1
|
Kakizaki H, Vaidya A, Naito M, Takahashi Y. Elastic Fibers in Orbital Septum. Ophthalmic Plast Reconstr Surg 2025; 41:341-343. [PMID: 39560104 DOI: 10.1097/iop.0000000000002816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
PURPOSE To examine microscopically the nature of the elastic fibers of the orbital septum in elderly specimens in comparison with the young specimen. METHODS Histological evaluation of 15 tissues of the orbital septa from upper eyelid (8 right, 7 left) from 11 Japanese cadavers (age range: 36-94 years old, average: 75.5) was performed. The 36-year-old specimen was the only sample with a young age, so it was used as the reference. The age range of the other specimens was, therefore, from 54 to 94, with an average of 79.4 years old. The specimens were fixed in 10% formalin and stained with Elastica van Gieson. RESULTS Elastic fibers in the orbital septa were stained with Elastica van Gieson. The elastic fibers from the elderly specimens illustrated fragmentation, but those from the 36-year-old specimen showed flexibility. CONCLUSION The elastic fibers in older specimens underwent fragmentation, while those in the young one were flexible.
Collapse
Affiliation(s)
- Hirohiko Kakizaki
- Department of Oculoplastic, Orbital & Lacrimal Surgery, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Aric Vaidya
- Department of Oculoplastic, Orbital & Lacrimal Surgery, Kirtipur Eye Hospital, Kathmandu, Nepal
| | - Munekazu Naito
- Department of Anatomy, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yasuhiro Takahashi
- Department of Oculoplastic, Orbital & Lacrimal Surgery, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| |
Collapse
|
2
|
Ma Q, Feng X, Chen Y, Zhang J, Sun C. Mechanical stress contributes to ligamentum flavum hypertrophy by inducing local inflammation and myofibroblast transition in the innovative surgical rabbit model. Front Immunol 2025; 16:1541577. [PMID: 40303410 PMCID: PMC12037363 DOI: 10.3389/fimmu.2025.1541577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Background Lumbar spinal canal stenosis (LSCS) ranks as a prevalent spinal disorder in senior populations. Ligamentum flavum hypertrophy (LFH) is a significant feature of LSCS, yet its cause is unclear. The purpose of this study was to create a novel animal model for LFH and explore the pathological mechanisms involved. Methods A novel rabbit model for intervertebral mechanical stress concentration was established through posterolateral fusion using steel wire. Radiological analysis and biological validation were used to determine the crucial role of mechanical stress in LFH and explore the effect of this animal model. Results After 12 weeks, the LF subjected to mechanical stress concentration exhibited a disruption and reduction in elastic fibers, collagen accumulation, increased thickness of LF, elevated LF cells, and increased levels of certain factors related to fibrosis and inflammation. These findings were histologically consistent to those found in human LFH. Furthermore, in vitro, mechanical stretch was discovered to enhance the conversion of fibroblasts into myofibroblasts by boosting TGF-β1 secretion in LF fibroblasts. In addition, compared to conventional internal fixation, this new surgical model provided advantages such as minor damage, decreased bleeding, and reduced technical difficulty and molding costs. Conclusion This novel rabbit model is able to replicate the moderate pathological features of human LFH. Mechanical stress is an independent factor leading to LFH, which can promote the TGF-β1 secretion in LF cells and some inflammatory cells, subsequently induce the myofibroblast transition, and finally result in collagen accumulation and LF fibrosis.
Collapse
Affiliation(s)
| | | | | | - Jue Zhang
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Hong JY, Kim H, Jeon WJ, Yeo C, Kim H, Lee J, Lee YJ, Ha IH. Animal Models of Intervertebral Disc Diseases: Advantages, Limitations, and Future Directions. Neurol Int 2024; 16:1788-1818. [PMID: 39728755 DOI: 10.3390/neurolint16060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Animal models are valuable tools for studying the underlying mechanisms of and potential treatments for intervertebral disc diseases. In this review, we discuss the advantages and limitations of animal models of disc diseases, focusing on lumbar spinal stenosis, disc herniation, and degeneration, as well as future research directions. The advantages of animal models are that they enable controlled experiments, long-term monitoring to study the natural history of the disease, and the testing of potential treatments. However, they also have limitations, including species differences, ethical concerns, a lack of standardized protocols, and short lifespans. Therefore, ongoing research focuses on improving animal model standardization and incorporating advanced imaging and noninvasive techniques, genetic models, and biomechanical analyses to overcome these limitations. These future directions hold potential for improving our understanding of the underlying mechanisms of disc diseases and for developing new treatments. Overall, although animal models can provide valuable insights into pathophysiology and potential treatments for disc diseases, their limitations should be carefully considered when interpreting findings from animal studies.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| |
Collapse
|
4
|
Li L, Zheng ZZ, Jiang JJ, Chen JL, Jiang B, Li YW, Dai YL, Wang B. CTSD upregulation as a key driver of spinal ligament abnormalities in spinal stenosis. Bone 2024; 186:117174. [PMID: 38917962 DOI: 10.1016/j.bone.2024.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Spinal stenosis (SS) is frequently caused by spinal ligament abnormalities, such as ossification and hypertrophy, which narrow the spinal canal and compress the spinal cord or nerve roots, leading to myelopathy or sciatic symptoms; however, the underlying pathological mechanism is poorly understood, hampering the development of effective nonsurgical treatments. Our study aims to investigate the role of co-expression hub genes in patients with spinal ligament ossification and hypertrophy. To achieve this, we conducted an integrated analysis by combining RNA-seq data of ossification of the posterior longitudinal ligament (OPLL) and microarray profiles of hypertrophy of the ligamentum flavum (HLF), consistently pinpointing CTSD as an upregulated hub gene in both OPLL and HLF. Subsequent RT-qPCR and IHC assessments confirmed the heightened expression of CTSD in human OPLL, ossification of the ligamentum flavum (OLF), and HLF samples. We observed an increase in CTSD expression in human PLL and LF primary cells during osteogenic differentiation, as indicated by western blotting (WB). To assess CTSD's impact on osteogenic differentiation, we manipulated its expression levels in human PLL and LF primary cells using siRNAs and lentivirus, as demonstrated by WB, ALP staining, and ARS. Our findings showed that suppressing CTSD hindered the osteogenic differentiation potential of PLL and LF cells, while overexpressing CTSD activated osteogenic differentiation. These findings identify CTSD as a potential therapeutic target for treating spinal stenosis associated with spinal ligament abnormalities.
Collapse
Affiliation(s)
- Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Zhen-Zhong Zheng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Jia-Jiong Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Jia-Lin Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Bin Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Ya-Wei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Yu-Liang Dai
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Digital Spine Research Institute, Central South University, Changsha, China.
| |
Collapse
|
5
|
Yan X, Liu T, Zhang R, Ma Q, Sun C. RMRP accelerates ligamentum flavum hypertrophy by regulating GSDMD-mediated pyroptosis through Gli1 SUMOylation. Front Immunol 2024; 15:1427970. [PMID: 39221246 PMCID: PMC11362830 DOI: 10.3389/fimmu.2024.1427970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Hypertrophy of ligamentum flavum (LF) is a significant contributing factor to lumbar spinal canal stenosis (LSCS). lncRNA plays a vital role in organ fibrosis, but its role in LF fibrosis remains unclear. Our previous findings have demonstrated that Hedgehog-Gli1 signaling is a critical driver leading to LF hypertrophy. Through the RIP experiment, our group found lnc-RMRP was physically associated with Gli1 and exhibited enrichment in Gli1-activated LF cells. Histological studies revealed elevated expression of RMRP in hypertrophic LF. In vitro experiments further confirmed that RMRP promoted Gli1 SUMO modification and nucleus transfer. Mechanistically, RMRP induced GSDMD-mediated pyroptosis, proinflammatory activation, and collagen expression through the Hedgehog pathway. Notably, the mechanical stress-induced hypertrophy of LF in rabbit exhibited analogous pathological changes of LF fibrosis occurred in human and showed enhanced levels of collagen and α-SMA. Knockdown of RMRP resulted in the decreased expression of fibrosis and pyroptosis-related proteins, ultimately ameliorating fibrosis. The above data concluded that RMRP exerts a crucial role in regulating GSDMD-mediated pyroptosis of LF cells via Gli1 SUMOylation, thus indicating that targeting RMRP could serve as a potential and effective therapeutic strategy for LF hypertrophy and fibrosis.
