillations across brain regions involved in cognition. The rhythmic activation of olfactory sensory neurons during nasal respiration is linked to oscillations in widespread brain regions, including the prefrontal cortex, entorhinal cortex, hippocampus, amygdala, and parietal cortex, as well as the piriform cortex. The phase-locking of neural oscillations to the respiratory cycle, through nasal breathing, enhances brain inter-regional communication and is associated with cognitive abilities like memory. Understanding the nasal breathing impact on brain networks offers opportunities to explore novel methods for targeting the olfactory pathway as a means to enhance emotional and cognitive functions.
Collapse
Affiliation(s)
- Payam Shahsavar
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
- Faculty of Medical Sciences, 41616 Institute for Brain Sciences and Cognition, Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
5
|
Kristensen SS, Jörntell H. Local field potential sharp waves with diversified impact on cortical neuronal encoding of haptic input. Sci Rep 2024; 14:15243. [PMID: 38956102 PMCID: PMC11219916 DOI: 10.1038/s41598-024-65200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Cortical sensory processing is greatly impacted by internally generated activity. But controlling for that activity is difficult since the thalamocortical network is a high-dimensional system with rapid state changes. Therefore, to unwind the cortical computational architecture there is a need for physiological 'landmarks' that can be used as frames of reference for computational state. Here we use a waveshape transform method to identify conspicuous local field potential sharp waves (LFP-SPWs) in the somatosensory cortex (S1). LFP-SPW events triggered short-lasting but massive neuronal activation in all recorded neurons with a subset of neurons initiating their activation up to 20 ms before the LFP-SPW onset. In contrast, LFP-SPWs differentially impacted the neuronal spike responses to ensuing tactile inputs, depressing the tactile responses in some neurons and enhancing them in others. When LFP-SPWs coactivated with more distant cortical surface (ECoG)-SPWs, suggesting an involvement of these SPWs in global cortical signaling, the impact of the LFP-SPW on the neuronal tactile response could change substantially, including inverting its impact to the opposite. These cortical SPWs shared many signal fingerprint characteristics as reported for hippocampal SPWs and may be a biomarker for a particular type of state change that is possibly shared byboth hippocampus and neocortex.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Dasgupta D, Schneider-Luftman D, Schaefer AT, Harris JJ. Wireless monitoring of respiration with EEG reveals relationships between respiration, behavior, and brain activity in freely moving mice. J Neurophysiol 2024; 132:290-307. [PMID: 38810259 PMCID: PMC11383384 DOI: 10.1152/jn.00330.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Active sampling in the olfactory domain is a fundamental aspect of mouse behavior, and there is increasing evidence that respiration-entrained neural activity outside of the olfactory system sets an important global brain rhythm. It is therefore crucial to accurately measure breathing during natural behaviors. We develop a new approach to do this in freely moving animals, by implanting a telemetry-based pressure sensor into the right jugular vein, which allows for wireless monitoring of thoracic pressure. After verifying this technique against standard head-fixed respiration measurements, we combined it with EEG and EMG recording and used evolving partial coherence analysis to investigate the relationship between respiration and brain activity across a range of experiments in which the mice could move freely. During voluntary exploration of odors and objects, we found that the association between respiration and cortical activity in the delta and theta frequency range decreased, whereas the association between respiration and cortical activity in the alpha range increased. During sleep, however, the presentation of an odor was able to cause a transient increase in sniffing without changing dominant sleep rhythms (delta and theta) in the cortex. Our data align with the emerging idea that the respiration rhythm could act as a synchronizing scaffold for specific brain rhythms during wakefulness and exploration, but suggest that respiratory changes are less able to impact brain activity during sleep. Combining wireless respiration monitoring with different types of brain recording across a variety of behaviors will further increase our understanding of the important links between active sampling, passive respiration, and neural activity.NEW & NOTEWORTHY Animals can alter their respiration rate to actively sample their environment, and increasing evidence suggests that neurons across the brain align their firing to this changing rhythm. We developed a new approach to measure sniffing in freely moving mice while simultaneously recording brain activity, and uncovered how specific cortical rhythms changed their coherence with respiration rhythm during natural behaviors and across arousal states.
Collapse
Affiliation(s)
- Debanjan Dasgupta
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Neural Circuit Dynamics Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Deborah Schneider-Luftman
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Julia J Harris
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, United Kingdom
| |
Collapse
|
7
|
Santhana Gopalan PR, Xu W, Waselius T, Wikgren J, Penttonen M, Nokia MS. Cardiorespiratory rhythm-contingent trace eyeblink conditioning in elderly adults. J Neurophysiol 2024; 131:797-806. [PMID: 38533969 DOI: 10.1152/jn.00356.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Learning outcome is modified by the degree to which the subject responds and pays attention to specific stimuli. Our recent research suggests that presenting stimuli in contingency with a specific phase of the cardiorespiratory rhythm might expedite learning. Specifically, expiration-diastole (EXP-DIA) is beneficial for learning trace eyeblink conditioning (TEBC) compared with inspiration-systole (INS-SYS) in healthy young adults. The aim of this study was to investigate whether the same holds true in healthy elderly adults (n = 50, aged >70 yr). Participants were instructed to watch a silent nature film while TEBC trials were presented at either INS-SYS or EXP-DIA (separate groups). Learned responses were determined as eyeblinks occurring after the tone conditioned stimulus (CS), immediately preceding the air puff unconditioned stimulus (US). Participants were classified as learners if they made at least five conditioned responses (CRs). Brain responses to the stimuli were measured by electroencephalogram (EEG). Memory for the film and awareness of the CS-US contingency were evaluated with a questionnaire. As a result, participants showed robust brain responses to the CS, acquired CRs, and reported awareness of the CS-US relationship to a variable degree. There was no difference between the INS-SYS and EXP-DIA groups in any of the above. However, when only participants who learned were considered, those trained at EXP-DIA (n = 11) made more CRs than those trained at INS-SYS (n = 13). Thus, learned performance could be facilitated in those elderly who learned. However, training at a specific phase of cardiorespiratory rhythm did not increase the proportion of participants who learned.NEW & NOTEWORTHY We trained healthy elderly individuals in trace eyeblink conditioning, either at inspiration-systole or at expiration-diastole. Those who learned exhibited more conditioned responses when trained at expiration-diastole rather than inspiration-systole. However, there was no difference between the experimental groups in the proportion of individuals who learned or did not learn.
Collapse
Affiliation(s)
| | - Weiyong Xu
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Jan Wikgren
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| | - Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain ResearchUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
8
|
Nakamura NH, Oku Y, Fukunaga M. "Brain-breath" interactions: respiration-timing-dependent impact on functional brain networks and beyond. Rev Neurosci 2024; 35:165-182. [PMID: 37651646 DOI: 10.1515/revneuro-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023]
Abstract
Breathing is a natural daily action that one cannot do without, and it sensitively and intensely changes under various situations. What if this essential act of breathing can impact our overall well-being? Recent studies have demonstrated that breathing oscillations couple with higher brain functions, i.e., perception, motor actions, and cognition. Moreover, the timing of breathing, a phase transition from exhalation to inhalation, modulates specific cortical activity and accuracy in cognitive tasks. To determine possible respiratory roles in attentional and memory processes and functional neural networks, we discussed how breathing interacts with the brain that are measured by electrophysiology and functional neuroimaging: (i) respiration-dependent modulation of mental health and cognition; (ii) respiratory rhythm generation and respiratory pontomedullary networks in the brainstem; (iii) respiration-dependent effects on specific brainstem regions and functional neural networks (e.g., glutamatergic PreBötzinger complex neurons, GABAergic parafacial neurons, adrenergic C1 neurons, parabrachial nucleus, locus coeruleus, temporoparietal junction, default-mode network, ventral attention network, and cingulo-opercular salience network); and (iv) a potential application of breathing manipulation in mental health care. These outlines and considerations of "brain-breath" interactions lead to a better understanding of the interoceptive and cognitive mechanisms that underlie brain-body interactions in health conditions and in stress-related and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute of Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
9
|
Schreiner T, Petzka M, Staudigl T, Staresina BP. Respiration modulates sleep oscillations and memory reactivation in humans. Nat Commun 2023; 14:8351. [PMID: 38110418 PMCID: PMC10728072 DOI: 10.1038/s41467-023-43450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
The beneficial effect of sleep on memory consolidation relies on the precise interplay of slow oscillations and spindles. However, whether these rhythms are orchestrated by an underlying pacemaker has remained elusive. Here, we tested the relationship between respiration, which has been shown to impact brain rhythms and cognition during wake, sleep-related oscillations and memory reactivation in humans. We re-analysed an existing dataset, where scalp electroencephalography and respiration were recorded throughout an experiment in which participants (N = 20) acquired associative memories before taking a nap. Our results reveal that respiration modulates the emergence of sleep oscillations. Specifically, slow oscillations, spindles as well as their interplay (i.e., slow-oscillation_spindle complexes) systematically increase towards inhalation peaks. Moreover, the strength of respiration - slow-oscillation_spindle coupling is linked to the extent of memory reactivation (i.e., classifier evidence in favour of the previously learned stimulus category) during slow-oscillation_spindles. Our results identify a clear association between respiration and memory consolidation in humans and highlight the role of brain-body interactions during sleep.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany.
| | - Marit Petzka
- Max Planck Institute for Human Development, Berlin, Germany
- Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Kleinfeld D, Deschênes M, Economo MN, Elbaz M, Golomb D, Liao SM, O'Connor DH, Wang F. Low- and high-level coordination of orofacial motor actions. Curr Opin Neurobiol 2023; 83:102784. [PMID: 37757586 PMCID: PMC11034851 DOI: 10.1016/j.conb.2023.102784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Orofacial motor actions are movements that, in rodents, involve whisking of the vibrissa, deflection of the nose, licking and lapping with the tongue, and consumption through chewing. These actions, along with bobbing and turning of the head, coordinate to subserve exploration while not conflicting with life-supporting actions such as breathing and swallowing. Orofacial and head movements are comprised of two additive components: a rhythm that can be entrained by the breathing oscillator and a broadband component that directs the actuator to the region of interest. We focus on coordinating the rhythmic component of actions into a behavior. We hypothesize that the precise timing of each constituent action is continually adjusted through the merging of low-level oscillator input with sensory-derived, high-level rhythmic feedback. Supporting evidence is discussed.
