1
|
Farahani M, Ghazimoradi MH. Dissecting the roles of exosomal cancer-associated fibroblasts-derived non-coding RNAs in tumor progression: A complete guide. Pathol Res Pract 2024; 262:155576. [PMID: 39232286 DOI: 10.1016/j.prp.2024.155576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.
Collapse
Affiliation(s)
- Mahnaz Farahani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram, General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Akhlaghipour I, Moghbeli M. MicroRNA-98 as a novel diagnostic marker and therapeutic target in cancer patients. Discov Oncol 2024; 15:385. [PMID: 39210158 PMCID: PMC11362465 DOI: 10.1007/s12672-024-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The progress of cancer treatment methods in the last decade has significantly reduced mortality rate among these patients. Nevertheless, cancer is still recognized as one of the main causes of human deaths. One of the main reasons for the high death rate in cancer patients is the late diagnosis in the advanced tumor stages. Therefore, it is necessary to investigate the molecular biology of tumor progressions in order to introduce early diagnostic markers. MicroRNAs (miRNAs) have an important role in regulating cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, they are widely used as non-invasive markers in the early tumor diagnosis. Since, deregulation of miR-98 has been reported in a wide range of cancers, we investigated the molecular mechanisms of miR-98 during tumor progression. It has been reported that miR-98 mainly inhibits the tumor growth by the modulation of transcription factors and signaling pathways. Therefore, miR-98 can be introduced as a tumor marker and therapeutic target among cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Filipescu D, Carcamo S, Agarwal A, Tung N, Humblin É, Goldberg MS, Vyas NS, Beaumont KG, Demircioglu D, Sridhar S, Ghiraldini FG, Capparelli C, Aplin AE, Salmon H, Sebra R, Kamphorst AO, Merad M, Hasson D, Bernstein E. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat Cell Biol 2023; 25:1332-1345. [PMID: 37605008 PMCID: PMC10495263 DOI: 10.1038/s41556-023-01208-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.
Collapse
Affiliation(s)
- Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aman Agarwal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Étienne Humblin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikki S Vyas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subhasree Sridhar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Capparelli
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut Curie, INSERM, U932, and PSL Research University, Paris, France
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Villegas-Pineda JC, Ramírez-de-Arellano A, Bueno-Urquiza LJ, Lizarazo-Taborda MDR, Pereira-Suárez AL. Cancer-associated fibroblasts in gynecological malignancies: are they really allies of the enemy? Front Oncol 2023; 13:1106757. [PMID: 37168385 PMCID: PMC10164963 DOI: 10.3389/fonc.2023.1106757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Molecular and cellular components of the tumor microenvironment are essential for cancer progression. The cellular element comprises cancer cells and heterogeneous populations of non-cancer cells that satisfy tumor needs. Immune, vascular, and mesenchymal cells provide the necessary factors to feed the tumor mass, promote its development, and favor the spread of cancer cells from the primary site to adjacent and distant anatomical sites. Cancer-associated fibroblasts (CAFs) are mesenchymal cells that promote carcinogenesis and progression of various malignant neoplasms. CAFs act through the secretion of metalloproteinases, growth factors, cytokines, mitochondrial DNA, and non-coding RNAs, among other molecules. Over the last few years, the evidence on the leading role of CAFs in gynecological cancers has notably increased, placing them as the cornerstone of neoplastic processes. In this review, the recently reported findings regarding the promoting role that CAFs play in gynecological cancers, their potential use as therapeutic targets, and the new evidence suggesting that they could act as tumor suppressors are analyzed and discussed.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lesly Jazmín Bueno-Urquiza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
5
|
Ding H, Zhang J, Zhang F, Xu Y, Yu Y, Liang W, Li Q. Role of Cancer-Associated fibroblast in the pathogenesis of ovarian Cancer: Focus on the latest therapeutic approaches. Int Immunopharmacol 2022; 110:109052. [DOI: 10.1016/j.intimp.2022.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/05/2022]
|
6
|
Shen M, Duan C, Xie C, Wang H, Li Z, Li B, Wang T. Identification of key interferon-stimulated genes for indicating the condition of patients with systemic lupus erythematosus. Front Immunol 2022; 13:962393. [PMID: 35967341 PMCID: PMC9365928 DOI: 10.3389/fimmu.2022.962393] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous clinical symptoms and severity. There is complex pathogenesis of SLE, one of which is IFNs overproduction and downstream IFN-stimulated genes (ISGs) upregulation. Identifying the key ISGs differentially expressed in peripheral blood mononuclear cells (PBMCs) of patients with SLE and healthy people could help to further understand the role of the IFN pathway in SLE and discover potential diagnostic biomarkers.The differentially expressed ISGs (DEISG) in PBMCs of SLE patients and healthy persons were screened from two datasets of the Gene Expression Omnibus (GEO) database. A total of 67 DEISGs, including 6 long noncoding RNAs (lncRNAs) and 61 messenger RNAs (mRNAs) were identified by the “DESeq2” R package. According to Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, those DEISGs were mainly concentrated in the response to virus and immune system processes. Protein-protein interaction (PPI) network showed that most of these DEISGs could interact strongly with each other. Then, IFIT1, RSAD2, IFIT3, USP18, ISG15, OASL, MX1, OAS2, OAS3, and IFI44 were considered to be hub ISGs in SLE by “MCODE” and “Cytohubba” plugins of Cytoscape, Moreover, the results of expression correlation suggested that 3 lncRNAs (NRIR, FAM225A, and LY6E-DT) were closely related to the IFN pathway.The lncRNA NRIR and mRNAs (RSAD2, USP18, IFI44, and ISG15) were selected as candidate ISGs for verification. RT-qPCR results showed that PBMCs from SLE patients had substantially higher expression levels of 5 ISGs compared to healthy controls (HCs). Additionally, statistical analyses revealed that the expression levels of these ISGs were strongly associated to various clinical symptoms, including thrombocytopenia and facial erythema, as well as laboratory indications, including the white blood cell (WBC) count and levels of autoantibodies. The Receiver Operating Characteristic (ROC) curve demonstrated that the IFI44, USP18, RSAD2, and IFN score had good diagnostic capabilities of SLE.According to our study, SLE was associated with ISGs including NRIR, RSAD2, USP18, IFI44, and ISG15, which may contribute to the future diagnosis and new personalized targeted therapies.