Collapse
Affiliation(s)
| | | | | | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Vcelak J, Kral A, Speldova A, Toth L. The Effect of Indirect Decompression Through Extraforaminal Interbody Fusion for Degenerative Lumbar Disease. Indian J Orthop 2023; 57:2058-2065. [PMID: 38009178 PMCID: PMC10673753 DOI: 10.1007/s43465-023-01008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/21/2023] [Indexed: 11/28/2023]
Abstract
Purpose Extraforaminal lumbar interbody fusion as with other methods that involve the mechanism of indirect decompression, the discussion not only focuses on the benefit of minimizing the risk of thecal sac injury and postoperative scarring, but also on the risk of insufficient decompression in the affected neural structures during the reduction of the affected segment. Methods Eighty-two patients presenting with degenerative lumbar disease with segmental instability underwent ELIF combined with transpedicular fixation and circumferential fusion. Clinical and radiographic evaluations were performed. Results The mean ODI significantly improved from 63.4 preoperatively to 32.3 1 year postoperatively. The mean VAS back pain significantly improved from 5.95 to 2.63 postoperatively and VAS (leg pain) improved from 6.04 to 2.44. The mean CSA increased from 103 mm2 preoperatively to 169 mm2 postoperatively. The median extension ratio of CSA was 33%. Disc height, segmental disc angle, and lumbar lordosis also improved significantly. Only three (3.7%) patients were revised using direct central decompression due to neurologic deterioration. Conclusion Spinal stenosis was resolved successfully by indirect decompression through extraforaminal interbody fusion via a transmuscular limited approach.
Collapse
Affiliation(s)
- Josef Vcelak
- The Orthopaedic Clinic of the 1st Medical Faculty, Charles University, Prague, The University Hospital Bulovka, Budínova 2, 180 81 Prague 8, Czech Republic
| | - Adam Kral
- The Orthopaedic Clinic of the 1st Medical Faculty, Charles University, Prague, The University Hospital Bulovka, Budínova 2, 180 81 Prague 8, Czech Republic
| | - Andrea Speldova
- The Orthopaedic Clinic of the 1st Medical Faculty, Charles University, Prague, The University Hospital Bulovka, Budínova 2, 180 81 Prague 8, Czech Republic
| | - Ladislav Toth
- The Orthopaedic Clinic of the 1st Medical Faculty, Charles University, Prague, The University Hospital Bulovka, Budínova 2, 180 81 Prague 8, Czech Republic
| |
Collapse
|
7
|
Yoshihara T, Morimoto T, Hirata H, Murayama M, Nonaka T, Tsukamoto M, Toda Y, Kobayashi T, Izuhara K, Mawatari M. Mechanisms of tissue degeneration mediated by periostin in spinal degenerative diseases and their implications for pathology and diagnosis: a review. Front Med (Lausanne) 2023; 10:1276900. [PMID: 38020106 PMCID: PMC10645150 DOI: 10.3389/fmed.2023.1276900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
Periostin (POSTN) serves a dual role as both a matricellular protein and an extracellular matrix (ECM) protein and is widely expressed in various tissues and cells. As an ECM protein, POSTN binds to integrin receptors, transduces signals to cells, enabling cell activation. POSTN has been linked with various diseases, including atopic dermatitis, asthma, and the progression of multiple cancers. Recently, its association with orthopedic diseases, such as osteoporosis, osteoarthritis resulting from cartilage destruction, degenerative diseases of the intervertebral disks, and ligament degenerative diseases, has also become apparent. Furthermore, POSTN has been shown to be a valuable biomarker for understanding the pathophysiology of orthopedic diseases. In addition to serum POSTN, synovial fluid POSTN in joints has been reported to be useful as a biomarker. Risk factors for spinal degenerative diseases include aging, mechanical stress, trauma, genetic predisposition, obesity, and metabolic syndrome, but the cause of spinal degenerative diseases (SDDs) remains unclear. Studies on the pathophysiological effects of POSTN may significantly contribute toward the diagnosis and treatment of spinal degenerative diseases. Therefore, in this review, we aim to examine the mechanisms of tissue degeneration caused by mechanical and inflammatory stresses in the bones, cartilage, intervertebral disks, and ligaments, which are crucial components of the spine, with a focus on POSTN.
Collapse
Affiliation(s)
- Tomohito Yoshihara
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiro Nonaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Toda
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
8
|
Burt KG, Viola DC, Lisiewski LE, Lombardi JM, Amorosa LF, Chahine NO. An in vivo model of ligamentum flavum hypertrophy from early-stage inflammation to fibrosis. JOR Spine 2023; 6:e1260. [PMID: 37780823 PMCID: PMC10540830 DOI: 10.1002/jsp2.1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 10/03/2023] Open
Abstract
Multi-joint disease pathologies in the lumbar spine, including ligamentum flavum (LF) hypertrophy and intervertebral disc (IVD) bulging or herniation contribute to lumbar spinal stenosis (LSS), a highly prevalent condition characterized by symptomatic narrowing of the spinal canal. Clinical hypertrophic LF is characterized by a loss of elastic fibers and increase in collagen fibers, resulting in fibrotic thickening and scar formation. In this study, we created an injury model to test the hypothesis that LF needle scrape injury in the rat will result in hypertrophy of the LF characterized by altered tissue geometry, matrix organization, composition and inflammation. An initial pilot study was conducted to evaluate effect of needle size. Results indicate that LF needle scrape injury using a 22G needle produced upregulation of the pro-inflammatory cytokine Il6 at 1 week post injury, and increased expression of Ctgf and Tgfb1 at 8 weeks post injury, along with persistent presence of infiltrating macrophages at 1, 3, and 8 weeks post injury. LF integrity was also altered, evidenced by increases in LF tissue thickness and loss of elastic tissue by 8 weeks post injury. Persistent LF injury also produced multi-joint effects in the lumbar IVD, including disc height loss at the injury and adjacent to injury level, with degenerative IVD changes observed in the adjacent level. These results demonstrate that LF scrape injury in the rat produces structural and molecular features of LF hypertrophy and IVD height and histological changes, dependent on level. This model may be useful for testing of therapeutic interventions for treatment of LSS and IVD degeneration associated with LF hypertrophy.
Collapse
Affiliation(s)
- Kevin G. Burt
- Department of Orthopedic SurgeryColumbia UniversityNew YorkNew YorkUSA
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Dan C. Viola
- Department of Orthopedic SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Lauren E. Lisiewski
- Department of Orthopedic SurgeryColumbia UniversityNew YorkNew YorkUSA
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | | | | | - Nadeen O. Chahine
- Department of Orthopedic SurgeryColumbia UniversityNew YorkNew YorkUSA
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
9
|
Review of Basic Research about Ossification of the Spinal Ligaments Focusing on Animal Models. J Clin Med 2023; 12:jcm12051958. [PMID: 36902744 PMCID: PMC10003841 DOI: 10.3390/jcm12051958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a heterotopic ossification that may cause spinal cord compression. With the recent development of computed tomography (CT) imaging, it is known that patients with OPLL often have complications related to ossification of other spinal ligaments, and OPLL is now considered part of ossification of the spinal ligaments (OSL). OSL is known to be a multifactorial disease with associated genetic and environmental factors, but its pathophysiology has not been clearly elucidated. To elucidate the pathophysiology of OSL and develop novel therapeutic strategies, clinically relevant and validated animal models are needed. In this review, we focus on animal models that have been reported to date and discuss their pathophysiology and clinical relevance. The purpose of this review is to summarize the usefulness and problems of existing animal models and to help further the development of basic research on OSL.