Collapse
Affiliation(s)
- David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City, G1J 2R3 Canada
| | - Michael N Economo
- Department of Bioengineering, Boston University, Boston, MA 02215, USA
| | - Michaël Elbaz
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - David Golomb
- Department of Physiology and Cell Biology, Ben Gurion University, Be'er-Sheba 8410501, Israel; Department of Physics, Ben Gurion University, Be'er-Sheba 8410501, Israel
| | - Song-Mao Liao
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Daniel H O'Connor
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Zynval Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fan Wang
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Juventin M, Zbili M, Fourcaud-Trocmé N, Garcia S, Buonviso N, Amat C. Respiratory rhythm modulates membrane potential and spiking of nonolfactory neurons. J Neurophysiol 2023; 130:1552-1566. [PMID: 37964739 DOI: 10.1152/jn.00487.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
In recent years, several studies have shown a respiratory drive of the local field potential (LFP) in numerous brain areas so that the respiratory rhythm could be considered as a master clock promoting communication between distant brain locations. However, outside of the olfactory system, it remains unknown whether the respiratory rhythm could shape membrane potential (MP) oscillations. To fill this gap, we co-recorded MP and LFP activities in different nonolfactory brain areas, medial prefrontal cortex (mPFC), primary somatosensory cortex (S1), primary visual cortex (V1), and hippocampus (HPC), in urethane-anesthetized rats. Using respiratory cycle-by-cycle analysis, we observed that respiration could modulate both MP and spiking discharges in all recorded areas during episodes that we called respiration-related oscillations (RRo). Further quantifications revealed that RRo episodes were transient in most neurons (5 consecutive respiratory cycles in average). RRo development in MP was largely correlated with the presence of respiratory modulation in the LFP. By showing that the respiratory rhythm influenced brain activities deep to the MP of nonolfactory neurons, our data support the idea that respiratory rhythm could mediate long-range communication between brain areas.NEW & NOTEWORTHY In this study, we evidenced strong respiratory-driven oscillations of neuronal membrane potential and spiking discharge in various nonolfactory areas of the mammal brain. These oscillations were found in the medial prefrontal cortex, primary somatosensory cortex, primary visual cortex, and hippocampus. These findings support the idea that respiratory rhythm could be used as a common clock to set the dynamics of large-scale neuronal networks on the same slow rhythm.
Collapse
Affiliation(s)
- Maxime Juventin
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Mickael Zbili
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Clermont-Ferrand, France
| | - Nicolas Fourcaud-Trocmé
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Samuel Garcia
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Nathalie Buonviso
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Corine Amat
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| |
Collapse
|
12
|
Nokia MS, Waselius T, Penttonen M. CA3-CA1 long-term potentiation occurs regardless of respiration and cardiac cycle phases in urethane-anesthetized rats. Hippocampus 2023; 33:1228-1232. [PMID: 37221699 DOI: 10.1002/hipo.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Breathing and heartbeat synchronize to each other and to brain function and affect cognition in humans. However, it is not clear how cardiorespiratory rhythms modulate such basic processes as synaptic plasticity thought to underlie learning. Thus, we studied if respiration and cardiac cycle phases at burst stimulation onset affect hippocampal long-term potentiation (LTP) in the CA3-CA1 synapse in urethane-anesthetized adult male Sprague-Dawley rats. In a between-subjects design, we timed burst stimulation of the ventral hippocampal commissure (vHC) to systole or diastole either during expiration or inspiration and recorded responses throughout the hippocampus with a linear probe. As classical conditioning in humans seems to be most efficient at expiration-diastole, we also expected LTP to be most efficient if burst stimulation was targeted to expiration-diastole. However, LTP was induced equally in all four groups and respiration and cardiac cycle phase did not modulate CA1 responses to vHC stimulation overall. This could be perhaps because we bypassed all natural routes of external influences on the CA1 by directly stimulating the vHC. In the future, the effect of cardiorespiratory rhythms on synaptic plasticity could also be studied in awake state and in other parts of the hippocampal tri-synaptic loop.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| | - Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
13
|
Nakamura NH, Furue H, Kobayashi K, Oku Y. Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding. Nat Commun 2023; 14:4391. [PMID: 37500646 PMCID: PMC10374532 DOI: 10.1038/s41467-023-40139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
During offline brain states, such as sleep and memory consolidation, respiration coordinates hippocampal activity. However, the role of breathing during online memory traces remains unclear. Here, we show that respiration can be recruited during online memory encoding. Optogenetic manipulation was used to control activation of the primary inspiratory rhythm generator PreBötzinger complex (PreBötC) in transgenic mice. When intermittent PreBötC-induced apnea covered the object exploration time during encoding, novel object detection was impaired. Moreover, the mice did not exhibit freezing behavior during presentation of fear-conditioned stimuli (CS+) when PreBötC-induced apnea occurred at the exact time of encoding. This apnea did not evoke changes in CA3 cell ensembles between presentations of CS+ and conditioned inhibition (CS-), whereas in normal breathing, CS+ presentations produced dynamic changes. Our findings demonstrate that components of central respiratory activity (e.g., frequency) during online encoding strongly contribute to shaping hippocampal ensemble dynamics and memory performance.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hidemasa Furue
- Division of Neurophysiology, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
14
|
Folschweiller S, Sauer JF. Behavioral State-Dependent Modulation of Prefrontal Cortex Activity by Respiration. J Neurosci 2023; 43:4795-4807. [PMID: 37277176 PMCID: PMC10312056 DOI: 10.1523/jneurosci.2075-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Respiration-rhythmic oscillations in the local field potential emerge in the mPFC, a cortical region with a key role in the regulation of cognitive and emotional behavior. Respiration-driven rhythms coordinate local activity by entraining fast γ oscillations as well as single-unit discharges. To what extent respiration entrainment differently engages the mPFC network in a behavioral state-dependent manner, however, is not known. Here, we compared the respiration entrainment of mouse PFC local field potential and spiking activity (23 male and 2 female mice) across distinct behavioral states: during awake immobility in the home cage (HC), during passive coping in response to inescapable stress under tail suspension (TS), and during reward consumption (Rew). Respiration-driven rhythms emerged during all three states. However, prefrontal γ oscillations were more strongly entrained by respiration during HC than TS or Rew. Moreover, neuronal spikes of putative pyramidal cells and putative interneurons showed significant respiration phase-coupling throughout behaviors with characteristic phase preferences depending on the behavioral state. Finally, while phase-coupling dominated in deep layers in HC and Rew conditions, TS resulted in the recruitment of superficial layer neurons to respiration. These results jointly suggest that respiration dynamically entrains prefrontal neuronal activity depending on the behavioral state.SIGNIFICANCE STATEMENT The mPFC, through its extensive connections (e.g., to the amygdala, the striatum, serotoninergic and dopaminergic nuclei), flexibly regulates cognitive behaviors. Impairment of prefrontal functions can lead to disease states, such as depression, addiction, or anxiety disorders. Deciphering the complex regulation of PFC activity during defined behavioral states is thus an essential challenge. Here, we investigated the role of a prefrontal slow oscillation that has recently attracted rising interest, the respiration rhythm, in modulating prefrontal neurons during distinct behavioral states. We show that prefrontal neuronal activity is differently entrained by the respiration rhythm in a cell type- and behavior-dependent manner. These results provide first insight into the complex modulation of prefrontal activity patterns by rhythmic breathing.
Collapse
Affiliation(s)
- Shani Folschweiller
- Institute of Physiology 1, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute of Physiology 1, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
15
|
Ye T, Romero-Sosa JL, Rickard A, Aguirre CG, Wikenheiser AM, Blair HT, Izquierdo A. Theta oscillations in anterior cingulate cortex and orbitofrontal cortex differentially modulate accuracy and speed in flexible reward learning. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad005. [PMID: 37456140 PMCID: PMC10348740 DOI: 10.1093/oons/kvad005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 07/18/2023]
Abstract
Flexible reward learning relies on frontal cortex, with substantial evidence indicating that anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) subregions play important roles. Recent studies in both rat and macaque suggest theta oscillations (5-10 Hz) may be a spectral signature that coordinates this learning. However, network-level interactions between ACC and OFC in flexible learning remain unclear. We investigated the learning of stimulus-reward associations using a combination of simultaneous in vivo electrophysiology in dorsal ACC and ventral OFC, partnered with bilateral inhibitory DREADDs in ACC. In freely behaving male and female rats and using a within-subject design, we examined accuracy and speed of response across distinct and precisely defined trial epochs during initial visual discrimination learning and subsequent reversal of stimulus-reward contingencies. Following ACC inhibition, there was a propensity for random responding in early reversal learning, with correct vs. incorrect trials distinguished only from OFC, not ACC, theta power differences in the reversal phase. ACC inhibition also hastened incorrect choices during reversal. This same pattern of change in accuracy and speed was not observed in viral control animals. Thus, characteristics of impaired reversal learning following ACC inhibition are poor deliberation and weak theta signaling of accuracy in this region. The present results also point to OFC theta oscillations as a prominent feature of reversal learning, unperturbed by ACC inhibition.