Collapse
Affiliation(s)
- Mengjia Shen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Congcong Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Changhao Xie
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhijun Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Tao Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
- *Correspondence: Tao Wang,
| |
Collapse
|
7
|
The Prognostic Value of lncRNA MCM3AP-AS1 on Clinical Outcomes in Various Cancers: A Meta- and Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:4466776. [PMID: 35783010 PMCID: PMC9249515 DOI: 10.1155/2022/4466776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
Background. MCM3AP antisense RNA 1 (MCM3AP-AS1) is a newly identified potential tumor biomarker. Nevertheless, the prognostic value of MCM3AP-AS1 in cancer has been inconsistent in the available studies. We performed this meta-analysis to identify the prognostic role of MCM3AP-AS1 in various cancers. Methods. We searched PubMed, Web of Science, EMBASE, and the Cochrane Library databases to screen relevant studies. Hazard ratios (HR) or odds ratios (OR) and corresponding 95% confidence intervals (CI) were used to evaluate the relationship between aberrant MCM3AP-AS1 expression and survival and clinicopathological features (CFS) of cancer patients. A meta-analysis was performed using STATA 12.0 software. Additionally, results were validated by an online database based on The Cancer Genome Atlas (TCGA). Subsequently, we analyzed the MCM3AP-AS1-related genes and molecular mechanisms based on the MEM database. Results. Our results showed that overexpression of MCM3AP-AS1 was related to poor overall survival (OS) (
, 95% CI, 1.52–2.64,
) and relapse-free survival (RFS) (
, 95% CI 1.56–6.88,
). In addition, MCM3AP-AS1 overexpression was associated with TNM stage, differentiation grade, and lymph node metastasis, but not significantly with age, gender, and tumor size. In addition, MCM3AP-AS1 overexpression was verified by the GEPIA online database to be associated with poorer survival. The further functional investigation suggested that MCM3AP-AS1 may be involved in several cancer-related pathways. Conclusions. The overexpression of MCM3AP-AS1 was related to poor survival and CFS. MCM3AP-AS1 may be considered a novel prognostic marker and therapeutic target in various cancers.
Collapse
|
8
|
Shil R, Ghosh R, Banerjee AK, Mal C. LncRNA, miRNA and transcriptional co-regulatory network of breast and ovarian cancer reveals hub molecules. Meta Gene 2022. [DOI: 10.1016/j.mgene.2022.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
10
|
Mu J, Gao S, Yang J, Wu F, Zhou H. Fundamental and Clinical Applications of Materials Based on Cancer-Associated Fibroblasts in Cancers. Int J Mol Sci 2021; 22:11671. [PMID: 34769102 PMCID: PMC8583912 DOI: 10.3390/ijms222111671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stromal cells play a role in promoting tumor relapse and therapeutic resistance. Therefore, the current treatment paradigms for cancers are usually insufficient to eradicate cancer cells, and anti-cancer therapeutic strategies targeting stromal cells have been developed. Cancer-associated fibroblasts (CAFs) are perpetually activated fibroblasts in the tumor stroma. CAFs are the most abundant and highly heterogeneous stromal cells, and they are critically involved in cancer occurrence and progression. These effects are due to their various roles in the remodeling of the extracellular matrix, maintenance of cancer stemness, modulation of tumor metabolism, and promotion of therapy resistance. Recently, biomaterials and nanomaterials based on CAFs have been increasingly developed to perform gene or protein expression analysis, three-dimensional (3D) co-cultivation, and targeted drug delivery in cancer treatment. In this review, we systematically summarize the current research to fully understand the relevant materials and their functional diversity in CAFs, and we highlight the potential clinical applications of CAFs-oriented biomaterials and nanomaterials in anti-cancer therapy.
Collapse
Affiliation(s)
- Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (J.M.); (J.Y.)
| | - Shengtao Gao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (J.M.); (J.Y.)
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (J.M.); (J.Y.)
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (J.M.); (J.Y.)
| |
Collapse
|
11
|
Sabol M, Calleja-Agius J, Di Fiore R, Suleiman S, Ozcan S, Ward MP, Ozretić P. (In)Distinctive Role of Long Non-Coding RNAs in Common and Rare Ovarian Cancers. Cancers (Basel) 2021; 13:5040. [PMID: 34680193 PMCID: PMC8534192 DOI: 10.3390/cancers13205040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Rare ovarian cancers (ROCs) are OCs with an annual incidence of fewer than 6 cases per 100,000 women. They affect women of all ages, but due to their low incidence and the potential clinical inexperience in management, there can be a delay in diagnosis, leading to a poor prognosis. The underlying causes for these tumors are varied, but generally, the tumors arise due to alterations in gene/protein expression in cellular processes that regulate normal proliferation and its checkpoints. Dysregulation of the cellular processes that lead to cancer includes gene mutations, epimutations, non-coding RNA (ncRNA) regulation, posttranscriptional and posttranslational modifications. Long non-coding RNA (lncRNA) are defined as transcribed RNA molecules, more than 200 nucleotides in length which are not translated into proteins. They regulate gene expression through several mechanisms and therefore add another level of complexity to the regulatory mechanisms affecting tumor development. Since few studies have been performed on ROCs, in this review we summarize the mechanisms of action of lncRNA in OC, with an emphasis on ROCs.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
| | - Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey;
- Cancer Systems Biology Laboratory (CanSyl), Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland;
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| |
Collapse
|
12
|
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 2021; 14:127. [PMID: 34593006 PMCID: PMC8485521 DOI: 10.1186/s13048-021-00882-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the leading causes of cancer related deaths among women. Due to the asymptomatic tumor progression and lack of efficient screening methods, majority of OC patients are diagnosed in advanced tumor stages. A combination of surgical resection and platinum based-therapy is the common treatment option for advanced OC patients. However, tumor relapse is observed in about 70% of cases due to the treatment failure. Cisplatin is widely used as an efficient first-line treatment option for OC; however cisplatin resistance is observed in a noticeable ratio of cases. Regarding, the severe cisplatin side effects, it is required to clarify the molecular biology of cisplatin resistance to improve the clinical outcomes of OC patients. Cisplatin resistance in OC is associated with abnormal drug transportation, increased detoxification, abnormal apoptosis, and abnormal DNA repair ability. MicroRNAs (miRNAs) are critical factors involved in cell proliferation, apoptosis, and chemo resistance. MiRNAs as non-invasive and more stable factors compared with mRNAs, can be introduced as efficient markers of cisplatin response in OC patients. MAIN BODY In present review, we have summarized all of the miRNAs