Collapse
|
10
|
Yabu A, Suzuki A, Hayashi K, Hori Y, Terai H, Orita K, Habibi H, Salimi H, Kono H, Toyoda H, Maeno T, Takahashi S, Tamai K, Ozaki T, Iwamae M, Ohyama S, Imai Y, Nakamura H. Periostin increased by mechanical stress upregulates interleukin-6 expression in the ligamentum flavum. FASEB J 2023; 37:e22726. [PMID: 36583686 DOI: 10.1096/fj.202200917rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Ligamentum flavum (LF) hypertrophy is a major cause of lumbar spinal canal stenosis. Although mechanical stress is thought to be a major factor involved in LF hypertrophy, the exact mechanism by which it causes hypertrophy has not yet been fully elucidated. Here, changes in gene expression due to long-term mechanical stress were analyzed using RNA-seq in a rabbit LF hypertrophy model. In combination with previously reported analysis results, periostin was identified as a molecule whose expression fluctuates due to mechanical stress. The expression and function of periostin were further investigated using human LF tissues and primary LF cell cultures. Periostin was abundantly expressed in human hypertrophied LF tissues, and periostin gene expression was significantly correlated with LF thickness. In vitro, mechanical stress increased gene expressions of periostin, transforming growth factor-β1, α-smooth muscle actin, collagen type 1 alpha 1, and interleukin-6 (IL-6) in LF cells. Periostin blockade suppressed the mechanical stress-induced gene expression of IL-6 while periostin treatment increased IL-6 gene expression. Our results suggest that periostin is upregulated by mechanical stress and promotes inflammation by upregulating IL-6 expression, which leads to LF degeneration and hypertrophy. Periostin may be a pivotal molecule for LF hypertrophy and a promising therapeutic target for lumbar spinal stenosis.
Collapse
Affiliation(s)
- Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Hayashi
- Department of Orthopedic Surgery, Osaka City Juso Hospital, Osaka, Japan
| | - Yusuke Hori
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hidetomi Terai
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hasibullah Habibi
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hamidullah Salimi
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Kono
- Department of Orthopedic Surgery, Ishikiri Seiki Hospital, Osaka, Japan
| | - Hiromitsu Toyoda
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takafumi Maeno
- Department of Orthopedic Surgery, Ishikiri Seiki Hospital, Osaka, Japan
| | - Shinji Takahashi
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Koji Tamai
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomonori Ozaki
- Department of Orthopedic Surgery, Ishikiri Seiki Hospital, Osaka, Japan
| | - Masayoshi Iwamae
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shoichiro Ohyama
- Department of Orthopedic Surgery, Nishinomiya Watanabe Hospital, Nishinomiya, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
11
|
He Z, Zhu Z, Tang T, Guo P, Gao M, Li B, Nguyen TCT, Chen H, Liu X, Zhou Z, Liu S. Characterization of ligamentum flavum hypertrophy based on m6A RNA methylation modification and the immune microenvironment. Am J Transl Res 2022; 14:8800-8827. [PMID: 36628248 PMCID: PMC9827295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE N6-methyladenosine (m6A) has been implicated in the progression of several diseases, and the role of epigenetic regulation in immunity is emerging, particularly for RNA m6A modification. However, it is unclear how m6A-related genes affect the immune microenvironment of ligamentum flavum hyperplasia (LFH). Therefore, we aimed to investigate the effect of m6A modification on the LFH immune microenvironment. METHODS The GSE113212 dataset was downloaded from the Gene Expression Omnibus (GEO) database. We systematically analyzed m6A regulators in eight patient samples and the corresponding clinical information of the samples. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) and protein-protein interactions (PPIs) were used to explore the correlation of m6A clusters with the immune microenvironment in LFH. A least absolute shrinkage and selection operator (Lasso) regression was then used to further explore the m6A prognostic signature in LFH. The relative abundance of immune cell types was quantified using a single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm. We explored the relationship between hub genes and small molecule drug sensitivity by clustering hub gene-based samples. In addition, Real-Time quantitative PCR (RT-qPCR) as well as western blotting (WB) were used to validate the gene expression of the differentially expressed genes. RESULTS A total of 1259 differentially expressed genes were identified, of which 471 were upregulated and 788 were downregulated. A total of three genes showed significant differences (METTL16, PCIF1, and FTO). According to the enrichment analysis, immune factors may play a key role in LFH. ssGSEA was used to cluster the immune infiltration score, construct the hub gene diagnosis model, and screen a total of 6 LFH immune-related prediction model genes. The predictive diagnostic model of LFH was further constructed, revealing that METTL16, PCIF1, FTO and ALKBH5 had superior diagnostic efficiency. RT-qPCR results showed that 6 genes (METTL16, PCIF1, POSTN, TNNC1, MMP1 and ACTA1; P < 0.05) exhibited expression consistent with the results of the bioinformatics analysis of the mRNA microarray. Up-regulated METTL16, PCIF1, and ALKBH5 levels in LFH were validated by western blotting. CONCLUSION Diversity and complexity of LFH's immune microenvironment are influenced by M6A modification, and our study provides strong evidence for predicting the diagnosis and prognosis of LFH.
Collapse
Affiliation(s)
- Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen UniversityShenzhen, Guangdong, China,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen UniversityShenzhen, Guangdong, China
| | - Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen UniversityShenzhen, Guangdong, China,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Peng Guo
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen UniversityShenzhen, Guangdong, China,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Manman Gao
- Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s HospitalShenzhen, Guangdong, China,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science CenterShenzhen, Guangdong, China
| | - Baoliang Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen UniversityShenzhen, Guangdong, China,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Tran Canh Tung Nguyen
- Department of Orthopaedic Surgery, Faculty of Medicine, University of ToyamaToyama, Japan
| | - Hongkun Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen UniversityShenzhen, Guangdong, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen UniversityShenzhen, Guangdong, China
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen UniversityShenzhen, Guangdong, China,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| |
Collapse
|
12
|
Kwon WK, Ham CH, Choi H, Baek SM, Lee JW, Park YK, Moon HJ, Park WB, Kim JH. Elucidating the effect of mechanical stretch stress on the mechanism of ligamentum flavum hypertrophy: Development of a novel in vitro multi-torsional stretch loading device. PLoS One 2022; 17:e0275239. [PMID: 36269774 PMCID: PMC9586365 DOI: 10.1371/journal.pone.0275239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Objective We developed a novel multi-torsional mechanical stretch stress loading device for ligamentum flavum cells and evaluated its influence on the development of ligamentum flavum hypertrophy, a common cause of lumbar spinal canal stenosis. Materials and methods Stretch strength of the device was optimized by applying 5% and 15% MSS loads for 24, 48, and 72 h. A cytotoxicity assay of human ligamentum flavum cells was performed and the results were compared to control (0% stress). Inflammatory markers (interleukin [IL]-6, IL-8), vascular endothelial growth factor [VEGF], and extracellular matrix (ECM)-regulating cytokines (matrix metalloproteinase [MMP]-1, MMP-3 and MMP-9, and tissue inhibitor of metalloproteinase [TIMP]-1 and TIMP-2) were quantified via enzyme-linked immunosorbent assay. Results Using our multi-torsional mechanical stretch stress loading device, 5% stress for 24 hour was optimal for ligamentum flavum cells. Under this condition, the IL-6 and IL-8 levels, VEGF level, and MMP-1, MMP-3, and TIMP-2 were significantly increased, compared to the control. Conclusion Using the novel multi-torsional mechanical stretch stress loading device we confirmed that, mechanical stress enhances the production of inflammatory cytokines and angiogenic factors, and altered the expression of ECM-regulating enzymes, possibly triggering ligamentum flavum hypertrophy.