Collapse
Affiliation(s)
- Tony Ye
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | | | - Anne Rickard
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | | | - Andrew M Wikenheiser
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
- The Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Addictions, UCLA, Los Angeles, CA 90095, USA
| | - Hugh T Blair
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
- The Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, UCLA, Los Angeles, CA 90095, USA
| | - Alicia Izquierdo
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
- The Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Addictions, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Watanabe T, Itagaki A, Hashizume A, Takahashi A, Ishizaka R, Ozaki I. Observation of respiration-entrained brain oscillations with scalp EEG. Neurosci Lett 2023; 797:137079. [PMID: 36657634 DOI: 10.1016/j.neulet.2023.137079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
In animal models, oscillations of local field potentials are entrained by nasal respiration at the frequency of breathing cycle in olfactory brain regions, such as the olfactory bulb and piriform cortex, as well as in the other brain regions. Studies in humans also confirmed these respiration-entrained oscillations in several brain regions using intracranial electroencephalogram (EEG). Here we extend these findings by analyzing coherence between cortical activity and respiration using high-density scalp EEG in twenty-seven healthy human subjects. Results indicated the occurrence of significant coherence between scalp EEG and respiration signals, although the number and locations of electrodes showing significant coherence were different among subjects. These findings suggest that scalp EEG can detect respiration-entrained oscillations. It remained to be determined whether these oscillations are volume conducted from the olfactory brain regions or reflect the local cortical activity.
Collapse
Affiliation(s)
- Tatsunori Watanabe
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori 030-8505, Japan.
| | - Atsunori Itagaki
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori 030-8505, Japan
| | - Akira Hashizume
- Department of Neurosurgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Aoki Takahashi
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori 030-8505, Japan
| | - Riku Ishizaka
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori 030-8505, Japan
| | - Isamu Ozaki
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori 030-8505, Japan.
| |
Collapse
|
17
|
Jung F, Yanovsky Y, Brankačk J, Tort ABL, Draguhn A. Respiratory entrainment of units in the mouse parietal cortex depends on vigilance state. Pflugers Arch 2023; 475:65-76. [PMID: 35982341 PMCID: PMC9816213 DOI: 10.1007/s00424-022-02727-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/31/2023]
Abstract
Synchronous oscillations are essential for coordinated activity in neuronal networks and, hence, for behavior and cognition. While most network oscillations are generated within the central nervous system, recent evidence shows that rhythmic body processes strongly influence activity patterns throughout the brain. A major factor is respiration (Resp), which entrains multiple brain regions at the mesoscopic (local field potential) and single-cell levels. However, it is largely unknown how such Resp-driven rhythms interact or compete with internal brain oscillations, especially those with similar frequency domains. In mice, Resp and theta (θ) oscillations have overlapping frequencies and co-occur in various brain regions. Here, we investigated the effects of Resp and θ on neuronal discharges in the mouse parietal cortex during four behavioral states which either show prominent θ (REM sleep and active waking (AW)) or lack significant θ (NREM sleep and waking immobility (WI)). We report a pronounced state-dependence of spike modulation by both rhythms. During REM sleep, θ effects on unit discharges dominate, while during AW, Resp has a larger influence, despite the concomitant presence of θ oscillations. In most states, unit modulation by θ or Resp increases with mean firing rate. The preferred timing of Resp-entrained discharges (inspiration versus expiration) varies between states, indicating state-specific and different underlying mechanisms. Our findings show that neurons in an associative cortex area are differentially and state-dependently modulated by two fundamentally different processes: brain-endogenous θ oscillations and rhythmic somatic feedback signals from Resp.
Collapse
Affiliation(s)
- Felix Jung
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yevgenij Yanovsky
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande Do Norte, Natal, RN 59078-900, Brazil
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Folschweiller S, Sauer JF. Controlling neuronal assemblies: a fundamental function of respiration-related brain oscillations in neuronal networks. Pflugers Arch 2023; 475:13-21. [PMID: 35637391 PMCID: PMC9816207 DOI: 10.1007/s00424-022-02708-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 01/31/2023]
Abstract
Respiration exerts profound influence on cognition, which is presumed to rely on the generation of local respiration-coherent brain oscillations and the entrainment of cortical neurons. Here, we propose an addition to that view by emphasizing the role of respiration in pacing cortical assemblies (i.e., groups of synchronized, coactive neurons). We review recent findings of how respiration directly entrains identified assembly patterns and discuss how respiration-dependent pacing of assembly activations might be beneficial for cognitive functions.
Collapse
Affiliation(s)
- Shani Folschweiller
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.
| |
Collapse
|
19
|
Heck DH, Varga S. "The great mixing machine": multisensory integration and brain-breath coupling in the cerebral cortex. Pflugers Arch 2023; 475:5-11. [PMID: 35904636 PMCID: PMC10163438 DOI: 10.1007/s00424-022-02738-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
It is common to distinguish between "holist" and "reductionist" views of brain function, where the former envisions the brain as functioning as an indivisible unit and the latter as a collection of distinct units that serve different functions. Opposing reductionism, a number of researchers have pointed out that cortical network architecture does not respect functional boundaries, and the neuroanatomist V. Braitenberg proposed to understand the cerebral cortex as a "great mixing machine" of neuronal activity from sensory inputs, motor commands, and intrinsically generated processes. In this paper, we offer a contextualization of Braitenberg's point, and we review evidence for the interactions of neuronal activity from multiple sensory inputs and intrinsic neuronal processes in the cerebral cortex. We focus on new insights from studies on audiovisual interactions and on the influence of respiration on brain functions, which do not seem to align well with "reductionist" views of areal functional boundaries. Instead, they indicate that functional boundaries are fuzzy and context dependent. In addition, we discuss the relevance of the influence of sensory, proprioceptive, and interoceptive signals on cortical activity for understanding brain-body interactions, highlight some of the consequences of these new insights for debates on embodied cognition, and offer some suggestions for future studies.
Collapse
Affiliation(s)
- Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Somogy Varga
- School of Culture and Society, Aarhus University, Aarhus, Denmark.,Interacting Minds Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Schaefer M, Edwards S, Nordén F, Lundström JN, Arshamian A. Inconclusive evidence that breathing shapes pupil dynamics in humans: a systematic review. Pflugers Arch 2023; 475:119-137. [PMID: 35871662 PMCID: PMC9816272 DOI: 10.1007/s00424-022-02729-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
More than 50 years ago, it was proposed that breathing shapes pupil dynamics. This widespread idea is also the general understanding currently. However, there has been no attempt at synthesizing the progress on this topic since. We therefore conducted a systematic review of the literature on how breathing affects pupil dynamics in humans. We assessed the effect of breathing phase, depth, rate, and route (nose/mouth). We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and conducted a systematic search of the scientific literature databases MEDLINE, Web of Science, and PsycInfo in November 2021. Thirty-one studies were included in the final analyses, and their quality was assessed with QualSyst. The study findings were summarized in a descriptive manner, and the strength of the evidence for each parameter was estimated following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The effect of breathing phase on pupil dynamics was rated as "low" (6 studies). The effect of breathing depth and breathing rate (6 and 20 studies respectively) were rated as "very low". Breathing route was not investigated by any of the included studies. Overall, we show that there is, at best, inconclusive evidence for an effect of breathing on pupil dynamics in humans. Finally, we suggest some possible confounders to be considered, and outstanding questions that need to be addressed, to answer this fundamental question. Trial registration: This systematic review has been registered in the international prospective register of systematic reviews (PROSPERO) under the registration number: CRD42022285044.
Collapse
Affiliation(s)
- Martin Schaefer
- Department of Clinical Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Sylvia Edwards
- Department of Clinical Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Frans Nordén
- Department of Clinical Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
- Stockholm University Brain Imaging Centre, Stockholm University, 11415, Stockholm, Sweden
| | - Artin Arshamian
- Department of Clinical Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
21
|
González J, Cavelli M, Mondino A, Castro-Zaballa S, Brankačk J, Draguhn A, Torterolo P, Tort ABL. Breathing modulates gamma synchronization across species. Pflugers Arch 2023; 475:49-63. [PMID: 36190562 DOI: 10.1007/s00424-022-02753-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 01/31/2023]
Abstract
Nasal respiration influences brain dynamics by phase-entraining neural oscillations at the same frequency as the breathing rate and by phase-modulating the activity of faster gamma rhythms. Despite being widely reported, we still do not understand the functional roles of respiration-entrained oscillations. A common hypothesis is that these rhythms aid long-range communication and provide a privileged window for synchronization. Here we tested this hypothesis by analyzing electrocorticographic (ECoG) recordings in mice, rats, and cats during the different sleep-wake states. We found that the respiration phase modulates the amplitude of cortical gamma oscillations in the three species, although the modulated gamma frequency bands differed with faster oscillations (90-130 Hz) in mice, intermediate frequencies (60-100 Hz) in rats, and slower activity (30-60 Hz) in cats. In addition, our results also show that respiration modulates olfactory bulb-frontal cortex synchronization in the gamma range, in which each breathing cycle evokes (following a delay) a transient time window of increased gamma synchrony. Long-range gamma synchrony modulation occurs during quiet and active wake states but decreases during sleep. Thus, our results suggest that respiration-entrained brain rhythms orchestrate communication in awake mammals.