that have been associated with cisplatin resistance in OC. We also categorized the miRNAs based on their targets to clarify their probable molecular mechanisms during cisplatin resistance in ovarian tumor cells. CONCLUSIONS It was observed that miRNAs mainly exert their role in cisplatin response through regulation of apoptosis, signaling pathways, and transcription factors in OC cells. This review highlighted the miRNAs as important regulators of cisplatin response in ovarian tumor cells. Moreover, present review paves the way of suggesting a non-invasive panel of prediction markers for cisplatin response among OC patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Wang H, Li H, Jiang Q, Dong X, Li S, Cheng S, Shi J, Liu L, Qian Z, Dong J. HOTAIRM1 Promotes Malignant Progression of Transformed Fibroblasts in Glioma Stem-Like Cells Remodeled Microenvironment via Regulating miR-133b-3p/TGFβ Axis. Front Oncol 2021; 11:603128. [PMID: 33816233 PMCID: PMC8017308 DOI: 10.3389/fonc.2021.603128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that cancer associated fibroblasts (CAFs) and glioma stem-like cells (GSCs) played active roles in glioma progression in tumor microenvironment (TME). Long non-coding RNAs (lncRNAs) have been found to be closely associated with glioma development in recent years, however, their molecular regulatory mechanisms on CAFs in GSCs remodeled TME kept largely unelucidated. Our study found that GSCs could induce malignant transformation of fibroblasts (t-FBs) based on dual-color fluorescence tracing orthotopic model. Associated with poor prognosis, Lnc HOXA transcript antisense RNA, myeloid-specific 1 (HOTAIRM1) was highly expressed in high-grade gliomas and t-FBs. Depleting HOTAIRM1 inhibited the proliferation, invasion, migration, and even tumorigenicity of t-FB. Conversely, overexpression of HOTAIRM1 promoted malignancy phenotype of t-FB. Mechanistically, HOTAIRM1 directly bound with miR-133b-3p, and negatively regulated the latter. MiR-133b-3p partly decreased the promotion effect of HOTAIRM1 on t-FBs. Furthermore, transforming growth factor-β (TGFβ) was verified to be a direct target of miR-133b-3p. HOTAIRM1 can modulate TGFβ via competing with miR-133b-3p. Collectively, HOTAIRM1/miR-133b-3p/TGFβ axis was involved in modulating t-FBs malignancy in TME remodeled by GSCs, which had the potential to serve as a target against gliomas.
Collapse
Affiliation(s)
- Haiyang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haoran Li
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qianqian Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuchen Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Suwen Li
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Liang H, Bai Y, Wang H, Yang X. Identification of LncRNA Prognostic Markers for Ovarian Cancer by Integration of Co-expression and CeRNA Network. Front Genet 2021; 11:566497. [PMID: 33664764 PMCID: PMC7920993 DOI: 10.3389/fgene.2020.566497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background Ovarian cancer (OC), one of the most prevalent gynecological malignancies, is characterized by late detection and dismal prognosis. Recent studies show that long non-coding RNAs (lncRNAs) in competitive endogenous RNA (ceRNA) networks influence immune infiltration and cancer prognosis. However, the function of lncRNA in OC immune infiltration and prognosis remains unclear. Methods Transcriptomes of 378 OC samples and clinical data were retrieved from the TCGA repository. Modules related to immune cells were identified using weighted gene co-expression network analysis (WGCNA). Functional enrichment analysis and survival analysis were then performed for the identification of immune-related lncRNAs in the brown module using Cox regression model. Finally, a ceRNA network was constructed by using the lncRNAs and mRNAs from the brown module. Results We found lncRNAs and mRNAs in the brown module to be significantly associated with immune cells in OC and identified 4 lncRNAs as potential OC prognostic markers. We further established that lncRNAs in the ceRNA network influence OC immune infiltration and prognosis by regulating miRNA, ultimately modulating mRNA levels. Conclusion We have identified 4 lncRNAs as independent immune prognostic factors for OC. Furthermore, our findings offer novel insight into lncRNAs as OC immune and prognostic biomarkers.
Collapse
Affiliation(s)
- Huisheng Liang
- Department of Gynecology and Obstetrics, The Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China.,Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China
| | - Yuquan Bai
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Hailong Wang
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, China.,Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Xiangjun Yang
- Department of Gynecology and Obstetrics, The Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Noncoding RNAs in the Interplay between Tumor Cells and Cancer-Associated Fibroblasts: Signals to Catch and Targets to Hit. Cancers (Basel) 2021; 13:cancers13040709. [PMID: 33572359 PMCID: PMC7916113 DOI: 10.3390/cancers13040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer aggressiveness is the result of a proficient bidirectional interaction between tumor and stromal cells within the tumor microenvironment, among which a major role is played by the so-called cancer-associated fibroblasts. Upon such interplay, both cancer cells and fibroblasts are reprogrammed to sustain malignancy, with changes in the repertoire of noncoding RNAs, mainly microRNAs and long noncoding RNAs. Such molecules are also exchanged between the two cell types through extracellular vesicles. In this review, we summarize the current knowledge of microRNAs and long noncoding RNAs that act intracellularly or extracellularly to sustain tumor-stroma interplay. We also provide our view regarding the possible clinical utility of such noncoding RNAs as therapeutic target/tools or biomarkers to predict patient outcome or response to specific treatments. Abstract Cancer development and progression are not solely cell-autonomous and genetically driven processes. Dynamic interaction of cancer cells with the surrounding microenvironment, intended as the chemical/physical conditions as well as the mixture of non-neoplastic cells of the tumor niche, drive epigenetic changes that are pivotal for the acquisition of malignant traits. Cancer-associated fibroblasts (CAF), namely fibroblasts that, corrupted by cancer cells, acquire a myofibroblast-like reactive phenotype, are able to sustain tumor features by the secretion of soluble paracrine signals and the delivery extracellular vesicles. In such diabolic liaison, a major role has been ascribed to noncoding RNAs. Defined as RNAs that are functional though not being translated into proteins, noncoding RNAs predominantly act as regulators of gene expression at both the transcriptional and post-transcriptional levels. In this review, we summarize the current knowledge of microRNAs and long noncoding RNAs that act intracellularly in either CAFs or cancer cells to sustain tumor-stroma interplay. We also report on the major role of extracellular noncoding RNAs that are bidirectionally transferred between either cell type. Upon presenting a comprehensive view of the existing literature, we provide our critical opinion regarding the possible clinical utility of tumor-stroma related noncoding RNAs as therapeutic target/tools or prognostic/predictive biomarkers.