Collapse
Affiliation(s)
- Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea,Focused Training Center for Trauma, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chang Hwa Ham
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea,Focused Training Center for Trauma, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea
| | - Seung Min Baek
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea
| | - Jae Won Lee
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea
| | - Youn-Kwan Park
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hong Joo Moon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Woong Bae Park
- Department of Neurosurgery, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Joo Han Kim
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea,* E-mail:
| |
Collapse
|
13
|
Li P, Fei CS, Chen YL, Chen ZS, Lai ZM, Tan RQ, Yu YP, Xiang X, Dong JL, Zhang JX, Wang L, Zhang ZM. Revealing the novel autophagy-related genes for ligamentum flavum hypertrophy in patients and mice model. Front Immunol 2022; 13:973799. [PMID: 36275675 PMCID: PMC9581255 DOI: 10.3389/fimmu.2022.973799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fibrosis is a core pathological factor of ligamentum flavum hypertrophy (LFH) resulting in degenerative lumbar spinal stenosis. Autophagy plays a vital role in multi-organ fibrosis. However, autophagy has not been reported to be involved in the pathogenesis of LFH. Methods The LFH microarray data set GSE113212, derived from Gene Expression Omnibus, was analyzed to obtain differentially expressed genes (DEGs). Potential autophagy-related genes (ARGs) were obtained with the human autophagy regulator database. Functional analyses including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were conducted to elucidate the underlying biological pathways of autophagy regulating LFH. Protein-protein interaction (PPI) network analyses was used to obtain hub ARGs. Using transmission electron microscopy, quantitative RT-PCR, Western blotting, and immunohistochemistry, we identified six hub ARGs in clinical specimens and bipedal standing (BS) mouse model. Results A total of 70 potential differentially expressed ARGs were screened, including 50 up-regulated and 20 down-regulated genes. According to GO enrichment and KEGG analyses, differentially expressed ARGs were mainly enriched in autophagy-related enrichment terms and signaling pathways related to autophagy. GSEA and GSVA results revealed the potential mechanisms by demonstrating the signaling pathways and biological processes closely related to LFH. Based on PPI network analysis, 14 hub ARGs were identified. Using transmission electron microscopy, we observed the autophagy process in LF tissues for the first time. Quantitative RT-PCR, Western blotting, and immunohistochemistry results indicated that the mRNA and protein expression levels of FN1, TGFβ1, NGF, and HMOX1 significantly higher both in human and mouse with LFH, while the mRNA and protein expression levels of CAT and SIRT1 were significantly decreased. Conclusion Based on bioinformatics analysis and further experimental validation in clinical specimens and the BS mouse model, six potential ARGs including FN1, TGFβ1, NGF, HMOX1, CAT, and SIRT1 were found to participate in the fibrosis process of LFH through autophagy and play an essential role in its molecular mechanism. These potential genes may serve as specific therapeutic molecular targets in the treatment of LFH.
Collapse
Affiliation(s)
- Peng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng-shuo Fei
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-lin Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-sen Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-ming Lai
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui-qian Tan
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-peng Yu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-le Dong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-xiong Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
- *Correspondence: Liang Wang, ; Zhong-min Zhang,
| | - Zhong-min Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Liang Wang, ; Zhong-min Zhang,
| |
Collapse
|
14
|
Seki S, Iwasaki M, Makino H, Yahara Y, Kondo M, Kamei K, Futakawa H, Nogami M, Watanabe K, Tran Canh Tung N, Hirokawa T, Tsuji M, Kawaguchi Y. Association of Ligamentum Flavum Hypertrophy with Adolescent Idiopathic Scoliosis Progression-Comparative Microarray Gene Expression Analysis. Int J Mol Sci 2022; 23:5038. [PMID: 35563428 PMCID: PMC9101523 DOI: 10.3390/ijms23095038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
The role of the ligamentum flavum (LF) in the pathogenesis of adolescent idiopathic scoliosis (AIS) is not well understood. Using magnetic resonance imaging (MRI), we investigated the degrees of LF hypertrophy in 18 patients without scoliosis and on the convex and concave sides of the apex of the curvature in 22 patients with AIS. Next, gene expression was compared among neutral vertebral LF and LF on the convex and concave sides of the apex of the curvature in patients with AIS. Histological and microarray analyses of the LF were compared among neutral vertebrae (control) and the LF on the apex of the curvatures. The mean area of LF in the without scoliosis, apical concave, and convex with scoliosis groups was 10.5, 13.5, and 20.3 mm2, respectively. There were significant differences among the three groups (p < 0.05). Histological analysis showed that the ratio of fibers (Collagen/Elastic) was significantly increased on the convex side compared to the concave side (p < 0.05). Microarray analysis showed that ERC2 and MAFB showed significantly increased gene expression on the convex side compared with those of the concave side and the neutral vertebral LF cells. These genes were significantly associated with increased expression of collagen by LF cells (p < 0.05). LF hypertrophy was identified in scoliosis patients, and the convex side was significantly more hypertrophic than that of the concave side. ERC2 and MAFB genes were associated with LF hypertrophy in patients with AIS. These phenomena are likely to be associated with the progression of scoliosis.
Collapse
Affiliation(s)
- Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Mami Iwasaki
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan;
| | - Hiroto Makino
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Yasuhito Yahara
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Miho Kondo
- Department of Orthopaedic Surgery, Takaoka City Hospital, Toyama 933-8550, Japan;
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Hayato Futakawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Makiko Nogami
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Kenta Watanabe
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Nguyen Tran Canh Tung
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
- Department of Trauma and Orthopaedic Surgery, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tatsuro Hirokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Mamiko Tsuji
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| |
Collapse
|
15
|
Habibi H, Suzuki A, Hayashi K, Salimi H, Hori Y, Orita K, Yabu A, Terai H, Nakamura H. Expression and function of fibroblast growth factor 1 in the hypertrophied ligamentum flavum of lumbar spinal stenosis. J Orthop Sci 2022; 27:299-307. [PMID: 33637374 DOI: 10.1016/j.jos.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibrosis is one of the main pathologies caused by hypertrophy of the ligamentum flavum (LF), which leads to lumbar spinal stenosis (LSS). The fibroblast growth factor (FGF) family is a key mediator of fibrosis. However, acidic fibroblast growth factor (FGF-1) expression and function are not well understood in LF. This study sought to evaluate FGF-1 expression in the hypertrophied and non-hypertrophied human LF, and to investigate its function using primary human LF cell cultures. METHODS We obtained hypertrophied lumbar LF from LSS patients and non-hypertrophied lumbar LF from control patients during surgery. Immunohistochemistry and qPCR were performed to evaluate FGF-1 expression in LF tissue. The function of FGF-1 and transforming growth factor beta 1 (TGF-β1) was also investigated using primary LF cell culture. The effects on cell morphology and cell proliferation were examined using a crystal violet staining assay and MTT assay, respectively. Immunocytochemistry, western blotting, and qPCR were performed to evaluate the effect of FGF-1 on TGF-β1-induced myofibroblast differentiation and fibrosis. RESULTS Immunohistochemistry and qPCR showed higher FGF-1 expression in hypertrophied LF compared to control LF. Crystal violet staining and MTT assay revealed that FGF-1 decreases LF cell size and inhibits their proliferation in a dose-dependent manner, whereas TGF-β1 increases cell size and promotes proliferation. Immunocytochemistry and western blotting further demonstrated that TGF-β1 increases, while FGF-1 decreases, α-SMA expression in LF cells. Moreover, FGF-1 also caused downregulation of collagen type 1 and type 3 expression in LF cells. CONCLUSION FGF-1 is highly upregulated in the LF of LSS patients. Meanwhile, in vitro, FGF-1 exhibits antagonistic effects to TGF-β1 by inhibiting cell proliferation and decreasing LF cell size as well as the expression of fibrosis markers. These results suggest that FGF-1 has an anti-fibrotic role in the pathophysiology of LF hypertrophy.
