1
|
Renzi S, Digiacomo L, Pozzi D, Quagliarini E, Vulpis E, Giuli MV, Mancusi A, Natiello B, Pignataro MG, Canettieri G, Di Magno L, Pesce L, De Lorenzi V, Ghignoli S, Loconte L, Montone CM, Laura Capriotti A, Laganà A, Nicoletti C, Amenitsch H, Rossi M, Mura F, Parisi G, Cardarelli F, Zingoni A, Checquolo S, Caracciolo G. Structuring lipid nanoparticles, DNA, and protein corona into stealth bionanoarchitectures for in vivo gene delivery. Nat Commun 2024; 15:9119. [PMID: 39438484 PMCID: PMC11496629 DOI: 10.1038/s41467-024-53569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Lipid nanoparticles (LNPs) play a crucial role in addressing genetic disorders, and cancer, and combating pandemics such as COVID-19 and its variants. Yet, the ability of LNPs to effectively encapsulate large-size DNA molecules remains elusive. This is a significant limitation, as the successful delivery of large-size DNA holds immense potential for gene therapy. To address this gap, the present study focuses on the design of PEGylated LNPs, incorporating large-sized DNA, departing from traditional RNA and ionizable lipids. The resultant LNPs demonstrate a unique particle morphology. These particles were further engineered with a DNA coating and plasma proteins. This multicomponent bionanoconstruct exhibits enhanced transfection efficiency and safety in controlled laboratory settings and improved immune system evasion in in vivo tests. These findings provide valuable insights for the design and development of bionanoarchitectures for large-size DNA delivery, opening new avenues for transformative gene therapies.
Collapse
Affiliation(s)
- Serena Renzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Erica Quagliarini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Vulpis
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Valeria Giuli
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Latina, Italy
| | - Angelica Mancusi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Bianca Natiello
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Pesce
- NEST, Scuola Normale Superiore, Pisa, Italy
| | | | | | - Luisa Loconte
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Carmine Nicoletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering and Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, Rome, Italy
| | - Francesco Mura
- Department of Basic and Applied Sciences for Engineering and Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, Rome, Italy
| | - Giacomo Parisi
- Department of Basic and Applied Sciences for Engineering and Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, Rome, Italy
| | | | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Latina, Italy.
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Digiacomo L, Renzi S, Pirrottina A, Amenitsch H, De Lorenzi V, Pozzi D, Cardarelli F, Caracciolo G. PEGylation-Dependent Cell Uptake of Lipid Nanoparticles Revealed by Spatiotemporal Correlation Spectroscopy. ACS Pharmacol Transl Sci 2024; 7:3004-3010. [PMID: 39421655 PMCID: PMC11480925 DOI: 10.1021/acsptsci.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Polyethylene glycol (PEG) is a common surface modification for lipid nanoparticles (LNPs) to improve their stability and in vivo circulation time. However, the impact of PEGylation on LNP cellular uptake remains poorly understood. To tackle this issue, we systematically compared plain and PEGylated LNPs by combining dynamic light scattering, electrophoretic light scattering, and synchrotron small-angle X-ray scattering (SAXS) that unveils a striking similarity in size and core structure but a significant reduction in surface charge. Upon administration to human embryonic kidney (HEK 293) cells, plain and PEGylated LNPs were internalized through different endocytic routes, as revealed by spatiotemporal correlation spectroscopy. An imaging-derived mean square displacement (iMSD) analysis shows that PEGylated LNPs exhibit a significantly stronger preference for caveolae-mediated endocytosis (CAV) and clathrin-mediated endocytosis (CME) pathways compared to plain LNPs, with these latter being better tailored to MCR-dependent internalization and trafficking. This suggests that PEG plays a crucial role in directing LNPs toward specific cellular uptake routes. Further studies should explore how PEG-mediated endocytosis impacts intracellular trafficking and ultimately translates to therapeutic efficacy, guiding the design of next-generation LNP delivery systems.