Collapse
|
16
|
Fang Z, Xu J, Zhang B, Wang W, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. The promising role of noncoding RNAs in cancer-associated fibroblasts: an overview of current status and future perspectives. J Hematol Oncol 2020; 13:154. [PMID: 33213510 PMCID: PMC7678062 DOI: 10.1186/s13045-020-00988-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
As the most important component of the stromal cell population in the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) are crucial players in tumor initiation and progression. The interaction between CAFs and tumor cells, as well as the resulting effect, is much greater than initially expected. Numerous studies have shown that noncoding RNAs (ncRNAs) play an irreplaceable role in this interplay, and related evidence continues to emerge and advance. Under the action of ncRNAs, normal fibroblasts are directly or indirectly activated into CAFs, and their metabolic characteristics are changed; thus, CAFs can more effectively promote tumor progression. Moreover, via ncRNAs, activated CAFs can affect the gene expression and secretory characteristics of cells, alter the TME and enhance malignant biological processes in tumor cells to contribute to tumor promotion. Previously, ncRNA dysregulation was considered the main mechanism by which ncRNAs participate in the crosstalk between CAFs and tumor cells. Recently, however, exosomes containing ncRNAs have been identified as another vital mode of interaction between these two types of cells, with a more direct and clear function. Gaining an in-depth understanding of ncRNAs in CAFs and the complex regulatory network connecting CAFs with tumor cells might help us to establish more effective and safer approaches for cancer therapies targeting ncRNAs and CAFs and offer new hope for cancer patients.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Uddin MN, Wang X. The landscape of long non-coding RNAs in tumor stroma. Life Sci 2020; 264:118725. [PMID: 33166593 DOI: 10.1016/j.lfs.2020.118725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
AIMS Long non-coding RNAs (lncRNAs) are associated with cancer development, while their relationship with the cancer-associated stromal components remains poorly understood. In this review, we performed a broad description of the functional landscape of stroma-associated lncRNAs in various cancers and their roles in regulating the tumor-stroma crosstalk. MATERIALS AND METHODS We carried out a systematic literature review of PubMed, Scopus, Medline, Bentham, and EMBASE (Elsevier) databases by using the keywords "LncRNAs in cancer," "LncRNAs in tumor stroma," "stroma," "cancer-associated stroma," "stroma in the tumor microenvironment," "tumor-stroma crosstalk," "drug resistance of stroma," and "stroma in immunosuppression" till July 2020. We collected the latest articles addressing the biological functions of stroma-associated lncRNAs in cancer. KEY FINDINGS These articles reported that dysregulated stroma-associated lncRNAs play significant roles in modulating the tumor microenvironment (TME) by the regulation of tumor-stroma crosstalk, epithelial to mesenchymal transition (EMT), endothelial to mesenchymal transition (EndMT), extracellular matrix (ECM) turnover, and tumor immunity. SIGNIFICANCE The tumor stroma is a substantial portion of the TME, and the dysregulation of tumor stroma-associated lncRNAs significantly contributes to cancer initiation, progression, angiogenesis, immune evasion, metastasis, and drug resistance. Thus, stroma-associated lncRNAs could be potentially useful targets for cancer therapy.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China; Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
18
|
Dong L, Cao X, Luo Y, Zhang G, Zhang D. A Positive Feedback Loop of lncRNA DSCR8/miR-98-5p/STAT3/HIF-1α Plays a Role in the Progression of Ovarian Cancer. Front Oncol 2020; 10:1713. [PMID: 32984052 PMCID: PMC7492662 DOI: 10.3389/fonc.2020.01713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Background Accumulating studies have revealed that long non-coding RNA (lncRNA) and microRNA (miRNA) contribute to ovarian cancer (OC). DSCR8 has been found to mediate hepatocellular carcinoma development, while its role in OC remains to be explored. Methods In this study, lncRNA DSCR8 and miR-98-5p expressions in OC tissues and adjacent non-cancer tissues were determined by reverse transcriptase polymerase chain reaction (RT-PCR). Besides, gain-of-function or loss-of-function assays of DSCR8 and miR-98-5p were conducted on OC cell lines SKOV-3 and A2780. Cell proliferation was detected with Cell Counting Kit (CCK)8 and colony formation assay, and western blot was used to test the apoptotic levels of OC cells. Transwell assay was conducted to examine cell invasion, and the epithelial–mesenchymal transition (EMT) of OC cells was tested by western blot. Moreover, luciferase activity assay and RNA immunoprecipitation (RIP) assay were conducted to verify the relationships between DSCR8 and miR-98-5p, miR-98-5p, and signal transducer and activator of transcription 3 (STAT3). Results DSCR8 was remarkedly increased in OC tissues and associated with poorer survival of OC patients. Overexpressing DSCR8 promoted cell proliferation, invasion, and EMT but inhibited apoptosis. On the other hand, miR-98-5p was downregulated in OC tissues and relieved the progression of OC. Moreover, overexpressed DSCR8 increased the levels of STAT3 and hypoxia inducible factor 1 alpha (HIF-1α) and dampened the functions of miR-98-5p on OC. Pharmaceutical intervention of STAT3 and HIF-1α significantly altered the expressions of DSCR8 and miR-98-5p. Conclusion The present results suggested a positive feedback loop of lncRNA DSCR8/miR-98-5p/STAT3/HIF-α axis in the progression of OC.