Collapse
Affiliation(s)
- Hasibullah Habibi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Kazunori Hayashi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hamidullah Salimi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Hori
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hidetomi Terai
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
16
|
Zheng ZY, Li P, Ao X, Qian L, Peng YX, Chu J, Jiang T, Lian ZN, Zhang ZM, Wang L. Characterization of a Novel Model of Lumbar Ligamentum Flavum Hypertrophy in Bipedal Standing Mice. Orthop Surg 2021; 13:2457-2467. [PMID: 34651434 PMCID: PMC8654658 DOI: 10.1111/os.13156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Objective To explore the main causes of hypertrophied ligamentum flavum (HLF) and the possibility of using bipedal standing mouse model to simulate the pathological changes in human HLF. Methods Thirty‐two 8‐week‐old C57BL/6 male mice were randomly assigned to the experimental group (n = 16) and control group (n = 16). In the experimental group, mice were induced to adopt a bipedal standing posture by their hydrophobia. The experimental mice were maintained bipedal standing for 8 h a day with an interval of 2 h to consume food and water. The control mice were placed in a similar environment without bipedal standing. Eight 18‐month‐old C57BL/6 male mice were compared to evaluate the LF degeneration due to aging factor. Three‐dimensional (3D) reconstruction and finite element models were carried out to analyze the stress and strain distribution of the mouse LF in sprawling and bipedal standing postures. Hematoxylin and Eosin (HE), Verhoeff‐Van Gieson (VVG), and immunohistochemistry (IHC) staining were used to evaluate the LF degeneration of mice and humans. RT‐qPCR and immunofluorescence analysis were used to evaluate the expressions of fibrosis‐related factors and inflammatory cytokines of COL1A1, COL3A1, α‐SMA, MMP2, IL‐1β, and COX‐2. Results The von Mises stress (8.85 × 10−2 MPa) and maximum principal strain (6.64 × 10−1) in LF were increased 4944 and 7703 times, respectively, in bipedal standing mice. HE staining showed that the mouse LF area was greater in the bipedal standing 10‐week‐old group ([10.01 ± 2.93] × 104 μm2) than that in the control group ([3.76 ± 1.87] × 104 μm2) and 18‐month‐old aged group ([6.09 ± 2.70] × 104 μm2). VVG staining showed that the HLF of mice (3.23 ± 0.58) and humans (2.23 ± 0.31) had a similar loss of elastic fibers and an increase in collagen fibers. The cell density was higher during the process of HLF in mice (39.63 ± 4.81) and humans (23.25 ± 2.05). IHC staining showed that the number of α‐SMA positive cells were significantly increased in HLF of mice (1.63 ± 0.74) and humans (3.50 ± 1.85). The expressions of inflammatory cytokines and fibrosis‐related factors of COL1A1, COL3A1, α‐SMA, MMP2, IL‐1β, and COX‐2 were consistently higher in bipedal standing group than the control group. Conclusion Our study suggests that 3D finite element models can help analyze the abnormal stress and strain distributions of LF in modeling mice. Mechanical stress is the main cause of hypertrophied ligamentum flavum compared to aging. The bipedal standing mice model can reflect the pathological characteristics of human HLF. The bipedal standing mice model can provide a standardized condition to elucidate the molecular mechanisms of mechanical stress‐induced HLF in vivo.
Collapse
Affiliation(s)
- Zhen-Yu Zheng
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Peng Li
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Xiang Ao
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Lei Qian
- Department of Anatomy, Guangdong Province Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, China
| | - Yong-Xing Peng
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Jun Chu
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Tao Jiang
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Zheng-Nan Lian
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| | - Zhong-Min Zhang
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China.,Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopaedics, Guangzhou, China
| |
Collapse
|
17
|
Yu X, Zhao J, Feng F, Han Y, Zhong G, Liu Z, Chen J. Inclination of the small laminar slope angle leads to lumbar spinal stenosis due to hypertrophy of the ligamentum flavum. J Orthop Surg (Hong Kong) 2021; 29:23094990211012846. [PMID: 33926334 DOI: 10.1177/23094990211012846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study was designed to investigate the relationship between the laminar slope angle (LSA) and the lumbar disc degenerative grade, the cross-section area (CSA) of multifidus muscle, the muscle-fat index, and the thickness of the ligamentum flavum. METHODS Retrospective analysis of 122 patients who were scheduled to undergo a lumbar operation for diagnoses associated with degenerative lumbar disease between January and December 2017. The L4-L5 disc grade was evaluated from preoperative sagittal T2-weighed magnetic resonance imaging of the lumber region; the CSA of the multifidus and muscle-fat index were measured at the L4 level, while the thickness of the ligamentum flavum was measured at the L4-L5 facet level from axis T2-weighed magnetic resonance imaging. The slope of the laminar was evaluated from preoperative three-dimensional computer tomography at the tip level of the facet joints and selected by the axis plane. Independent-sample T-tests were used to assess the association between age and measurement indices. RESULTS Our results showed that age was positively connected with the LSA of L4 and L5 in different patients, although there was no significant difference between age and the difference of the two segment LSA. Partial correlation analysis, excluding the interference of age, revealed a strong negative relationship between the LSA of L4 and the thickness of the ligamentum flavum, irrespective of whether we considered the left or right. However, there was no correlation with lumbar disc degenerative grade, the CSA of the multifidus, and the muscle-fat index. CONCLUSION The thickness of the ligamentum flavum showed changes with anatomical differences in the LSA, but not the lumbar disc degenerative grade, the CSA of the multifidus, and the muscle-fat index. A small change in LSA may cause large mechanical stress; this may be one of the causative factors responsible for lumbar spinal stenosis.
Collapse
Affiliation(s)
- Xiaosheng Yu
- Department of Orthopaedic Surgery, Renji Hospital, 56694Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junduo Zhao
- Ottawa-Shanghai Joint School of Medicine, 56694Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Feng
- Department of Orthopaedic Surgery, Renji Hospital, 56694Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchao Han
- Department of Orthopaedic Surgery, Renji Hospital, 56694Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guibin Zhong
- Medical Department, Baoshan Branch, Renji Hospital, 56694Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zude Liu
- Department of Orthopaedic Surgery, Renji Hospital, 56694Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Chen
- Department of Orthopaedic Surgery, Renji Hospital, 56694Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Li P, Liu C, Qian L, Zheng Z, Li C, Lian Z, Liu J, Zhang Z, Wang L. miR-10396b-3p inhibits mechanical stress-induced ligamentum flavum hypertrophy by targeting IL-11. FASEB J 2021; 35:e21676. [PMID: 34042220 DOI: 10.1096/fj.202100169rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Ligamentum flavum hypertrophy (LFH) leads to lumbar spinal stenosis (LSS) caused by LF tissue inflammation and fibrosis. Emerging evidence has indicated that dysregulated microRNAs (miRNAs) have an important role in inflammation and fibrosis. Mechanical stress (MS) has been explored as an initiating step in LFH pathology progression; the inflammation-related miRNAs induced after mechanical stress have been implicated in fibrosis pathology. However, the pathophysiological mechanism of MS-miRNAs-LFH remains to be elucidated. Using miRNAs sequencing analysis and subsequent confirmation with qRT-PCR assays, we identified the decreased expression of miR-10396b-3p and increased expression of IL-11 (interleukin-11) as responses to the development of LSS in hypertrophied LF tissues. We also found that IL-11 is positively correlated with fibrosis indicators of collagen I and collagen III. The up-regulation of miR-10396b-3p significantly decreased the level of IL-11 expression, whereas miR-10396b-3p down-regulation increased IL-11 expression in vitro. Luciferase reporter assay indicates that IL-11 is a direct target of miR-10396b-3p. Furthermore, cyclic mechanical stress inhibits miR-10396b-3p and induces IL-11, collagen I, and collagen III in vitro. Our results showed that overexpression of miR-10396b-3p suppresses MS-induced LFH by inhibiting collagen I and III via the inhibition of IL-11. These data suggest that the MS-miR-10396b-3p-IL-11 axis plays a key role in the pathological progression of LFH.
Collapse
Affiliation(s)
- Peng Li
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Chunlei Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Lei Qian
- Department of Anatomy, Guangdong Province Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, China
| | - Zhenyu Zheng
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Chenglong Li
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Zhengnan Lian
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Jie Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Zhongmin Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China.,Division of Spine Surgery, Department of Orthopadics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| |
Collapse
|
19
|
Habibi H, Suzuki A, Hayashi K, Salimi H, Terai H, Hori Y, Tamai K, Orita K, Ohyama S, Yabu A, Maruf MH, Nakamura H. Expression and function of FGF9 in the hypertrophied ligamentum flavum of lumbar spinal stenosis patients. Spine J 2021; 21:1010-1020. [PMID: 33577925 DOI: 10.1016/j.spinee.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/23/2020] [Accepted: 02/06/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Ligamentum flavum (LF) hypertrophy plays a dominant role in lumbar spinal stenosis (LSS). A previous study found that fibroblast growth factor 9 (FGF9) was upregulated with mechanical stress in rabbit LF. However, the expression and function of FGF9 are not well understood in human LF. PURPOSE To evaluate FGF9 expression and function in human LF with and without hypertrophy. STUDY DESIGN This study employed a basic research study design utilizing human LF tissue for histological analyses. PATIENT SAMPLES Hypertrophied LF tissue sample from patients with LSS, and nonhypertrophied (control) LFs from patients with lumbar disc herniation or other diseases were obtained during surgery. METHODS LF specimens were histologically analyzed for FGF9 and vascular endothelial growth factor A (VEGF-A) by immunohistochemistry. The number of total and FGF9 immuno-positive cells and blood vessels were counted and compared between LF with and without hypertrophy. For functional analysis, the effect of FGF9 on cell proliferation and migration was examined using a primary cell culture of human LF. RESULTS Histological studies revealed that the total cell number was significantly higher in the LF of patients with LSS than in the LF of control patients. Immunohistochemistry showed that the percentage of FGF9-positive cells was significantly higher in the LF of patients with LSS than in the controls, and it positively correlated with patients' age, regardless of disease. Double immune-positive cells for FGF9 and VEGF-A were often observed in vascular endothelial cells and fibroblasts in the fibrotic area of hypertrophied LF, and the number of double positive vessels was significantly higher in LF of LSS patients than in the LF of controls. Primary cell culture of human LF revealed that FGF9 promoted the proliferation and migration of LF cells. CONCLUSION The present study demonstrated that FGF9 expression is highly upregulated in hypertrophied human LF. FGF9 potentially plays a pivotal role in the process of hypertrophy of LF, which is associated with mechanical stress, through cell proliferation and migration. CLINICAL SIGNIFICANCE The results from this study partially reveal the molecular mechanisms of LF hypertrophy and suggest that FGF9 may be involved in the process of LF degeneration in elderly patients.