Collapse
Affiliation(s)
- Joaquín González
- Departamento de Fisiología, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay. .,Brain Institute, Federal University of Rio Grande Do Norte, Natal, RN, 59078, Brazil.
| | - Matias Cavelli
- Departamento de Fisiología, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay.,Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA
| | - Alejandra Mondino
- Departamento de Fisiología, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - Santiago Castro-Zaballa
- Departamento de Fisiología, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande Do Norte, Natal, RN, 59078, Brazil.
| |
Collapse
|
22
|
Parviainen T, Lyyra P, Nokia MS. Cardiorespiratory rhythms, brain oscillatory activity and cognition: review of evidence and proposal for significance. Neurosci Biobehav Rev 2022; 142:104908. [DOI: 10.1016/j.neubiorev.2022.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
|
23
|
Nokia MS, Penttonen M. Rhythmic Memory Consolidation in the Hippocampus. Front Neural Circuits 2022; 16:885684. [PMID: 35431819 PMCID: PMC9011342 DOI: 10.3389/fncir.2022.885684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Functions of the brain and body are oscillatory in nature and organized according to a logarithmic scale. Brain oscillations and bodily functions such as respiration and heartbeat appear nested within each other and coupled together either based on phase or based on phase and amplitude. This facilitates communication in wide-spread neuronal networks and probably also between the body and the brain. It is a widely accepted view, that nested electrophysiological brain oscillations involving the neocortex, thalamus, and the hippocampus form the basis of memory consolidation. This applies especially to declarative memories, that is, memories of life events, for example. Here, we present our view of hippocampal contribution to the process of memory consolidation based on the general ideas stated above and on some recent findings on the topic by us and by other research groups. We propose that in addition to the interplay between neocortical slow oscillations, spindles, and hippocampal sharp-wave ripples during sleep, there are also additional mechanisms available in the hippocampus to control memory consolidation: a rather non-oscillatory hippocampal electrophysiological phenomenon called the dentate spike might provide a means to not only consolidate but to also modify the neural representation of declarative memories. Further, we suggest that memory consolidation in the hippocampus might be in part paced by breathing. These considerations might open new possibilities for regulating memory consolidation in rest and sleep.
Collapse
Affiliation(s)
- Miriam S. Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
- *Correspondence: Miriam S. Nokia
| | - Markku Penttonen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
24
|
Recent insights into respiratory modulation of brain activity offer new perspectives on cognition and emotion. Biol Psychol 2022; 170:108316. [PMID: 35292337 PMCID: PMC10155500 DOI: 10.1016/j.biopsycho.2022.108316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Over the past six years, a rapidly growing number of studies have shown that respiration exerts a significant influence on sensory, affective, and cognitive processes. At the same time, an increasing amount of experimental evidence indicates that this influence occurs via modulation of neural oscillations and their synchronization between brain areas. In this article, we review the relevant findings and discuss whether they might inform our understanding of a variety of disorders that have been associated with abnormal patterns of respiration. We review literature on the role of respiration in chronic obstructive pulmonary disease (COPD), anxiety (panic attacks), and autism spectrum disorder (ASD), and we conclude that the new insights into respiratory modulation of neuronal activity may help understand the relationship between respiratory abnormalities and cognitive and affective deficits.
Collapse
|
25
|
Folschweiller S, Sauer JF. Phase-specific pooling of sparse assembly activity by respiration-related brain oscillations. J Physiol 2022; 600:1991-2011. [PMID: 35218015 DOI: 10.1113/jp282631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/10/2022] [Indexed: 11/08/2022] Open
Abstract
Neuronal assemblies activate phase-coupled to ongoing respiration-related oscillations (RROs) in the medial prefrontal cortex of mice. The phase coupling strength of assemblies exceeds that of individual neurons. Assemblies preferentially activate during the descending phase of RRO. Despite higher assembly frequency during descending RRO, overlap between active assemblies remains constant across RRO phase. Putative GABAergic interneurons are preferentially recruited by assembly neurons during descending RRO, suggesting that interneurons might contribute to the segregation of active assemblies during the descending phase of RRO. ABSTRACT: Nasal breathing affects cognitive functions, but it has remained largely unclear how respiration-driven inputs shape information processing in neuronal circuits. Current theories emphasize the role of neuronal assemblies, coalitions of transiently active pyramidal cells, as the core unit of cortical network computations. Here, we show that the phase of respiration-related oscillations (RROs) influences the likelihood of activation of a subset of neuronal assemblies in the medial prefrontal cortex (mPFC) of awake mice. RROs bias the activation of neuronal assemblies more efficiently than that of individual neurons by entraining the coactivity of assembly neurons. Moreover, the activation of assemblies is moderately biased towards the descending phase of RROs. Despite the enriched activation of assemblies during descending RRO, the overlap between individual assemblies remains constant across RRO phases. Putative GABAergic interneurons are shown to coactivate with assemblies and receive enhanced excitatory drive from assembly neurons during descending RRO, suggesting that the phase-specific recruitment of putative interneurons might help to keep the activation of different assemblies separated from each other during times of preferred assembly activation. Our results thus identify respiration-synchronized brain rhythms as drivers of neuronal assemblies and point to a role of RROs in defining time windows of enhanced yet segregated assembly activity. Abstract figure legend. Nasal breathing affects cognitive functions, but it has remained largely unclear how respiration-driven inputs shape information processing in neuronal circuits. We show that the phase of respiration-related oscillations (RROs) influences the likelihood of the activation of a subset of neuronal assemblies in the medial prefrontal cortex (mPFC) of awake mice. The activation of assemblies is moderately biased towards the descending phase of RROs, while the overlap between individual assemblies remains constant across RRO phases. Putative GABAergic interneurons are shown to coactivate with assemblies and receive enhanced excitatory drive from assembly neurons during descending RRO, suggesting that the phase-specific recruitment of putative interneurons might help to keep the activation of different assemblies separated from each other. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shani Folschweiller
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Hermann-Herder-Strasse 7, Freiburg, D-79104, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, Freiburg, D-79104, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Hermann-Herder-Strasse 7, Freiburg, D-79104, Germany
| |
Collapse
|
26
|
Jung F, Witte V, Yanovsky Y, Klumpp M, Brankack J, Tort ABL, Dr Draguhn A. Differential modulation of parietal cortex activity by respiration and θ-oscillations. J Neurophysiol 2022; 127:801-817. [PMID: 35171722 DOI: 10.1152/jn.00376.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The simultaneous, local integration of information from widespread brain regions is an essential feature of cortical computation and particularly relevant for multimodal association areas such as the posterior parietal cortex. Slow, rhythmic fluctuations in the local field potentials (LFP) are assumed to constitute a global signal aiding interregional communication through the long-range synchronization of neuronal activity. Recent work demonstrated the brain-wide presence of a novel class of slow neuronal oscillations which are entrained by nasal respiration. However, whether there are differences in the influence of the respiration-entrained rhythm (RR) and the endogenous theta (θ) rhythm over local networks is unknown. In this work, we aimed at characterizing the impact of both classes of oscillations on neuronal activity in the posterior parietal cortex of mice. We focused our investigations on a θ-dominated state (REM sleep) and an RR-dominated state (wake immobility). Using linear silicon probes implanted along the dorsoventral cortical axis, we found that the LFP-depth distributions of both rhythms show differences in amplitude and coherence but no phase shift. Using tetrode recordings, we demonstrate that a substantial fraction of parietal neurons is modulated by either RR or θ or even by both rhythms simultaneously. Interestingly, the phase and cortical depth-dependence of spike-field coupling differ for these oscillations. We further show through intracellular recordings in urethane-anesthetized mice that synaptic inhibition is likely to play a role in generating respiration-entrainment at the membrane potential level. We conclude that θ and respiration differentially affect neuronal activity in the parietal cortex.
Collapse
Affiliation(s)
- Felix Jung
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Victoria Witte
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Yevgenij Yanovsky
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Matthias Klumpp
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jurij Brankack
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Andreas Dr Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
27
|
Waselius T, Xu W, Sparre JI, Penttonen M, Nokia MS. -Cardiac cycle and respiration phase affect responses to the conditioned stimulus in young adults trained in trace eyeblink conditioning. J Neurophysiol 2022; 127:767-775. [PMID: 35138956 DOI: 10.1152/jn.00298.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhythms of breathing and heartbeat are linked to each other as well as to rhythms of the brain. Our recent studies suggest that presenting the conditioned stimulus during expiration or during the diastolic phase of the cardiac cycle facilitates neural processing of that stimulus and improves learning an eyeblink classical conditioning task. To date, it has not been examined whether utilizing information from both respiration and cardiac cycle phases simultaneously allows even more efficient modulation of learning. Here we studied whether the timing of the conditioned stimulus to different cardiorespiratory rhythm phase combinations affects learning trace eyeblink conditioning in healthy young adults. The results were consistent with previous reports: Timing the conditioned stimulus to diastole during expiration was more beneficial for learning than timing it to systole during inspiration. Cardiac cycle phase seemed to explain most of this variation in learning at the behavioral level. Brain evoked potentials (N1) elicited by the conditioned stimulus and recorded using electroencephalogram were larger when the conditioned stimulus was presented to diastole during expiration than when it was presented to systole during inspiration. Breathing phase explained the variation in the N1 amplitude. To conclude, our findings suggest that non-invasive monitoring of bodily rhythms combined with closed-loop control of stimulation can be used to promote learning in humans. The next step will be to test if performance can also be improved in humans with compromised cognitive ability, such as in older people with memory impairments.