Collapse
Affiliation(s)
- Lina Dong
- Department of Obstetrics and Gynecology Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejiao Cao
- Department of Obstetrics and Gynecology Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guoqing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Liu J, Hu HB, Liu YM, Li FX, Zhang LP, Liao ZM. LncRNA HOTTIP promotes the proliferation and invasion of ovarian cancer cells by activating the MEK/ERK pathway. Mol Med Rep 2020; 22:3667-3676. [PMID: 33000231 PMCID: PMC7533522 DOI: 10.3892/mmr.2020.11452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have revealed that long non-coding RNAs (lncRNAs) serve important roles in carcinogenesis and that this type of gene may be used as biomarkers in cancer. A high level of lncRNA HOXA distal transcript antisense RNA (HOTTIP) is associated with unfavorable prognosis for patients with ovarian cancer (OC), but the mechanism of HOTTIP involved in OC development remains to be elucidated. The present study aimed to investigate the mechanism of HOTTIP in metastasis-associated OC cell behaviors. HOTTIP levels in ovarian cells were quantified by reverse transcription-quantitative PCR, cell proliferation was analyzed by colony formation assay, and apoptosis was assessed by flow cytometry. Cell migratory and invasive abilities were evaluated by wound healing and Transwell assays, respectively. The expression levels of mitogen-activated protein kinase kinase (MEK)/ERK pathway-associated proteins were detected by western blotting. The results demonstrated that knockdown of HOTTIP in OC cells significantly reduced the phosphorylation levels of MEK and ERK, inhibited the proliferation and invasion of OC cells and promoted their apoptosis. Furthermore, the effects of HOTTIP on cell migration and invasion were partly associated with the epithelial-mesenchymal transition (EMT) process. Proliferation, invasion and EMT of OC cells were enhanced following overexpression of HOTTIP; however, these effects were reversed by the MEK/ERK pathway inhibitor U0126. In conclusion, HOTTIP was demonstrated to promote the proliferation, migration and invasion of OC cells by activating the MEK/ERK pathway. Therefore, HOTTIP may serve as a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Jian Liu
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Hong-Bo Hu
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Yan-Ming Liu
- Department of Clinical Laboratory, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Fan-Xiang Li
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Liu-Ping Zhang
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Zong-Min Liao
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
20
|
Baker LA, Holliday H, Roden D, Krisp C, Wu SZ, Junankar S, Serandour AA, Mohammed H, Nair R, Sankaranarayanan G, Law AMK, McFarland A, Simpson PT, Lakhani S, Dodson E, Selinger C, Anderson L, Samimi G, Hacker NF, Lim E, Ormandy CJ, Naylor MJ, Simpson K, Nikolic I, O'Toole S, Kaplan W, Cowley MJ, Carroll JS, Molloy M, Swarbrick A. Proteogenomic analysis of Inhibitor of Differentiation 4 (ID4) in basal-like breast cancer. Breast Cancer Res 2020; 22:63. [PMID: 32527287 PMCID: PMC7291584 DOI: 10.1186/s13058-020-01306-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.
Collapse
Affiliation(s)
- Laura A Baker
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Daniel Roden
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- Mass Spectrometric Proteome Analysis, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sunny Z Wu
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Simon Junankar
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Aurelien A Serandour
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Hisham Mohammed
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Radhika Nair
- Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Geetha Sankaranarayanan
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Andrew M K Law
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrea McFarland
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Peter T Simpson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sunil Lakhani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, , Brisbane, QLD, Australia
| | - Eoin Dodson
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christina Selinger
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Lyndal Anderson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Goli Samimi
- National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Neville F Hacker
- School of Women's and Children's Health, University of New South Wales, and Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, NSW, Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christopher J Ormandy
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Matthew J Naylor
- School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kaylene Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sandra O'Toole
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Warren Kaplan
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Mark J Cowley
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jason S Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Mark Molloy
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
21
|
Zhou L, Zhu Y, Sun D, Zhang Q. Emerging Roles of Long non-coding RNAs in The Tumor Microenvironment. Int J Biol Sci 2020; 16:2094-2103. [PMID: 32549757 PMCID: PMC7294937 DOI: 10.7150/ijbs.44420] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of longer than 200 nucleotides RNA transcripts that have limited protein coding capacity. LncRNAs display diverse cellular functions and widely participate in both physiological and pathophysiological processes. Aberrant expressions of lncRNAs are correlated with tumor progression, providing sound rationale for their targeting as attractive anti-tumor therapeutic strategies. Emerging evidences support that lncRNAs participate in tumor-stroma crosstalk and stimulate a distinctive and suitable tumor microenvironment (TME). The TME comprises several stromal cells such as cancer stem cells (CSCs), cancer-associated endothelial cells (CAEs), cancer-associated fibroblasts (CAFs) and infiltrated immune cells, all of which are involved in the complicated crosstalk with tumor cells to affect tumor progression. In this review, we summarize the essential properties and functional roles of known lncRNAs in related to the TME to validate lncRNAs as potential biomarkers and promising anti-cancer targets.
Collapse
Affiliation(s)
- Lisha Zhou
- Taizhou University hospital, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yingying Zhu
- Taizhou University hospital, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Dongsheng Sun
- Taizhou University hospital, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Qiang Zhang
- Taizhou Municipal Hospital, Taizhou University, Taizhou, Zhejiang, 318000, China
| |
Collapse
|
22
|
Colvin EK, Howell VM, Mok SC, Samimi G, Vafaee F. Expression of long noncoding RNAs in cancer-associated fibroblasts linked to patient survival in ovarian cancer. Cancer Sci 2020; 111:1805-1817. [PMID: 32058624 PMCID: PMC7226184 DOI: 10.1111/cas.14350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 02/01/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor microenvironment and are responsible for producing the desmoplastic reaction that is a poor prognostic factor in ovarian cancer. Long non-coding RNAs (lncRNAs) have been shown to play important roles in cancer. However, very little is known about the role of lncRNAs in the tumor microenvironment. We aimed to identify lncRNAs expressed in ovarian CAFs that were associated with patient survival and used computational approaches to predict their function. Increased expression of 9 lncRNAs and decreased expression of 1 lncRNA in ovarian CAFs were found to be associated with poorer overall survival. A "guilt-by-association" approach was used to predict the function of these lncRNAs. In particular, MIR155HG was predicted to play a role in immune response. Further investigation revealed high MIR155HG expression to be associated with higher infiltrates of immune cell subsets. In conclusion, these data indicate expression on several lncRNAs in CAFs are associated with patient survival and are likely to play an important role in regulating CAF function.