Collapse
Affiliation(s)
- Hasibullah Habibi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Kazunori Hayashi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hamidullah Salimi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hidetomi Terai
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Hori
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Tamai
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shoichiro Ohyama
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mohammad Hasib Maruf
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
20
|
Sun C, Ma Q, Yin J, Zhang H, Liu X. WISP-1 induced by mechanical stress contributes to fibrosis and hypertrophy of the ligamentum flavum through Hedgehog-Gli1 signaling. Exp Mol Med 2021; 53:1068-1079. [PMID: 34158608 PMCID: PMC8257797 DOI: 10.1038/s12276-021-00636-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ongoing chronic fibrosis and hypertrophy of the ligamentum flavum (LF) is an important cause of lumbar spinal canal stenosis (LSCS). Our previous work showed that WNT1-inducible signaling pathway protein 1 (WISP-1) is a critical driver of LF fibrosis. However, the potential mechanism has not been explored. Here, we found that Gli1 was upregulated in hypertrophic LF tissues and required for fibrogenesis in fibroblasts. Moreover, mechanical stretching increased the expression of WISP-1 in LF fibroblasts. Furthermore, WISP-1 induced fibrogenesis in vitro through the Hedgehog-Gli1 pathway. This conclusion was supported by the fact that WISP-1 activated the Hedgehog-Gli1 pathway in LF fibroblasts and that cyclopamine attenuated the effect of WISP-1-induced fibrogenesis. WISP-1 also promoted the transition of fibroblasts into myofibroblasts via the Hedgehog pathway. Importantly, a hypertrophic LF rabbit model induced by mechanical stress also showed pathological changes in fibrosis and elevated expression of WISP-1, Gli1, and α-SMA. Therapeutic administration of cyclopamine reduced collagen expression, fibroblast proliferation, and myofibroblast differentiation and ameliorated fibrosis in the mechanical stress-induced rabbit model. Collectively, our findings show mechanical stress/WISP-1/Hedgehog signaling as a new fibrotic axis contributing to LF hypertrophy and identify Hedgehog signaling as a therapeutic target for the prevention and treatment of LF fibrosis.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Jian Yin
- Department of Spine Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Han Zhang
- Department of Spine Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Xinhui Liu
- Department of Spine Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China.
| |
Collapse
|
21
|
Long-term, Time-course Evaluation of Ligamentum Flavum Hypertrophy Induced by Mechanical Stress: An Experimental Animal Study. Spine (Phila Pa 1976) 2021; 46:E520-E527. [PMID: 33273443 DOI: 10.1097/brs.0000000000003832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental animal study. OBJECTIVE The aim of this study was to clarify chronological effects of mechanical stress on ligamentum flavum (LF) using a long-term fusion rabbit model. SUMMARY OF BACKGROUND DATA LF hypertrophy is a major pathology of lumbar spinal stenosis (LSS), but its mechanism remains unclear. We previously demonstrated mechanical-stress-induced LF hypertrophy with a rabbit model. However, we only investigated LFs at a single time point in the short-term; the effects of long-term mechanical stress have not been elucidated. METHODS Eighteen-week-old male New Zealand White rabbits were randomly divided into two groups: the mechanical stress group underwent L2-3 and L4-5 posterolateral fusion and resection of the L3-4 supraspinal muscle, whereas the control group underwent only surgical exposure. Rabbits were sacrificed 16 and 52 weeks after the procedure. Axial specimens of LFs at L3-4 were evaluated histologically. Immunohistochemistry for alpha-smooth muscle actin (α-SMA) was performed to assess the numbers of vessels and myofibroblasts. RESULTS In the mechanical stress group, LFs at the L3-4 level exhibited hypertrophy with elastic fiber disruption and cartilage matrix production at 16 and 52 weeks. A trend test indicated that mechanical stress induced LF hypertrophy, elastic fiber disruption, and cartilage matrix production in a time-dependent manner, with the lowest levels before treatment and the highest at 52 weeks. Immunostaining for α-SMA showed similar numbers of vessels in both groups, whereas the percentage of myofibroblasts was significantly larger at 16 and 52 weeks in the mechanical stress group than in the control group. CONCLUSION We demonstrated that long-term mechanical stress caused LF hypertrophy with progressive elastic fiber disruption and cartilage matrix production accompanied by enhanced myofibroblasts. In addition, the reported rabbit model could be extended to elucidate the mechanism of LF hypertrophy and to develop new therapeutic strategies for LSS by preventing LF hypertrophy.Level of Evidence: SSSSS.
Collapse
|
22
|
Zhang B, Chen G, Yang X, Fan T, Chen X, Chen Z. Dysregulation of MicroRNAs in Hypertrophy and Ossification of Ligamentum Flavum: New Advances, Challenges, and Potential Directions. Front Genet 2021; 12:641575. [PMID: 33912216 PMCID: PMC8075056 DOI: 10.3389/fgene.2021.641575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Pathological changes in the ligamentum flavum (LF) can be defined as a process of chronic progressive aberrations in the nature and structure of ligamentous tissues characterized by increased thickness, reduced elasticity, local calcification, or aggravated ossification, which may cause severe myelopathy, radiculopathy, or both. Hypertrophy of ligamentum flavum (HLF) and ossification of ligamentum flavum (OLF) are clinically common entities. Though accumulated evidence has indicated both genetic and environmental factors could contribute to the initiation and progression of HLF/OLF, the definite pathogenesis remains fully unclear. MicroRNAs (miRNAs), one of the important epigenetic modifications, are short single-stranded RNA molecules that regulate protein-coding gene expression at posttranscriptional level, which can disclose the mechanism underlying diseases, identify valuable biomarkers, and explore potential therapeutic targets. Considering that miRNAs play a central role in regulating gene expression, we summarized current studies from the point of view of miRNA-related molecular regulation networks in HLF/OLF. Exploratory studies revealed a variety of miRNA expression profiles and identified a battery of upregulated and downregulated miRNAs in OLF/HLF patients through microarray datasets or transcriptome sequencing. Experimental studies validated the roles of specific miRNAs (e.g., miR-132-3p, miR-199b-5p in OLF, miR-155, and miR-21 in HLF) in regulating fibrosis or osteogenesis differentiation of LF cells and related target genes or molecular signaling pathways. Finally, we discussed the perspectives and challenges of miRNA-based molecular mechanism, diagnostic biomarkers, and therapeutic targets of HLF/OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Guanghui Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Xiaoxi Yang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Xi Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| |
Collapse
|
23
|
Wang B, Gao C, Zhang P, Sun W, Zhang J, Gao J. The increased motion of lumbar induces ligamentum flavum hypertrophy in a rat model. BMC Musculoskelet Disord 2021; 22:334. [PMID: 33823825 PMCID: PMC8025532 DOI: 10.1186/s12891-021-04203-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The purpose of this study was to establish a novel rat model for ligamentum flavum (LF) hypertrophy using increased motion of lumbar and to elucidate the etiology of (LFH). METHODS A total number of 30 male rats were used. The increased motion of lumbar was induced by surgical resection of L5/6 posterior elements (n = 15). The other rats underwent a sham operation (n = 15). After 8 weeks, all rats were taken lateral plain X-rays. The LF from L5/6 in both groups were harvested to investigate histological, immunohistological, and real-time PCR analysis. RESULTS According to radiological results, the disc height ratio, flexion ratio, and extension ratio were larger in the rats in the experimental group than that of in the sham group. The HE staining showed that the LF thickness in the experimental group significantly increased in comparison to the sham group. The Masson trichrome staining showed that the ratio of elastic fibers to collagen fibers in experimental group was lower than that in the sham group. The protein and gene expression of TGF-β1, TNF-α, IL-1β, and Col 1 were significantly higher in the experimental group than that in the sham group. CONCLUSION A relatively safe, simple, and rapid rat model of LFH using increased motion of lumbar was established. The increased motion of lumbar could lead to high expression of inflammatory and fibrotic factors in LF, causing the accumulation of collagen fibers and decreasing of elastic fibers.