Collapse
Affiliation(s)
- Luca Digiacomo
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, 00161 Rome, Italy
| | - Serena Renzi
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, 00161 Rome, Italy
| | - Andrea Pirrottina
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, 00161 Rome, Italy
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | | | - Daniela Pozzi
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, 00161 Rome, Italy
| | | | - Giulio Caracciolo
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, 00161 Rome, Italy
| |
Collapse
|
3
|
Giulimondi F, Digiacomo L, Renzi S, Cassone C, Pirrottina A, Molfetta R, Palamà IE, Maiorano G, Gigli G, Amenitsch H, Pozzi D, Zingoni A, Caracciolo G. Optimizing Transfection Efficiency in CAR-T Cell Manufacturing through Multiple Administrations of Lipid-Based Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3746-3757. [PMID: 38775109 DOI: 10.1021/acsabm.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.
Collapse
Affiliation(s)
- Francesca Giulimondi
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Serena Renzi
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Chiara Cassone
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Andrea Pirrottina
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | | | - Gabriele Maiorano
- Nanotechnology Institute, CNR-NANOTEC, Via Monteroni, Lecce 73100, Italy
| | - Giuseppe Gigli
- Nanotechnology Institute, CNR-NANOTEC, Via Monteroni, Lecce 73100, Italy
- Department of Medicine, University of Salento, Arnesano street c/o Campus Ecotekne, Lecce 73100, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, Rome 00161, Italy
| |
Collapse
|
4
|
Zulueta Díaz YDLM, Kure JL, Grosso RA, Andersen C, Pandzic E, Sengupta P, Wiseman PW, Arnspang EC. Quantitative image mean squared displacement (iMSD) analysis of the dynamics of Aquaporin 2 within the membrane of live cells. Biochim Biophys Acta Gen Subj 2023; 1867:130449. [PMID: 37748662 DOI: 10.1016/j.bbagen.2023.130449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Nanodomains are a biological membrane phenomenon which have a large impact on various cellular processes. They are often analysed by looking at the lateral dynamics of membrane lipids or proteins. The localization of the plasma membrane protein aquaporin-2 in nanodomains has so far been unknown. In this study, we use total internal reflection fluorescence microscopy to image Madin-Darby Canine Kidney (MDCK) cells expressing aquaporin-2 tagged with mEos 3.2. Then, image mean squared displacement (iMSD) approach was used to analyse the diffusion of aquaporin-2, revealing that aquaporin-2 is confined within membrane nanodomains. Using iMSD analysis, we found that the addition of the drug forskolin increases the diffusion of aquaporin-2 within the confined domains, which is in line with previous studies. Finally, we observed an increase in the size of the membrane domains and the extent of trapping of aquaporin-2 after stimulation with forskolin.
Collapse
Affiliation(s)
| | - Jakob Lavrsen Kure
- Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Rubén Adrián Grosso
- Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Camilla Andersen
- Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Elvis Pandzic
- Mark Wainwright Analytical Centre, Lowy Cancer Research Centre C25, University of New South Wales, NSW, 2052, Australia
| | - Prabuddha Sengupta
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Paul W Wiseman
- Department of Chemistry, McGill University, Montreal, Québec, Canada; Department of Physics, McGill University, Montreal, Québec, Canada
| | - Eva C Arnspang
- Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark; The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Kettmayer C, Gratton E, Estrada LC. Comparison of MSD analysis from single particle tracking with MSD from images. Getting the best of both worlds. Methods Appl Fluoresc 2023; 12:015001. [PMID: 37751748 DOI: 10.1088/2050-6120/acfd7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Fluorescence microscopy can provide valuable information about cell interior dynamics. Particularly, mean squared displacement (MSD) analysis is widely used to characterize proteins and sub-cellular structures' mobility providing the laws of molecular diffusion. The MSD curve is traditionally extracted from individual trajectories recorded by single-particle tracking-based techniques. More recently, image correlation methods like iMSD have been shown capable of providing averaged dynamic information directly from images, without the need for isolation and localization of individual particles. iMSD is a powerful technique that has been successfully applied to many different biological problems, over a wide spatial and temporal scales. The aim of this work is to review and compare these two well-established methodologies and their performance in different situations, to give an insight on how to make the most out of their unique characteristics. We show the analysis of the same datasets by the two methods. Regardless of the experimental differences in the input data for MSD or iMSD analysis, our results show that the two approaches can address equivalent questions for free diffusing systems. We focused on studying a range of diffusion coefficients between D = 0.001μm2s-1and D = 0.1μm2s-1, where we verified that the equivalence is maintained even for the case of isolated particles. This opens new opportunities for studying intracellular dynamics using equipment commonly available in any biophysical laboratory.