Collapse
Affiliation(s)
- Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Sydney, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Sydney, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Samuel C Mok
- Division of Surgery, Department of Gynecologic Oncology and Reproductive Medicine Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Goli Samimi
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
23
|
Downstream Effectors of ILK in Cisplatin-Resistant Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12040880. [PMID: 32260415 PMCID: PMC7226328 DOI: 10.3390/cancers12040880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Despite good responses to first-line treatment with platinum-based combination chemotherapy, most ovarian cancer patients will relapse and eventually develop platinum-resistant disease with poor prognosis. Although reports suggest that integrin-linked kinase (ILK) is a potential target for ovarian cancer treatment, identification of ILK downstream effectors has not been fully explored. The purpose of this study was to investigate the molecular and biological effects of targeting ILK in cisplatin-resistant ovarian cancer. Western blot analysis showed that phosphorylation levels of ILK were higher in cisplatin-resistant compared with cisplatin-sensitive ovarian cancer cells. Further immunohistochemical analysis of ovarian cancer patient samples showed a significant increase in phosphorylated ILK levels in the tumor tissue when compared to normal ovarian epithelium. Targeting ILK by small-interfering RNA (siRNA) treatment reduced cisplatin-resistant cell growth and invasion ability, and increased apoptosis. Differential gene expression analysis by RNA sequencing (RNA-Seq) upon ILK-siRNA transfection followed by Ingenuity Pathway Analysis (IPA) and survival analysis using the Kaplan-Meier plotter database identified multiple target genes involved in cell growth, apoptosis, invasion, and metastasis, including several non-coding RNAs. Taken together, results from this study support ILK as an attractive target for ovarian cancer and provide potential ILK downstream effectors with prognostic and therapeutic value.
Collapse
|
24
|
Hunt AL, Pierobon M, Baldelli E, Oliver J, Mitchell D, Gist G, Bateman NW, Larry Maxwell G, Petricoin EF, Conrads TP. The impact of ultraviolet- and infrared-based laser microdissection technology on phosphoprotein detection in the laser microdissection-reverse phase protein array workflow. Clin Proteomics 2020; 17:9. [PMID: 32165870 PMCID: PMC7061469 DOI: 10.1186/s12014-020-09272-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Reversible protein phosphorylation represents a key mechanism by which signals are transduced in eukaryotic cells. Dysregulated phosphorylation is also a hallmark of carcinogenesis and represents key drug targets in the precision medicine space. Thus, methods that preserve phosphoprotein integrity in the context of clinical tissue analyses are crucially important in cancer research. Here we investigated the impact of UV laser microdissection (UV LMD) and IR laser capture microdissection (IR LCM) on phosphoprotein abundance of key cancer signaling protein targets assessed by reverse-phase protein microarray (RPPA). Tumor epithelial cells from consecutive thin sections obtained from four high-grade serous ovarian cancers were harvested using either UV LMD or IR LCM methods. Phosphoprotein abundances for ten phosphoproteins that represent important drug targets were assessed by RPPA and revealed no significant differences in phosphoprotein integrity from those obtained using higher-energy UV versus the lower-energy IR laser methods.
Collapse
Affiliation(s)
- Allison L. Hunt
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - G. Larry Maxwell
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Thomas P. Conrads
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- 3289 Woodburn Rd, Suite 375, Annandale, VA 22003 USA
| |
Collapse
|
25
|
Guo H, Ha C, Dong H, Yang Z, Ma Y, Ding Y. Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int 2019; 19:347. [PMID: 31889899 PMCID: PMC6925473 DOI: 10.1186/s12935-019-1051-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer (OC) is a gynecological malignancy with a high mortality. Cisplatin-based treatment is the typical treatment regimen for OC patients; however, it may cause unfavorable resistance. The current study intends to explore the function of cancer-associated fibroblast (CAF)-derived exosomal microRNA-98-5p (miR-98-5p) in cisplatin resistance in OC, and the participation of CDKN1A. Methods Bioinformatics analysis was employed in order to obtain cisplatin resistance-related differential genes in OC as well as possible upstream regulatory miRs. After gain- and loss-of-function assays in OC cells, RT-qPCR and western blot analysis were employed to measure CDKN1A and miR-98-5p expression. Dual luciferase reporter assay was applied to verify the targeting relationship between miR-98-5p and CDKN1A. CAFs were treated with miR-98-5p inhibitor, and then exosomes were isolated and co-cultured with OC cells. CCK-8, colony formation and flow cytometry assays were conducted to assess cell proliferation, cell colony formation, cell cycle distribution and cell apoptosis, respectively. At last, xenograft tumor in nude mice was carried out to test whether exosomal miR-98-5p could affect cisplatin resistance in OC in vivo. Results CDKN1A was highly expressed in cisplatin-sensitive OC cell lines, and silencing CDKN1A significantly promoted proliferation and cell cycle entry but decreased apoptosis in cisplatin-sensitive OC cells. miR-98-5p targeted CDKN1A to inhibit CDKN1A expression. CAF-derived exosomal miR-98-5p increased OC cell proliferation and cell cycle entry, but suppressed cell apoptosis. Furthermore, exosomal miR-98-5p promoted cisplatin resistance and downregulated CDKN1A in nude mice. Conclusion Collectively, CAF-derived exosomes carrying overexpressed miR-98-5p promote cisplatin resistance in OC by downregulating CDKN1A.
Collapse
Affiliation(s)
- Hua Guo
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Chunfang Ha
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Hui Dong
- 2Scientific Research Equipment Management Center, General Hospital of Ningxia Medical University, Yinchuan, 750004 People's Republic of China
| | - Zhijuan Yang
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Yuan Ma
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Yonghui Ding
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| |
Collapse
|
26
|
Martinez VG, Munera-Maravilla E, Bernardini A, Rubio C, Suarez-Cabrera C, Segovia C, Lodewijk I, Dueñas M, Martínez-Fernández M, Paramio JM. Epigenetics of Bladder Cancer: Where Biomarkers and Therapeutic Targets Meet. Front Genet 2019; 10:1125. [PMID: 31850055 PMCID: PMC6902278 DOI: 10.3389/fgene.2019.01125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the most common neoplasia of the urothelial tract. Due to its high incidence, prevalence, recurrence and mortality, it remains an unsolved clinical and social problem. The treatment of BC is challenging and, although immunotherapies have revealed potential benefit in a percentage of patients, it remains mostly an incurable disease at its advanced state. Epigenetic alterations, including aberrant DNA methylation, altered chromatin remodeling and deregulated expression of non-coding RNAs are common events in BC and can be driver events in BC pathogenesis. Accordingly, these epigenetic alterations are now being used as potential biomarkers for these disorders and are being envisioned as potential therapeutic targets for the future management of BC. In this review, we summarize the recent findings in these emerging and exciting new aspects paving the way for future clinical treatment of this disease.