Collapse
Affiliation(s)
- Baojian Wang
- Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunyu Gao
- Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wu Sun
- Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingru Zhang
- Department of Pathology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinghua Gao
- Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
24
|
Abstract
Hypertrophy of the ligamentum flavum (LF) is a major cause of lumbar spinal stenosis (LSS), and the pathology involves disruption of elastic fibers, fibrosis with increased cellularity and collagens, and/or calcification. Previous studies have implicated the increased expression of the proteoglycan family in hypertrophied LF. Furthermore, the gene expression profile in a rabbit experimental model of LF hypertrophy revealed that biglycan (BGN) is upregulated in hypertrophied LF by mechanical stress. However, the expression and function of BGN in human LF has not been well elucidated. To investigate the involvement of BGN in the pathomechanism of human ligamentum hypertrophy, first we confirmed increased expression of BGN by immunohistochemistry in the extracellular matrix of hypertrophied LF of LSS patients compared to LF without hypertrophy. Experiments using primary cell cultures revealed that BGN promoted cell proliferation. Furthermore, BGN induces changes in cell morphology and promotes myofibroblastic differentiation and cell migration. These effects are observed for both cells from hypertrophied and non-hypertrophied LF. The present study revealed hyper-expression of BGN in hypertrophied LF and function of increased proteoglycan in LF cells. BGN may play a crucial role in the pathophysiology of LF hypertrophy through cell proliferation, myofibroblastic differentiation, and cell migration.
Collapse
|
25
|
Lin CL, Kuo YT, Tsao CH, Shyong YJ, Shih SH, Tu TY. Development of an In Vitro 3D Model for Investigating Ligamentum Flavum Hypertrophy. Biol Proced Online 2020; 22:20. [PMID: 32884451 PMCID: PMC7460798 DOI: 10.1186/s12575-020-00132-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Background Ligamentum flavum hypertrophy (LFH) is among the most crucial factors in degenerative lumbar spinal stenosis, which can cause back pain, lower extremity pain, cauda equina syndrome and neurogenic claudication. The exact pathogenesis of LFH remains elusive despite extensive research. Most in vitro studies investigating LFH have been carried out using conventional two-dimensional (2D) cell cultures, which do not resemble in vivo conditions, as they lack crucial pathophysiological factors found in three-dimensional (3D) LFH tissue, such as enhanced cell proliferation and cell cluster formation. In this study, we generated ligamentum flavum (LF) clusters using spheroid cultures derived from primary LFH tissue. Results The cultured LF spheroids exhibited good viability and growth on an ultra-low attachment 96-well plate (ULA 96-plate) platform according to live/dead staining. Our results showed that the 100-cell culture continued to grow in size, while the 1000-cell culture maintained its size, and the 5000-cell culture exhibited a decreasing trend in size as the culture time increased; long-term culture was validated for at least 28 days. The LF spheroids also maintained the extracellular matrix (ECM) phenotype, i.e., fibronectin, elastin, and collagen I and III. The 2D culture and 3D culture were further compared by cell cycle and Western blot analyses. Finally, we utilized hematoxylin and eosin (H&E) staining to demonstrate that the 3D spheroids resembled part of the cell arrangement in LF hypertrophic tissue. Conclusions The developed LF spheroid model has great potential, as it provides a stable culture platform in a 3D model that can further improve our understanding of the pathogenesis of LFH and has applications in future studies.
Collapse
Affiliation(s)
- Cheng-Li Lin
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Skeleton Materials and Bio-compatibility Core Lab, Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Medical Device Innovation Center (MDIC), National Cheng Kung University, Tainan, 70101 Taiwan
| | - Yi-Ting Kuo
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Che-Hao Tsao
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Yan-Jye Shyong
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan.,Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Shu-Hsien Shih
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Ting-Yuan Tu
- Medical Device Innovation Center (MDIC), National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Biomedical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 70101 Taiwan
| |
Collapse
|
26
|
Sun C, Zhang H, Wang X, Liu X. Ligamentum flavum fibrosis and hypertrophy: Molecular pathways, cellular mechanisms, and future directions. FASEB J 2020; 34:9854-9868. [PMID: 32608536 DOI: 10.1096/fj.202000635r] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Hypertrophy of ligamentum flavum (LF), along with disk protrusion and facet joints degeneration, is associated with the development of lumbar spinal canal stenosis (LSCS). Of note, LF hypertrophy is deemed as an important cause of LSCS. Histologically, fibrosis is proved to be the main pathology of LF hypertrophy. Despite the numerous studies explored the mechanisms of LF fibrosis at the molecular and cellular levels, the exact mechanism remains unknown. It is suggested that pathophysiologic stimuli such as mechanical stress, aging, obesity, and some diseases are the causative factors. Then, many cytokines and growth factors secreted by LF cells and its surrounding tissues play different roles in activating the fibrotic response. Here, we summarize the current status of detailed knowledge available regarding the causative factors, pathology, molecular and cellular mechanisms implicated in LF fibrosis and hypertrophy, also focusing on the possible avenues for anti-fibrotic strategies.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Han Zhang
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Wang
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhui Liu
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Peng YX, Zheng ZY, Wang Md WG, Liu L, Chen Md F, Xu Md HT, Zhang ZM. Relationship between the location of ligamentum flavum hypertrophy and its stress in finite element analysis. Orthop Surg 2020; 12:974-982. [PMID: 32489000 PMCID: PMC7307228 DOI: 10.1111/os.12675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/23/2020] [Accepted: 03/18/2020] [Indexed: 01/16/2023] Open
Abstract
Objective To quantitatively describe the stress of the ligamentum flavum (LF) using the finite element method and to compare the stress at different parts of the healthy LF. Methods Based on the high resolution computed tomography imaging data of a healthy 22‐year‐old man, three‐dimensional nonlinear L4–5 lumbar finite element model (FEM) representing intact condition was developed. The LF, as the object of the present research, was incorporated into the spinal model in the form of solid three‐dimensional structure. The model’s validity is verified by comparing its biomechanical indices, such as range of motion and axial compression pressure displacement, with published results under specific loading conditions. To authenticate the accuracy of the solid LF, the lamina attachments, the central cross‐section, and other anatomy indicators were compared with figures in the published literature. After the average and maximum von Mises stress on the surface of LF under various working conditions were measured using ANSYS and AutoCAD software, the surface stress difference in the LF between the ventral and dorsal sides as well as the lateral and lamina parts were determined. Results The FEM predicted a similar tendency for biomechanical indices as shown in previous studies. The lamina attachments, the central cross‐section, and the height as well as the width of the LF in the healthy FEM were in accordance with published results. In the healthy model, the average and maximum von Mises stress in the shallow layer of the LF were, respectively, 1.40, 2.28, 1.76, 1.48, 1.38 and 1.79, 2.41, 1.46, 1.42, 1.71 times that in the deep layer under a compressive preload of 500 N incorporated with flexion, extension, and lateral and rotational moments (10 Nm). The most conspicuous difference in surface stress was observed with the flexion motion, with a nearly 241% difference in the maximum stress and a 228% difference in the average stress compared to those in other states. As far as the whole dorsal side of the LF was concerned, the maximum surface stress was almost all concentrated in the dorsal neighboring facet joint portion. In addition, the maximum and average stress were, respectively, 77%, 72%, 15%, 11%, 71% and 153%, 39%, 54%, 200%, 212% higher in the lateral part than in the lamina part. Conclusion Based on the predisposition of LF hypertrophy in the human spine and the stress distribution of this study, the positive correlation between LF hypertrophy and its stress was confirmed.