Collapse
Affiliation(s)
- Constanza Kettmayer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA). Buenos Aires, Argentina
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, United States of America
| | - Laura C Estrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA). Buenos Aires, Argentina
| |
Collapse
|
6
|
Digiacomo L, Renzi S, Quagliarini E, Pozzi D, Amenitsch H, Ferri G, Pesce L, De Lorenzi V, Matteoli G, Cardarelli F, Caracciolo G. Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102697. [PMID: 37507061 DOI: 10.1016/j.nano.2023.102697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.
Collapse
Affiliation(s)
- Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Serena Renzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Erica Quagliarini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Gianmarco Ferri
- Laboratorio NEST, Scuola Normale Superiore, 56127 Pisa, Italy
| | - Luca Pesce
- Laboratorio NEST, Scuola Normale Superiore, 56127 Pisa, Italy
| | | | - Giulia Matteoli
- Laboratorio NEST, Scuola Normale Superiore, 56127 Pisa, Italy
| | | | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
7
|
Andersen C, Zulueta Díaz YDLM, Kure JL, Hessellund Eriksen M, Lovatt AL, Lagerholm C, Morales S, Sehayek S, Sheard TMD, Wiseman PW, Arnspang EC. Angiotensin II Treatment Induces Reorganization and Changes in the Lateral Dynamics of Angiotensin II Type 1 Receptor in the Plasma Membrane Elucidated by Photoactivated Localization Microscopy Combined with Image Spatial Correlation Analysis. Anal Chem 2023; 95:730-738. [PMID: 36574961 DOI: 10.1021/acs.analchem.2c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanisms by which angiotensin II type 1 receptor is distributed and the diffusional pattern in the plasma membrane (PM) remain unclear, despite their crucial role in cardiovascular homeostasis. In this work, we obtained quantitative information of angiotensin II type 1 receptor (AT1R) lateral dynamics as well as changes in the diffusion properties after stimulation with ligands in living cells using photoactivated localization microscopy (PALM) combined with image spatial-temporal correlation analysis. To study the organization of the receptor at the nanoscale, expansion microscopy (ExM) combined with PALM was performed. This study revealed that AT1R lateral diffusion increased after binding to angiotensin II (Ang II) and the receptor diffusion was transiently confined in the PM. In addition, ExM revealed that AT1R formed nanoclusters at the PM and the cluster size significantly decreased after Ang II treatment. Taking these results together suggest that Ang II binding and activation cause reorganization and changes in the dynamics of AT1R at the PM.
Collapse
Affiliation(s)
- Camilla Andersen
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M5230, Denmark
| | | | - Jakob L Kure
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M5230, Denmark
| | - Mathias Hessellund Eriksen
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M5230, Denmark
| | - Adam Leslie Lovatt
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M5230, Denmark
| | | | - Sebastian Morales
- Department of Physics and Department of Chemistry, McGill University, MontrealH3A 0B8, Canada
| | - Simon Sehayek
- Department of Physics and Department of Chemistry, McGill University, MontrealH3A 0B8, Canada
| | - Thomas M D Sheard
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, U.K
| | - Paul W Wiseman
- Department of Physics and Department of Chemistry, McGill University, MontrealH3A 0B8, Canada
| | - Eva C Arnspang
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M5230, Denmark
| |
Collapse
|
8
|
Cui L, Renzi S, Quagliarini E, Digiacomo L, Amenitsch H, Masuelli L, Bei R, Ferri G, Cardarelli F, Wang J, Amici A, Pozzi D, Marchini C, Caracciolo G. Efficient Delivery of DNA Using Lipid Nanoparticles. Pharmaceutics 2022; 14:1698. [PMID: 36015328 PMCID: PMC9416266 DOI: 10.3390/pharmaceutics14081698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