Collapse
Affiliation(s)
- Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Weiyong Xu
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Julia Isabella Sparre
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
28
|
Karalis N, Sirota A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat Commun 2022; 13:467. [PMID: 35075139 PMCID: PMC8786964 DOI: 10.1038/s41467-022-28090-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Network dynamics have been proposed as a mechanistic substrate for the information transfer across cortical and hippocampal circuits. However, little is known about the mechanisms that synchronize and coordinate these processes across widespread brain regions during offline states. Here we address the hypothesis that breathing acts as an oscillatory pacemaker, persistently coupling distributed brain circuit dynamics. Using large-scale recordings from a number of cortical and subcortical brain regions in behaving mice, we uncover the presence of an intracerebral respiratory corollary discharge, that modulates neural activity across these circuits. During offline states, the respiratory modulation underlies the coupling of hippocampal sharp-wave ripples and cortical DOWN/UP state transitions, which mediates systems memory consolidation. These results highlight breathing, a perennial brain rhythm, as an oscillatory scaffold for the functional coordination of the limbic circuit that supports the segregation and integration of information flow across neuronal networks during offline states.
Collapse
Affiliation(s)
- Nikolaos Karalis
- Faculty of Medicine, Ludwig-Maximilian University, Munich, 82152, Martinsried, Germany.
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.
| | - Anton Sirota
- Faculty of Medicine, Ludwig-Maximilian University, Munich, 82152, Martinsried, Germany.
| |
Collapse
|
29
|
Effect of Sensory Deprivation of Nasal Respiratory on Behavior of C57BL/6J Mice. Brain Sci 2021; 11:brainsci11121626. [PMID: 34942927 PMCID: PMC8699203 DOI: 10.3390/brainsci11121626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Nasal breathing is a dynamic cortical organizer involved in various behaviors and states, such as locomotion, exploration, memory, emotion, introspection. However, the effect of sensory deprivation of nasal respiratory breath (NRD) on behavior remain poorly understood. Herein, general locomotor activity, emotion, learning and memory, social interaction, and mechanical pain were evaluated using a zinc sulfate nasal irrigation induced nasal respiratory sensory deprivation animal model (ZnSO4-induced mouse model). In the open field test, the elevated O-maze test, and forced swim test, NRD mice exhibited depressive and anxiety-like behaviors. In memory-associated tests, NRD mice showed cognitive impairments in the hippocampal-dependent memory (Y maze, object recognition task, and contextual fear conditioning (CFC)) and amygdala-dependent memory (the tone-cued fear conditioning test (TFC)). Surprisingly, NRD mice did not display deficits in the acquisition of conditional fear in both CFC and TFC tests. Still, they showed significant memory retrieval impairment in TFC and enhanced memory retrieval in CFC. At the same time, in the social novelty test using a three-chamber setting, NRD mice showed impaired social and social novelty behavior. Lastly, in the von Frey filaments test, we found that the pain sensitivity of NRD mice was reduced. In conclusion, this NRD mouse model showed a variety of behavioral phenotypic changes, which could offer an important insight into the behavioral impacts of patients with anosmia or those with an impaired olfactory bulb (OB) (e.g., in COVID-19, Alzheimer’s disease, Parkinson’s disease, etc.).
Collapse
|
30
|
Long-Range Respiratory and Theta Oscillation Networks Depend on Spatial Sensory Context. J Neurosci 2021; 41:9957-9970. [PMID: 34667070 DOI: 10.1523/jneurosci.0719-21.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Neural oscillations can couple networks of brain regions, especially at lower frequencies. The nasal respiratory rhythm, which elicits robust olfactory bulb oscillations, has been linked to episodic memory, locomotion, and exploration, along with widespread oscillatory coherence. The piriform cortex is implicated in propagating the olfactory-bulb-driven respiratory rhythm, but this has not been tested explicitly in the context of both hippocampal theta and nasal respiratory rhythm during exploratory behaviors. We investigated systemwide interactions during foraging behavior, which engages respiratory and theta rhythms. Local field potentials from the olfactory bulb, piriform cortex, dentate gyrus, and CA1 of hippocampus, primary visual cortex, and nasal respiration were recorded simultaneously from male rats. We compared interactions among these areas while rats foraged using either visual or olfactory spatial cues. We found high coherence during foraging compared with home cage activity in two frequency bands that matched slow and fast respiratory rates. Piriform cortex and hippocampus maintained strong coupling at theta frequency during periods of slow respiration, whereas other pairs showed coupling only at the fast respiratory frequency. Directional analysis shows that the modality of spatial cues was matched to larger influences in the network by the respective primary sensory area. Respiratory and theta rhythms also coupled to faster oscillations in primary sensory and hippocampal areas. These data provide the first evidence of widespread interactions among nasal respiration, olfactory bulb, piriform cortex, and hippocampus in awake freely moving rats, and support the piriform cortex as an integrator of respiratory and theta activity.SIGNIFICANCE STATEMENT Recent studies have shown widespread interactions between the nasally driven respiratory rhythm and neural oscillations in hippocampus and neocortex. With this study, we address how the respiratory rhythm interacts with ongoing slow brain rhythms across olfactory, hippocampal, and visual systems in freely moving rats. Patterns of network connectivity change with behavioral state, with stronger interactions at fast and slow respiratory frequencies during foraging as compared with home cage activity. Routing of interactions between sensory cortices depends on the modality of spatial cues present during foraging. Functional connectivity and cross-frequency coupling analyses suggest strong bidirectional interactions between olfactory and hippocampal systems related to respiration and point to the piriform cortex as a key area for mediating respiratory and theta rhythms.
Collapse
|
31
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Erofeev A, Kazakov D, Makarevich N, Bolshakova A, Gerasimov E, Nekrasov A, Kazakin A, Komarevtsev I, Bolsunovskaja M, Bezprozvanny I, Vlasova O. An Open-Source Wireless Electrophysiological Complex for In Vivo Recording Neuronal Activity in the Rodent's Brain. SENSORS 2021; 21:s21217189. [PMID: 34770498 PMCID: PMC8587815 DOI: 10.3390/s21217189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023]
Abstract
Multi-electrode arrays (MEAs) are a widely used tool for recording neuronal activity both in vitro/ex vivo and in vivo experiments. In the last decade, researchers have increasingly used MEAs on rodents in vivo. To increase the availability and usability of MEAs, we have created an open-source wireless electrophysiological complex. The complex is scalable, recording the activity of neurons in the brain of rodents during their behavior. Schematic diagrams and a list of necessary components for the fabrication of a wireless electrophysiological complex, consisting of a base charging station and wireless wearable modules, are presented.
Collapse
Affiliation(s)
- Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; (A.B.); (E.G.); (I.B.)
- Correspondence: (A.E.); (O.V.)
| | - Dmitriy Kazakov
- National Technology Initiative Center for Advanced Manufacturing Technologies, Laboratory of Industrial Data Streaming Systems, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; (D.K.); (N.M.); (M.B.)
| | - Nikita Makarevich
- National Technology Initiative Center for Advanced Manufacturing Technologies, Laboratory of Industrial Data Streaming Systems, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; (D.K.); (N.M.); (M.B.)
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; (A.B.); (E.G.); (I.B.)
| | - Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; (A.B.); (E.G.); (I.B.)
| | - Arseniy Nekrasov
- Neuropribor, Limited Liability Company, 194223 Saint Petersburg, Russia;
| | - Alexey Kazakin
- Laboratory of Nano- and Microsystem Technology, Joint Institute of Science and Technology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; (A.K.); (I.K.)
| | - Ivan Komarevtsev
- Laboratory of Nano- and Microsystem Technology, Joint Institute of Science and Technology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; (A.K.); (I.K.)
| | - Marina Bolsunovskaja
- National Technology Initiative Center for Advanced Manufacturing Technologies, Laboratory of Industrial Data Streaming Systems, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; (D.K.); (N.M.); (M.B.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; (A.B.); (E.G.); (I.B.)
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia; (A.B.); (E.G.); (I.B.)
- Correspondence: (A.E.); (O.V.)
| |
Collapse
|
33
|
Folschweiller S, Sauer JF. Respiration-Driven Brain Oscillations in Emotional Cognition. Front Neural Circuits 2021; 15:761812. [PMID: 34790100 PMCID: PMC8592085 DOI: 10.3389/fncir.2021.761812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
Respiration paces brain oscillations and the firing of individual neurons, revealing a profound impact of rhythmic breathing on brain activity. Intriguingly, respiration-driven entrainment of neural activity occurs in a variety of cortical areas, including those involved in higher cognitive functions such as associative neocortical regions and the hippocampus. Here we review recent findings of respiration-entrained brain activity with a particular focus on emotional cognition. We summarize studies from different brain areas involved in emotional behavior such as fear, despair, and motivation, and compile findings of respiration-driven activities across species. Furthermore, we discuss the proposed cellular and network mechanisms by which cortical circuits are entrained by respiration. The emerging synthesis from a large body of literature suggests that the impact of respiration on brain function is widespread across the brain and highly relevant for distinct cognitive functions. These intricate links between respiration and cognitive processes call for mechanistic studies of the role of rhythmic breathing as a timing signal for brain activity.