Collapse
Affiliation(s)
- Yong-Xing Peng
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Department of Orthopaedics, Yingtan People's Hospital, Yingtan, China
| | - Zhen-Yu Zheng
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Guo Wang Md
- Department of Orthopaedics, Yingtan People's Hospital, Yingtan, China
| | - Lin Liu
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Feng Chen Md
- Department of Orthopaedics, Yingtan People's Hospital, Yingtan, China
| | - Hong-Tao Xu Md
- Department of Orthopaedics, Yingtan People's Hospital, Yingtan, China
| | - Zhong-Min Zhang
- Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Indirect Decompression on MRI Chronologically Progresses After Immediate Postlateral Lumbar Interbody Fusion: The Results From a Minimum of 2 Years Follow-Up. Spine (Phila Pa 1976) 2019; 44:E1411-E1418. [PMID: 31365515 DOI: 10.1097/brs.0000000000003180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UNLABELLED MINI: On magnetic resonance imaging, indirect decompression using lateral lumbar interbody fusion and posterior fixation was confirmed immediately after surgery and also continuously progressed after surgery, particularly during the first 6 months. Thecal sac enlargement was also confirmed, and is suspected to be caused by the atrophy of the ligamentum flavum and the disc. STUDY DESIGN A prospective cohort study. OBJECTIVE The aim of this study was to investigate radiographical changes related to indirect decompression using lateral lumbar interbody fusion (LLIF) with posterior fixation. SUMMARY OF BACKGROUND DATA Indirect lumbar decompression via LLIF is used to treat degenerative lumbar diseases requiring neural decompression. Although evidence suggests that thecal sac enlargement follows shortly after surgery, few studies have described the postoperative changes on MRIs. METHODS This study involved 102 patients who underwent indirect decompression at 136 levels, with LLIF and posterior fixation. Magnetic resonance imaging (MRIs) were collected preoperatively and several times postoperatively (over a 2-year period starting immediately after surgery). We then quantified the cross-sectional areas of the thecal sac and ligamentum flavum, as well as the anteroposterior diameter of disc bulging, and qualitatively assessed lumbar spinal stenosis according to a modified version of Schizas' classification [Grades A (mild) to C (severe)]. The Japanese Orthopaedic Association Back Pain Evaluation Questionnaire (JOABPEQ) was used for the assessment of the clinical symptoms. RESULTS All changes were observable immediately after surgery, progressed over time, and were significantly different statistically at 2 years after surgery. The thecal sac was significantly larger (189% of preoperative; P < 0.0001), while the ligamentum flavum and disc bulge were significantly smaller [58.9% and 67.3% of preoperative (P < 0.001), respectively]. The number of patients with grade C (severe) lumbar stenosis also dropped significantly (preoperative, 17.6%; 2 years postoperative, 0%). There were no significant differences in JOABPEQ results at 6 months, 1 year, and 2 years postsurgery. CONCLUSION Indirect decompression produces immediate positive results that continue to improve over time. The cross-sectional area of the thecal sac doubled by 2 years after surgery, and the ligamentum flavum cross-sectional area and disc bulging both shrank significantly. At the same time, however, postoperative radiographical improvements do not appear to correlate with clinical symptoms. LEVEL OF EVIDENCE 3.
Collapse
|
29
|
Fibroblast Growth Factor 9 Is Upregulated Upon Intervertebral Mechanical Stress-Induced Ligamentum Flavum Hypertrophy in a Rabbit Model. Spine (Phila Pa 1976) 2019; 44:E1172-E1180. [PMID: 31022154 DOI: 10.1097/brs.0000000000003089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Case-control study of an animal model. OBJECTIVE To investigate the factors that are upregulated and potentially related to degenerative changes in the ligamentum flavum (LF) upon mechanical stress concentration. SUMMARY OF BACKGROUND DATA LF hypertrophy is reported to be associated with mechanical stress. However, few studies, using exhaustive analysis with control subjects, on the molecular mechanisms of LF hypertrophy have been published. METHODS Fourteen rabbits were used for this study. The first group underwent L2-3 and L4-5 posterolateral fusion with instrumentation and resection of the L3-4 supraspinal muscle to concentrate the mechanical stress on L3-4, whereas the other group underwent a sham operation. The deep layer of the LF from L2-3 to L4-5 in both groups was harvested after 16 weeks. Gene expression was evaluated exhaustively using DNA microarray and real-time polymerase chain reaction (RT-PCR). Fibroblast growth factor 9 (FGF9) protein expression was subsequently examined by immunohistological staining. RESULTS A total of 680 genes were found to be upregulated upon mechanical stress concentration and downregulated upon mechanical shielding compared with those in the sham group. Functional annotation analysis revealed that these genes not only included those related to the extracellular matrix but also those related to certain FGF families. On RT-PCR validation and immunohistological analysis, we identified that the FGF9 protein increases in the LF upon mechanical stress, especially in the area wherein degenerative changes were frequently identified in the previous literature. CONCLUSION FGF9 and its pathway are suggested to contribute to the degenerative changes in the LF following mechanical stress. This finding will be helpful in further understanding the molecular mechanism of human LF degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
30
|
Maruf MH, Suzuki A, Hayashi K, Habibi H, Salimi H, Terai H, Tamai K, Hoshino M, Toyoda H, Yamada K, Takahashi S, Ohyama S, Hori Y, Nakamura H. Increased advanced glycation end products in hypertrophied ligamentum flavum of diabetes mellitus patients. Spine J 2019; 19:1739-1745. [PMID: 31195134 DOI: 10.1016/j.spinee.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Ligamentum flavum (LF) hypertrophy plays a dominant role in lumbar spinal stenosis (LSS). Although LSS prevalence is known to be higher in patients with diabetes mellitus (DM), the underlying pathomechanisms are not well understood. Abnormal advanced glycation end products (AGEs) formation occurs in DM and promotes tissue damage in various organs through degeneration and inflammation. PURPOSE To analyze and compare LF histology focused on AGE status between control patients, LSS patients with DM, and LSS patients without DM. STUDY DESIGN/SETTING Basic research study design utilizing human LF tissue for histologic analyses. PATIENT SAMPLE LF tissue samples were collected from patients who underwent lumber decompression surgery for LSS in the author's institution. OUTCOME MEASURES Quantitative visualization of Masson's Trichrome (MT) stains, and AGE immunohistochemistry (IHC) for the three groups. METHODS Ten LF specimens from LSS patients with DM (DM group, mean age 71.4 years), 10 from LSS patients without DM (non-DM group, mean age 71.2 years), and 9 from patients with lumbar disc herniation or cauda equina tumor (control group, mean age 49.0 years) were harvested during surgery and histologically analyzed. Percentage of elastic fiber areas (%EF) was measured with MT staining, and the percentage of AGE immuno-positive areas (%AGEs) was measured with IHC. RESULTS The average %EFs were 12.8 in the DM group, 17.1 in the non-DM group, and 24.9 in the control group. The decrease in the elastic fibers was significantly more in the DM group than in the non-DM (p<.01) and control groups (p<.001). Accumulation of AGEs was found mainly in the extracellular matrix in areas of elastic fiber disruption. The %AGEs were 18.3 in the DM group, 12.1 in the non-DM group, and 4.6 in the control group. These were significantly larger in the DM group than in the non-DM (p<.01) and control (p<.01) groups. The %AGEs also positively correlated with patient age (p<.01, R=0.47). CONCLUSIONS Accumulation of AGEs is significantly greater in the LF of DM patients and correlates with patient age. AGEs may accelerate degeneration and hypertrophy of LF with age and may lead to higher prevalence of LSS in patients with DM. CLINICAL SIGNIFICANCE The present results partly reveal the molecular mechanism of LF hypertrophy, suggesting that AGEs may be involved in the process of LF degeneration in the elderly and patients with DM.
Collapse
Affiliation(s)
- Mohammad Hasib Maruf
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Akinobu Suzuki
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan.
| | - Kazunori Hayashi
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Hasibullah Habibi
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Hamidullah Salimi
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Hidetomi Terai
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Koji Tamai
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Masatoshi Hoshino
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Hiromitsu Toyoda
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Kentaro Yamada
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Shinji Takahashi
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Shoichiro Ohyama
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Yusuke Hori
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University, 1-4-3 Asahi Machi, Abeno-Ku, Osaka 545-8585, Japan
| |
Collapse
|