Collapse
Affiliation(s)
- Victor G. Martinez
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Ester Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alejandra Bernardini
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristian Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Cristina Segovia
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Iris Lodewijk
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mónica Martínez-Fernández
- Genomes & Disease Lab, CiMUS (Center for Research in Molecular Medicine and Chronic Diseases), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesus Maria Paramio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
27
|
Long non-coding RNA MEG3 regulates proliferation, apoptosis, and autophagy and is associated with prognosis in glioma. J Neurooncol 2018; 140:281-288. [DOI: 10.1007/s11060-018-2874-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/15/2018] [Indexed: 12/16/2022]
|
28
|
Liu JX, Li W, Li JT, Liu F, Zhou L. Screening key long non-coding RNAs in early-stage colon adenocarcinoma by RNA-sequencing. Epigenomics 2018; 10:1215-1228. [PMID: 30182733 DOI: 10.2217/epi-2017-0155] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM We aim to identify the key long noncoding RNAs (lncRNAs) in early-stage colon adenocarcinoma (COAD). PATIENTS & METHODS Compared with colonic intraepithelial neoplasia, differentially expressed lncRNAs (DElncRNAs) in early-stage COAD were obtained by RNA-sequencing. Our previous work has obtained the differentially expressed mRNAs and miRNAs (DEmRNAs and DEmiRNAs) in early-stage COAD. DEmiRNA-DElncRNA-DEmRNA interaction analysis and functional annotation were performed. Validation of expression and receiver-operating characteristic analyses were performed based on The Cancer Genome Atlas. RESULTS Seventy-nine significantly DElncRNAs in early-stage COAD were obtained. MiR-153-3p-TUG1-DAPK1/ARNT2/KLK3/PLD1/SMAD2 and miR-153-3p-SNHG17-COL11A1/IGFBP3/KLF6 interactions were associated with early-stage COAD. Five DElncRNAs (ELFN1-AS1, LINC01234, SNHG17, UCA1 and LOC101929549) involved in early-stage COAD with potential diagnostic value. CONCLUSION LncRNAs involve in early-stage COAD by interaction with COAD-regulated genes and miRNAs.
Collapse
Affiliation(s)
- Ji-Xi Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Wen Li
- Department of Surgical ICU, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Jing-Tao Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Lei Zhou
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, PR China
| |
Collapse
|
29
|
Zhao X, Li X, Zhou L, Ni J, Yan W, Ma R, Wu J, Feng J, Chen P. LncRNA HOXA11-AS drives cisplatin resistance of human LUAD cells via modulating miR-454-3p/Stat3. Cancer Sci 2018; 109:3068-3079. [PMID: 30099826 PMCID: PMC6172072 DOI: 10.1111/cas.13764] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/20/2018] [Accepted: 07/29/2018] [Indexed: 12/30/2022] Open
Abstract
Over the past several years, long non‐coding RNAs (lncRNAs) have attracted more and more attention due to their special functions. They are vital biomarkers in multiple diseases. LncRNA HOMEOBOX A11 (HOXA11) has been found to be aberrantly expressed in some kinds of malignant tumors. In this study, we mainly discuss the oncogenic role of it in promoting malignant progression and chemoresistance in lung adenocarcinoma (LUAD) cells. The expression of HOXA11‐AS was much stronger in cisplatin‐resistant LUAD cells. Based on The Cancer Genome Atlas database, patients with high expression of HOXA11‐AS had shorter survival time. Additionally, knockdown of HOXA11‐AS caused positive changes in cell activities of LUAD. For example, cell proliferation and migration were weakened, the epithelial mesenchymal transition process was reversed, and apoptosis was induced. These changes were more obvious in cells treated with cisplatin. Next, the HOXA11‐AS/miR‐454‐3p/Stat3 (signal transducer and activator of transcription 3) pathway was found to influence the cisplatin resistance of LUAD cells. HOXA11‐AS specifically acted as a competing endogenous RNA (ceRNA) in LUAD cells. The combinations among these three genes were demonstrated. Finally, rescue assays were applied to demonstrate the ceRNA pattern consisting of HOXA11‐AS, miR‐454‐3p and Stat3. In conclusion, lncRNA HOXA11‐AS acted as a ceRNA to promote cisplatin resistance of human LUAD cells via the miR‐454‐3p/Stat3 axis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Xiaoyou Li
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Leilei Zhou
- Department of Oncology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jie Ni
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wenyue Yan
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Rong Ma
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| |
Collapse
|
30
|
Klymenko Y, Nephew KP. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel) 2018; 10:E295. [PMID: 30200265 PMCID: PMC6162502 DOI: 10.3390/cancers10090295] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic dissemination of epithelial ovarian cancer (EOC) predominantly occurs through direct cell shedding from the primary tumor into the intra-abdominal cavity that is filled with malignant ascitic effusions. Facilitated by the fluid flow, cells distribute throughout the cavity, broadly seed and invade through peritoneal lining, and resume secondary tumor growth in abdominal and pelvic organs. At all steps of this unique metastatic process, cancer cells exist within a multidimensional tumor microenvironment consisting of intraperitoneally residing cancer-reprogramed fibroblasts, adipose, immune, mesenchymal stem, mesothelial, and vascular cells that exert miscellaneous bioactive molecules into malignant ascites and contribute to EOC progression and metastasis via distinct molecular mechanisms and epigenetic dysregulation. This review outlines basic epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulators, and summarizes current knowledge on reciprocal interactions between each participant of the EOC cellular milieu and tumor cells in the context of aberrant epigenetic crosstalk. Promising research directions and potential therapeutic strategies that may encompass epigenetic tailoring as a component of complex EOC treatment are discussed.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
31
|
Ghoneum A, Afify H, Salih Z, Kelly M, Said N. Role of tumor microenvironment in the pathobiology of ovarian cancer: Insights and therapeutic opportunities. Cancer Med 2018; 7:5047-5056. [PMID: 30133163 PMCID: PMC6198242 DOI: 10.1002/cam4.1741] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/15/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is the fifth most common cancer affecting women and at present, stands as the most lethal gynecologic malignancy. The poor disease outcome is due to the nonspecific symptoms and the lack of effective treatment at advanced stages. Thus, it is of utmost importance to understand ovarian carcinoma through several lenses and to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This review seeks to highlight several determinants of this unique tumor microenvironment, their influence on disease outcome and ongoing clinical trials targeting these determinants.