Collapse
Affiliation(s)
- Shani Folschweiller
- Institute for Physiology I, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
34
|
Halonen R, Kuula L, Antila M, Pesonen AK. The Overnight Retention of Novel Metaphors Associates With Slow Oscillation-Spindle Coupling but Not With Respiratory Phase at Encoding. Front Behav Neurosci 2021; 15:712774. [PMID: 34531730 PMCID: PMC8439423 DOI: 10.3389/fnbeh.2021.712774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence emphasizes the relevance of oscillatory synchrony in memory consolidation during sleep. Sleep spindles promote memory retention, especially when occurring in the depolarized upstate of slow oscillation (SO). A less studied topic is the inter-spindle synchrony, i.e. the temporal overlap and phasic coherence between spindles perceived in different electroencephalography channels. In this study, we examined how synchrony between SOs and spindles, as well as between simultaneous spindles, is associated with the retention of novel verbal metaphors. Moreover, we combined the encoding of the metaphors with respiratory phase (inhalation/exhalation) with the aim of modulating the strength of memorized items, as previous studies have shown that inhalation entrains neural activity, thereby benefiting memory in a waking condition. In the current study, 27 young adults underwent a two-night mixed-design study with a 12-h delayed memory task during both sleep and waking conditions. As expected, we found better retention over the delay containing sleep, and this outcome was strongly associated with the timing of SO–spindle coupling. However, no associations were observed regarding inter-spindle synchrony or respiratory phase. These findings contribute to a better understanding of the importance of SO–spindle coupling for memory. In contrast, the observed lack of association with inter-spindle synchrony may emphasize the local nature of spindle-related plasticity.
Collapse
Affiliation(s)
- Risto Halonen
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liisa Kuula
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minea Antila
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu-Katriina Pesonen
- Sleepwell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Isoflurane Suppresses Hippocampal High-frequency Ripples by Differentially Modulating Pyramidal Neurons and Interneurons in Mice. Anesthesiology 2021; 135:122-135. [PMID: 33951177 DOI: 10.1097/aln.0000000000003803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Isoflurane can induce anterograde amnesia. Hippocampal ripples are high-frequency oscillatory events occurring in the local field potentials of cornu ammonis 1 involved in memory processes. The authors hypothesized that isoflurane suppresses hippocampal ripples at a subanesthetic concentration by modulating the excitability of cornu ammonis 1 neurons. METHODS The potencies of isoflurane for memory impairment and anesthesia were measured in mice. Hippocampal ripples were measured by placing recording electrodes in the cornu ammonis 1. Effects of isoflurane on the excitability of hippocampal pyramidal neurons and interneurons were measured. A simulation model of ripples based on the firing frequency of hippocampal cornu ammonis 1 neurons was used to validate the effects of isoflurane on neuronal excitability in vitro and on ripples in vivo. RESULTS Isoflurane at 0.5%, which did not induce loss of righting reflex, impaired hippocampus-dependent fear memory by 97.4 ± 3.1% (mean ± SD; n = 14; P < 0.001). Isoflurane at 0.5% reduced ripple amplitude (38 ± 13 vs. 42 ± 13 μV; n = 9; P = 0.003), rate (462 ± 66 vs. 538 ± 81 spikes/min; n = 9; P = 0.002) and duration (36 ± 5 vs. 48 ± 9 ms; n = 9; P < 0.001) and increased the interarrival time (78 ± 7 vs. 69 ± 6 ms; n = 9; P < 0.001) and frequency (148.2 ± 3.9 vs. 145.0 ± 2.9 Hz; n = 9; P = 0.001). Isoflurane at the same concentration depressed action potential frequency in fast-spiking interneurons while slightly enhancing action potential frequency in cornu ammonis 1 pyramidal neurons. The simulated effects of isoflurane on hippocampal ripples were comparable to recordings in vivo. CONCLUSIONS The authors' results suggest that a subanesthetic concentration of isoflurane can suppress hippocampal ripples by differentially modulating the excitability of pyramidal neurons and interneurons, which may contribute to its amnestic action. EDITOR’S PERSPECTIVE
Collapse
|
36
|
Boyadzhieva A, Kayhan E. Keeping the Breath in Mind: Respiration, Neural Oscillations, and the Free Energy Principle. Front Neurosci 2021; 15:647579. [PMID: 34267621 PMCID: PMC8275985 DOI: 10.3389/fnins.2021.647579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
Scientific interest in the brain and body interactions has been surging in recent years. One fundamental yet underexplored aspect of brain and body interactions is the link between the respiratory and the nervous systems. In this article, we give an overview of the emerging literature on how respiration modulates neural, cognitive and emotional processes. Moreover, we present a perspective linking respiration to the free-energy principle. We frame volitional modulation of the breath as an active inference mechanism in which sensory evidence is recontextualized to alter interoceptive models. We further propose that respiration-entrained gamma oscillations may reflect the propagation of prediction errors from the sensory level up to cortical regions in order to alter higher level predictions. Accordingly, controlled breathing emerges as an easily accessible tool for emotional, cognitive, and physiological regulation.
Collapse
Affiliation(s)
| | - Ezgi Kayhan
- Department of Developmental Psychology, University of Potsdam, Potsdam, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
37
|
Jelinčić V, Van Diest I, Torta DM, von Leupoldt A. The breathing brain: The potential of neural oscillations for the understanding of respiratory perception in health and disease. Psychophysiology 2021; 59:e13844. [PMID: 34009644 DOI: 10.1111/psyp.13844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Dyspnea or breathlessness is a symptom occurring in multiple acute and chronic illnesses, however, the understanding of the neural mechanisms underlying its subjective experience is limited. In this topical review, we propose neural oscillatory dynamics and cross-frequency coupling as viable candidates for a neural mechanism underlying respiratory perception, and a technique warranting more attention in respiration research. With the evidence for the potential of neural oscillations in the study of normal and disordered breathing coming from disparate research fields with a limited history of interdisciplinary collaboration, the main objective of the review was to converge the existing research and suggest future directions. The existing findings show that distinct limbic and cortical activations, as measured by hemodynamic responses, underlie dyspnea, however, the time-scale of these activations is not well understood. The recent findings of oscillatory neural activity coupled with the respiratory rhythm could provide the solution to this problem, however, more research with a focus on dyspnea is needed. We also touch on the findings of distinct spectral patterns underlying the changes in breathing due to experimental manipulations, meditation and disease. Subsequently, we suggest general research directions and specific research designs to supplement the current knowledge using neural oscillation techniques. We argue for the benefits of interdisciplinary collaboration and the converging of neuroimaging and behavioral methods to best explain the emergence of the subjective and aversive individual experience of dyspnea.
Collapse
Affiliation(s)
- Valentina Jelinčić
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Ilse Van Diest
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Diana M Torta
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| | - Andreas von Leupoldt
- Research Group Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Bagur S, Lefort JM, Lacroix MM, de Lavilléon G, Herry C, Chouvaeff M, Billand C, Geoffroy H, Benchenane K. Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat Commun 2021; 12:2605. [PMID: 33972521 PMCID: PMC8110519 DOI: 10.1038/s41467-021-22798-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/28/2021] [Indexed: 02/03/2023] Open
Abstract
Brain-body interactions are thought to be essential in emotions but their physiological basis remains poorly understood. In mice, regular 4 Hz breathing appears during freezing after cue-fear conditioning. Here we show that the olfactory bulb (OB) transmits this rhythm to the dorsomedial prefrontal cortex (dmPFC) where it organizes neural activity. Reduction of the respiratory-related 4 Hz oscillation, via bulbectomy or optogenetic perturbation of the OB, reduces freezing. Behavioural modelling shows that this is due to a specific reduction in freezing maintenance without impacting its initiation, thus dissociating these two phenomena. dmPFC LFP and firing patterns support the region's specific function in freezing maintenance. In particular, population analysis reveals that network activity tracks 4 Hz power dynamics during freezing and reaches a stable state at 4 Hz peak that lasts until freezing termination. These results provide a potential mechanism and a functional role for bodily feedback in emotions and therefore shed light on the historical James-Cannon debate.
Collapse
Affiliation(s)
- Sophie Bagur
- Team Memory, Oscillations and Brain States (MOBs), Brain Plasticity Unit, CNRS, ESPCI Paris, PSL University, Paris, France.
| | - Julie M Lefort
- Team Memory, Oscillations and Brain States (MOBs), Brain Plasticity Unit, CNRS, ESPCI Paris, PSL University, Paris, France
| | - Marie M Lacroix
- Team Memory, Oscillations and Brain States (MOBs), Brain Plasticity Unit, CNRS, ESPCI Paris, PSL University, Paris, France
| | - Gaëtan de Lavilléon
- Team Memory, Oscillations and Brain States (MOBs), Brain Plasticity Unit, CNRS, ESPCI Paris, PSL University, Paris, France
| | - Cyril Herry
- INSERM, Neurocentre Magendie, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Bordeaux, France
| | - Mathilde Chouvaeff
- Team Memory, Oscillations and Brain States (MOBs), Brain Plasticity Unit, CNRS, ESPCI Paris, PSL University, Paris, France
| | - Clara Billand
- Team Memory, Oscillations and Brain States (MOBs), Brain Plasticity Unit, CNRS, ESPCI Paris, PSL University, Paris, France
| | - Hélène Geoffroy
- Team Memory, Oscillations and Brain States (MOBs), Brain Plasticity Unit, CNRS, ESPCI Paris, PSL University, Paris, France
| | - Karim Benchenane
- Team Memory, Oscillations and Brain States (MOBs), Brain Plasticity Unit, CNRS, ESPCI Paris, PSL University, Paris, France.
| |
Collapse
|
39
|
Girin B, Juventin M, Garcia S, Lefèvre L, Amat C, Fourcaud-Trocmé N, Buonviso N. The deep and slow breathing characterizing rest favors brain respiratory-drive. Sci Rep 2021; 11:7044. [PMID: 33782487 PMCID: PMC8007577 DOI: 10.1038/s41598-021-86525-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
A respiration-locked activity in the olfactory brain, mainly originating in the mechano-sensitivity of olfactory sensory neurons to air pressure, propagates from the olfactory bulb to the rest of the brain. Interestingly, changes in nasal airflow rate result in reorganization of olfactory bulb response. By leveraging spontaneous variations of respiratory dynamics during natural conditions, we investigated whether respiratory drive also varies with nasal airflow movements. We analyzed local field potential activity relative to respiratory signal in various brain regions during waking and sleep states. We found that respiration regime was state-specific, and that quiet waking was the only vigilance state during which all the recorded structures can be respiration-driven whatever the respiratory frequency. Using CO2-enriched air to alter respiratory regime associated to each state and a respiratory cycle based analysis, we evidenced that the large and strong brain drive observed during quiet waking was related to an optimal trade-off between depth and duration of inspiration in the respiratory pattern, characterizing this specific state. These results show for the first time that changes in respiration regime affect cortical dynamics and that the respiratory regime associated with rest is optimal for respiration to drive the brain.
Collapse
Affiliation(s)
- Baptiste Girin
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Maxime Juventin
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Samuel Garcia
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK
| | - Corine Amat
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Nicolas Fourcaud-Trocmé
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center (CRNL), Inserm U 1028, CNRS UMR 5292, University Lyon 1, 69675, Bron, France.
| |
Collapse
|
40
|
Zhou G, Olofsson JK, Koubeissi MZ, Menelaou G, Rosenow J, Schuele SU, Xu P, Voss JL, Lane G, Zelano C. Human hippocampal connectivity is stronger in olfaction than other sensory systems. Prog Neurobiol 2021; 201:102027. [PMID: 33640412 DOI: 10.1016/j.pneurobio.2021.102027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
During mammalian evolution, primate neocortex expanded, shifting hippocampal functional networks away from primary sensory cortices, towards association cortices. Reflecting this rerouting, human resting hippocampal functional networks preferentially include higher association cortices, while those in rodents retained primary sensory cortices. Research on human visual, auditory and somatosensory systems shows evidence of this rerouting. Olfaction, however, is unique among sensory systems in its relative structural conservation throughout mammalian evolution, and it is unknown whether human primary olfactory cortex was subject to the same rerouting. We combined functional neuroimaging and intracranial electrophysiology to directly compare hippocampal functional networks across human sensory systems. We show that human primary olfactory cortex-including the anterior olfactory nucleus, olfactory tubercle and piriform cortex-has stronger functional connectivity with hippocampal networks at rest, compared to other sensory systems. This suggests that unlike other sensory systems, olfactory-hippocampal connectivity may have been retained in mammalian evolution. We further show that olfactory-hippocampal connectivity oscillates with nasal breathing. Our findings suggest olfaction might provide insight into how memory and cognition depend on hippocampal interactions.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jonas K Olofsson
- Department of Psychology, Stockholm University, Stockholm, Sweden; Emotional Brain Institute, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephan U Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China; Guangdong-Hong Kong-Macao Greater Bay Area Research Institute for Neuroscience and Neurotechnologies, Kwun Tong, Hong Kong, China
| | - Joel L Voss
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
41
|
Maier E, Lauer S, Brecht M. Layer 4 organization and respiration locking in the rodent nose somatosensory cortex. J Neurophysiol 2020; 124:822-832. [PMID: 32783591 DOI: 10.1152/jn.00138.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rodents and other mammals acquire sensory information by precisely orchestrated head, whisker, and respiratory movements. We have, however, only limited information about integration of these signals. In the somatosensory domain, the integration of somatosensory information with other modalities is particularly pertinent for body parts such as eyes, ears, and nose, which serve another modality. Here we analyzed the nose/nostril representation in the rodent somatosensory cortex. We identified the representation of the nose/nostril in the rat somatosensory cortex by receptive field mapping and subsequent histological reconstruction. In tangential somatosensory cortical sections, the rat nostril cortex was evident as a prominent stripe-like recess of layer 4 revealed by cytochrome-c oxidase reactivity or by antibodies against the vesicular glutamate-transporter-2 (identifying thalamic afferents). We compared flattened somatosensory cortices of various rodents including rats, mice, gerbils, chinchillas, and chipmunks. We found that such a nose/nostril module was evident as a region with thinned or absent layer 4 at the expected somatotopic position of the nostril. Extracellular spike activity was strongly modulated by respiration in the rat somatosensory cortex, and field potential recordings revealed a stronger locking of nostril recording sites to respiration than for whisker/barrel cortex recoding sites. We conclude that the rodent nose/nostril representation has a conserved architecture and specifically interfaces with respiration signals.NEW & NOTEWORTHY We characterized the rodent nose somatosensory cortex. The nostril representation appeared as a kind of "hole" (i.e., as a stripe-like recess of layer 4) in tangential cortical sections. Neural activity in nose somatosensory cortex was locked to respiration, and simultaneous field recordings indicate that this locking was specific to this region. Our results reveal previously unknown cytoarchitectonic and physiological properties of the rodent nose somatosensory cortex, potentially enabling it to integrate multiple sensory modalities.
Collapse
Affiliation(s)
- Eduard Maier
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Lauer
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
42
|
McAfee SS, Liu Y, Sillitoe RV, Heck DH. Cerebellar Lobulus Simplex and Crus I Differentially Represent Phase and Phase Difference of Prefrontal Cortical and Hippocampal Oscillations. Cell Rep 2020; 27:2328-2334.e3. [PMID: 31116979 PMCID: PMC6538275 DOI: 10.1016/j.celrep.2019.04.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
The cerebellum has long been implicated in tasks involving precise temporal control, especially in the coordination of movements. Here we asked whether the cerebellum represents temporal aspects of oscillatory neuronal activity, measured as instantaneous phase and difference between instantaneous phases of oscillations in two cerebral cortical areas involved in cognitive function. We simultaneously recorded Purkinje cell (PC) single-unit spike activity in cerebellar lobulus simplex (LS) and Crus I and local field potential (LFP) activity in the medial prefrontal cortex (mPFC) and dorsal hippocampus CA1 region (dCA1). Purkinje cells in cerebellar LS and Crus I differentially represented specific phases and phase differences of mPFC and dCA1 LFP oscillations in a frequency-specific manner, suggesting a site- and frequency-specific cerebellar representation of temporal aspects of neuronal oscillations in non-motor cerebral cortical areas. These findings suggest that cerebellar interactions with cerebral cortical areas involved in cognitive functions might involve temporal coordination of neuronal oscillations. The cerebellum has long been implicated in tasks involving precise temporal control, especially in the coordination of movements. McAfee et al. show that the cerebellar principal neurons, Purkinje cells, represent precise temporal information about the phase and phase differences of neuronal oscillations occurring in two non-motor-related cerebral cortical structures.
Collapse
Affiliation(s)
- Samuel S McAfee
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, USA; St. Jude Children's Research Hospital, Division of Translational Imaging Research, Memphis, TN 38105, USA.
| | - Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, USA.
| |
Collapse
|
43
|
Abstract
Contemporary brain research seeks to understand how cognition is reducible to neural activity. Crucially, much of this effort is guided by a scientific paradigm that views neural activity as essentially driven by external stimuli. In contrast, recent perspectives argue that this paradigm is by itself inadequate and that understanding patterns of activity intrinsic to the brain is needed to explain cognition. Yet, despite this critique, the stimulus-driven paradigm still dominates-possibly because a convincing alternative has not been clear. Here, we review a series of findings suggesting such an alternative. These findings indicate that neural activity in the hippocampus occurs in one of three brain states that have radically different anatomical, physiological, representational, and behavioral correlates, together implying different functional roles in cognition. This three-state framework also indicates that neural representations in the hippocampus follow a surprising pattern of organization at the timescale of ∼1 s or longer. Lastly, beyond the hippocampus, recent breakthroughs indicate three parallel states in the cortex, suggesting shared principles and brain-wide organization of intrinsic neural activity.