Collapse
Affiliation(s)
- Alia Ghoneum
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Hesham Afify
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Ziyan Salih
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Michael Kelly
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina.,Department of Pathology, Wake Forest University School of Medicine, Winston Salem, North Carolina.,Department of Urology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
32
|
Wu C, Zhu X, Tao K, Liu W, Ruan T, Wan W, Zhang C, Zhang W. MALAT1 promotes the colorectal cancer malignancy by increasing DCP1A expression and miR203 downregulation. Mol Carcinog 2018; 57:1421-1431. [PMID: 29964337 DOI: 10.1002/mc.22868] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/03/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
The long non-coding RNA MALAT1 has been proved to promote the cell proliferation, drug resistance, invasion, and metastasis of colorectal cancer (CRC) in vitro and in vivo by regulating the expression of various oncogenes and their protein products. Our previous work discovered that the expression of the mRNA-decapping enzymes 1a (DCP1A) is upregulated in CRCs. However, the relationships between MALAT1 and DCP1A in the development of CRC and the underlying mechanisms are still unclear. In this study, we investigated the molecular mechanisms by which MALAT1 and DCP1A may be linked to contribute to the malignancies of CRCs. We found that DCP1A is a direct target molecule of MALAT1. Moreover, by screening the downstream genes of MALAT1, we noticed that microRNA 203(miR203), an oncogene suppressor in numerous cancers, is inversely correlated to both MALAT1 and DCP1A expressions. Following MALAT1 knockdown, we observed overexpression of miR203 accompanied with DCP1A downregulation to a level that reversed the promoted cell proliferation, invasion, and migration in vitro and in vivo, which could be restored by miR203 knockdown or DCP1A overexpression. These results proposed a new molecular mechanism of MALAT-miR203-DCP1A axis which is involved with the development and contributes to the malignancy of colorectal cancers.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenze Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weikang Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Zhou B, Yu Y, Yu L, Que B, Qiu R. Sipi soup inhibits cancer‑associated fibroblast activation and the inflammatory process by downregulating long non‑coding RNA HIPK1‑AS. Mol Med Rep 2018; 18:1361-1368. [PMID: 29901171 PMCID: PMC6072218 DOI: 10.3892/mmr.2018.9144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/24/2018] [Indexed: 12/16/2022] Open
Abstract
Sipi soup (SPS), the aqueous extract derived from the root bark of Sophora japonical L, Salix babylonica L., Morus alba L., as well as Amygdalus davidiana (Carr.) C. de Vos, is a traditional Chinese medicine frequently used to prevent and treat infection and inflammation. However, the role of SPS in cancer-associated fibroblasts (CAFs) require further investigation. In the present study, the effects of SPS on fibroblast inactivation and the underlying mechanism were investigated. Reverse transcription-quantitative polymerase chain reaction was used to analyze the mRNA expression levels of fibroblast activation protein (FAP), interleukin (IL)-6, α-smooth muscle actin (α-SMA) and programmed cell death 4 (PDCD4). Flow cytometry was used to evaluate cell apoptosis. Immunofluorescence was used to determine the number of activated fibroblasts. The present study reported that SPS treatment did not affect the proliferative apoptotic potential of fibroblasts. Treatment with HeLa cell culture medium (CM) induced a significant increase in the expression levels of FAP, IL-6 and α-SMA, but reduced the expression of PDCD4. SPS reversed the effects of HeLa CM on the expression of these genes. Analysis with a long non-coding (lnc)RNA array of numerous differentially expressed lncRNAs revealed that the expression levels of the lncRNA homeodomain-interacting protein kinase 1 antisense RNA (HIPK1-AS) were increased in cervicitis tissues and cervical squamous cell carcinoma tissues compared with in normal cervical tissues. HIPK1-AS expression levels were upregulated in response to HeLa CM, but were decreased under SPS treatment. The downregulation of HIPK1-AS expression via short hairpin RNA abolished the effects of HeLa CM on the expression of inflammation-associated genes. The findings of the present study suggested that SPS may prevent the progression of cervical cancer by inhibiting the activation of CAF and the inflammatory process by reducing HIPK1-AS expression.
Collapse
Affiliation(s)
- Bingxiu Zhou
- Department of Obstetrics and Gynecology, Weihai Maternal and Child Health Hospital, Weihai, Shandong 264200, P.R. China
| | - Yuanyuan Yu
- Department of Chinese Medicine Gynecology, Weihai Maternal and Child Health Hospital, Weihai, Shandong 264200, P.R. China
| | - Lixia Yu
- Department of Obstetrics and Gynecology, Weihai Maternal and Child Health Hospital, Weihai, Shandong 264200, P.R. China
| | - Binfu Que
- Department of Acupuncture and Moxibustion, Longyan First Hospital, Longyan, Fujian 364000, P.R. China
| | - Rui Qiu
- Department of Acupuncture and Moxibustion, Longyan First Hospital, Longyan, Fujian 364000, P.R. China
| |
Collapse
|
34
|
Del Vecchio F, Lee GH, Hawezi J, Bhome R, Pugh S, Sayan E, Thomas G, Packham G, Primrose J, Pichler M, Mirnezami A, Calin G, Bullock M. Long non-coding RNAs within the tumour microenvironment and their role in tumour-stroma cross-talk. Cancer Lett 2018; 421:94-102. [PMID: 29458141 DOI: 10.1016/j.canlet.2018.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of RNA transcripts which have limited protein coding potential. They perform a variety of cellular functions in health, but have also been implicated during malignant transformation. A further theme in recent years is the critical role of the tumour microenvironment and the dynamic interactions between cancer and stromal cells in promoting invasion and disease progression. Whereas the contribution of deregulated lncRNAs within cancer cells has received considerable attention, their significance within the tumour microenvironment is less well understood. The tumour microenvironment consists of cancer-associated stromal cells and structural extracellular components which interact with one another and with the transformed epithelium via complex extracellular signalling pathways. LncRNAs are directly and indirectly involved in tumour/stroma cross-talk and help stimulate a permissive tumour microenvironment which is more conducive for invasive tumour growth. Furthermore, lncRNAs play key roles in determining the phenotype of cancer associated stromal cells and contribute to angiogenesis and immune evasion pathways, extracellular-matrix (ECM) turnover and the response to hypoxic stress. Here we explore the multifaceted roles of lncRNAs within the tumour microenvironment and their putative pathophysiological effects.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Gui Han Lee
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Joamir Hawezi
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Rahul Bhome
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Sian Pugh
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Emre Sayan
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Gareth Thomas
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Graham Packham
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - John Primrose
- Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander Mirnezami
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - George Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Marc Bullock
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK.
| |
Collapse
|