Collapse
Affiliation(s)
- Kenneth Kay
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| | - Loren M Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| |
Collapse
|
44
|
Arabkheradmand G, Zhou G, Noto T, Yang Q, Schuele SU, Parvizi J, Gottfried JA, Wu S, Rosenow JM, Koubeissi MZ, Lane G, Zelano C. Anticipation-induced delta phase reset improves human olfactory perception. PLoS Biol 2020; 18:e3000724. [PMID: 32453719 PMCID: PMC7250403 DOI: 10.1371/journal.pbio.3000724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Anticipating an odor improves detection and perception, yet the underlying neural mechanisms of olfactory anticipation are not well understood. In this study, we used human intracranial electroencephalography (iEEG) to show that anticipation resets the phase of delta oscillations in piriform cortex prior to odor arrival. Anticipatory phase reset correlates with ensuing odor-evoked theta power and improvements in perceptual accuracy. These effects were consistently present in each individual subject and were not driven by potential confounds of pre-inhale motor preparation or power changes. Together, these findings suggest that states of anticipation enhance olfactory perception through phase resetting of delta oscillations in piriform cortex. Use of human intracranial electroencephalography methods, including rare direct recordings from human olfactory cortex, shows that anticipation of odor resets the phase of delta oscillations prior to the arrival of an odor.
Collapse
Affiliation(s)
- Ghazaleh Arabkheradmand
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
- * E-mail:
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Qiaohan Yang
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Stephan U. Schuele
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University Palo Alto, Stanford, California, United States of America
| | - Jay A. Gottfried
- University of Pennsylvania, Perelman School of Medicine, Department of Neurology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania, School of Arts and Sciences, Department of Psychology, Philadelphia, Pennsylvania, United States of America
| | - Shasha Wu
- University of Chicago, Department of Neurology, Chicago, Illinois, United States of America
| | - Joshua M. Rosenow
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Illinois, United States of America
| | - Mohamad Z. Koubeissi
- George Washington University, Department of Neurology, Washington DC, United States of America
| | - Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| |
Collapse
|
45
|
Tantirigama MLS, Zolnik T, Judkewitz B, Larkum ME, Sachdev RNS. Perspective on the Multiple Pathways to Changing Brain States. Front Syst Neurosci 2020; 14:23. [PMID: 32457583 PMCID: PMC7225277 DOI: 10.3389/fnsys.2020.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
In this review article, we highlight several disparate ideas that are linked to changes in brain state (i.e., sleep to arousal, Down to Up, synchronized to de-synchronized). In any discussion of the brain state, we propose that the cortical pyramidal neuron has a central position. EEG recordings, which typically assess brain state, predominantly reflect the activity of cortical pyramidal neurons. This means that the dominant rhythmic activity that characterizes a particular brain state ultimately has to manifest globally across the pyramidal neuron population. During state transitions, it is the long-range connectivity of these neurons that broadcast the resultant changes in activity to many subcortical targets. Structures like the thalamus, brainstem/hypothalamic neuromodulatory systems, and respiratory systems can also strongly influence brain state, and for many decades we have been uncovering bidirectional pathways that link these structures to state changes in the cerebral cortex. More recently, movement and active behaviors have emerged as powerful drivers of state changes. Each of these systems involve different circuits distributed across the brain. Yet, for a system-wide change in brain state, there must be a collaboration between these circuits that reflects and perhaps triggers the transition between brain states. As we expand our understanding of how brain state changes, our current challenge is to understand how these diverse sets of circuits and pathways interact to produce the changes observed in cortical pyramidal neurons.
Collapse
Affiliation(s)
| | | | | | - Matthew E. Larkum
- Institut für Biologie, Neurocure Center for Excellence, Charité Universitätsmedizin Berlin & Humboldt Universität, Berlin, Germany
| | - Robert N. S. Sachdev
- Institut für Biologie, Neurocure Center for Excellence, Charité Universitätsmedizin Berlin & Humboldt Universität, Berlin, Germany
| |
Collapse
|
46
|
Nokia MS, Waselius T, Sahramäki J, Penttonen M. Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation and theta. J Neurophysiol 2020; 123:1671-1681. [PMID: 32208887 DOI: 10.1152/jn.00056.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampus forms neural representations of real-life events including multimodal information of spatial and temporal context. These representations, i.e., organized sequences of neuronal firing, are repeated during following rest and sleep, especially when so-called sharp-wave ripples (SPW-Rs) characterize hippocampal local field potentials. This SPW-R -related replay is thought to underlie memory consolidation. Here, we set out to explore how hippocampal CA1 pyramidal cells respond to the conditioned stimulus during trace eyeblink conditioning and how these responses manifest during SPW-Rs in awake adult female New Zealand White rabbits. Based on reports in rodents, we expected SPW-Rs to take place in bursts, possibly according to a slow endogenous rhythm. In awake rabbits, half of all SPW-Rs took place in bursts, but no endogenous slow rhythm appeared. Conditioning trials suppressed SPW-Rs while increasing theta for a period of several seconds. As expected based on previous findings, only a quarter of the putative CA1 pyramidal cells increased firing in response to the conditioned stimulus. Compared with other cells, rate-increasing cells were more active during spontaneous epochs of hippocampal theta while response profile during conditioning did not affect firing during SPW-Rs. Taken together, CA1 pyramidal cell firing during SPW-Rs is not limited to cells that fired during the preceding experience. Furthermore, the importance of possible reactivations taking place during theta epochs on memory consolidation warrants further investigation.NEW & NOTEWORTHY We studied hippocampal sharp-wave ripples and theta and CA1 pyramidal cell activity during trace eyeblink conditioning in rabbits. Conditioning trials suppressed ripples while increasing theta for a period of several seconds. A quarter of the cells increased firing in response to the conditioned stimulus and fired extensively during endogenous theta as well as ripples. The role of endogenous theta epochs in off-line memory consolidation should be studied further.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Tomi Waselius
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Joonas Sahramäki
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
47
|
Cavelli M, Castro‐Zaballa S, Gonzalez J, Rojas‐Líbano D, Rubido N, Velásquez N, Torterolo P. Nasal respiration entrains neocortical long‐range gamma coherence during wakefulness. Eur J Neurosci 2020; 51:1463-1477. [DOI: 10.1111/ejn.14560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Matías Cavelli
- Laboratorio de Neurobiología del Sueño Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Santiago Castro‐Zaballa
- Laboratorio de Neurobiología del Sueño Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Joaquín Gonzalez
- Laboratorio de Neurobiología del Sueño Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Daniel Rojas‐Líbano
- Laboratorio de Neurociencia Cognitiva y Social Facultad de Psicología Universidad Diego Portales Santiago Chile
| | - Nicolas Rubido
- Facultad de Ciencias Instituto de Física Universidad de la República Montevideo Uruguay
| | - Noelia Velásquez
- Laboratorio de Neurobiología del Sueño Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Pablo Torterolo
- Laboratorio de Neurobiología del Sueño Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| |
Collapse
|
48
|
The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat Rev Neurosci 2019; 19:744-757. [PMID: 30356103 DOI: 10.1038/s41583-018-0077-1] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Various cognitive functions have long been known to require the hippocampus. Recently, progress has been made in identifying the hippocampal neural activity patterns that implement these functions. One such pattern is the sharp wave-ripple (SWR), an event associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Hippocampal spiking during SWRs can represent past or potential future experience, and SWR-related interventions can alter subsequent memory performance. These findings and others suggest that SWRs support both memory consolidation and memory retrieval for processes such as decision-making. In addition, studies have identified distinct types of SWR based on representational content, behavioural state and physiological features. These various findings regarding SWRs suggest that different SWR types correspond to different cognitive functions, such as retrieval and consolidation. Here, we introduce another possibility - that a single SWR may support more than one cognitive function. Taking into account classic psychological theories and recent molecular results that suggest that retrieval and consolidation share mechanisms, we propose that the SWR mediates the retrieval of stored representations that can be utilized immediately by downstream circuits in decision-making, planning, recollection and/or imagination while simultaneously initiating memory consolidation processes.
Collapse
|
49
|
The Respiratory Modulation of Memory. J Neurosci 2019; 39:5836-5838. [PMID: 31341066 DOI: 10.1523/jneurosci.0224-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/21/2022] Open
|
50
|
Heck DH, Kozma R, Kay LM. The rhythm of memory: how breathing shapes memory function. J Neurophysiol 2019; 122:563-571. [PMID: 31215344 DOI: 10.1152/jn.00200.2019] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mammalian olfactory bulb displays a prominent respiratory rhythm, which is linked to the sniff cycle and is driven by sensory input from olfactory receptors in the nasal sensory epithelium. In rats and mice, respiratory frequencies occupy the same band as the hippocampal θ-rhythm, which has been shown to be a key player in memory processes. Hippocampal and olfactory bulb rhythms were previously found to be uncorrelated except in specific odor-contingency learning circumstances. However, many recent electrophysiological studies in both rodents and humans reveal a surprising cycle-by-cycle influence of nasal respiration on neuronal activity throughout much of the cerebral cortex beyond the olfactory system, including the prefrontal cortex, hippocampus, and subcortical structures. In addition, respiratory phase has been shown to influence higher-frequency oscillations associated with cognitive functions, including attention and memory, such as the power of γ-rhythms and the timing of hippocampal sharp wave ripples. These new findings support respiration's role in cognitive function, which is supported by studies in human subjects, in which nasal respiration has been linked to memory processes. Here, we review recent reports from human and rodent experiments that link respiration to the modulation of memory function and the neurophysiological processes involved in memory in rodents and humans. We argue that respiratory influence on the neuronal activity of two key memory structures, the hippocampus and prefrontal cortex, provides a potential neuronal mechanism behind respiratory modulation of memory.
Collapse
Affiliation(s)
- Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center
| | - Robert Kozma
- Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee.,Department of Computer Sciences, University of Massachusetts Amherst, Massachusetts
| | - Leslie M Kay
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
| |
Collapse
|