DNA vaccination has been extensively studied as a promising strategy for tumor treatment. Despite the efforts, the therapeutic efficacy of DNA vaccines has been limited by their intrinsic poor cellular internalization. Electroporation, which is based on the application of a controlled electric field to enhance DNA penetration into cells, has been the method of choice to produce acceptable levels of gene transfer in vivo. However, this method may cause cell damage or rupture, non-specific targeting, and even degradation of pDNA. Skin irritation, muscle contractions, pain, alterations in skin structure, and irreversible cell damage have been frequently reported. To overcome these limitations, in this work, we use a microfluidic platform to generate DNA-loaded lipid nanoparticles (LNPs) which are then characterized by a combination of dynamic light scattering (DLS), synchrotron small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). Despite the clinical successes obtained by LNPs for mRNA and siRNA delivery, little is known about LNPs encapsulating bulkier DNA molecules, the clinical application of which remains challenging. For in vitro screening, LNPs were administered to human embryonic kidney 293 (HEK-293) and Chinese hamster ovary (CHO) cell lines and ranked for their transfection efficiency (TE) and cytotoxicity. The LNP formulation exhibiting the highest TE and the lowest cytotoxicity was then tested for the delivery of the DNA vaccine pVAX-hECTM targeting the human neoantigen HER2, an oncoprotein overexpressed in several cancer types. Using fluorescence-activated cell sorting (FACS), immunofluorescence assays and fluorescence confocal microscopy (FCS), we proved that pVAX-hECTM-loaded LNPs produce massive expression of the HER2 antigen on the cell membrane of HEK-293 cells. Our results provide new insights into the structure-activity relationship of DNA-loaded LNPs and pave the way for the access of this gene delivery technology to preclinical studies.
Collapse
Affiliation(s)
- Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Serena Renzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Erica Quagliarini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Laura Masuelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gianmarco Ferri
- National Enterprise for NanoScience and NanoTechnology (NEST), Scuola Normale Superiore, 56127 Pisa, Italy
| | - Francesco Cardarelli
- National Enterprise for NanoScience and NanoTechnology (NEST), Scuola Normale Superiore, 56127 Pisa, Italy
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
9
|
Yu Y, Tang Y, Chu K, Gao T, Smith ZJ. High-Resolution Low-Power Hyperspectral Line-Scan Imaging of Fast Cellular Dynamics Using Azo-Enhanced Raman Scattering Probes. J Am Chem Soc 2022; 144:15314-15323. [PMID: 35969674 DOI: 10.1021/jacs.2c06275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-molecule Raman probes for cellular imaging have attracted great attention owing to their sharp peaks that are sensitive to environmental changes. The small cross section of molecular Raman scattering limits dynamic cellular Raman imaging to expensive and complex coherent approaches that acquire single-channel images and lose hyperspectral Raman information. We introduce a new method, dynamic azo-enhanced Raman imaging (DAERI), to couple the new class of azo-enhanced Raman probes with a high-speed line-scan Raman imaging system. DAERI achieved high-resolution low-power imaging of fast cellular dynamics resolved at ∼270 nm along the confocal direction, 75 μW/μm2 and 3.5 s/frame. Based on the azo-enhanced Raman probes with characteristic signals 102-104 stronger than classic Raman labels, DAERI was not restricted to the cellular Raman-silent region as in prior work and enabled multiplex visualization of organelle motions and interactions. We anticipate DAERI to be a powerful tool for future studies in biophysics and cell biology.
Collapse
Affiliation(s)
- Yajun Yu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Kaiqin Chu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
10
|
Measuring Molecular Diffusion in Dynamic Subcellular Nanostructures by Fast Raster Image Correlation Spectroscopy and 3D Orbital Tracking. Int J Mol Sci 2022; 23:ijms23147623. [PMID: 35886970 PMCID: PMC9323805 DOI: 10.3390/ijms23147623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Here we provide demonstration that fast fluorescence fluctuation spectroscopy is a fast and robust approach to extract information on the dynamics of molecules enclosed within subcellular nanostructures (e.g., organelles or vesicles) which are also moving in the complex cellular environment. In more detail, Raster Image Correlation Spectroscopy (RICS) performed at fast timescales (i.e., microseconds) reveals the fast motion of fluorescently labeled molecules within two exemplary dynamic subcellular nanostructures of biomedical interest, the lysosome and the insulin secretory granule (ISG). The measurement of molecular diffusion is then used to extract information on the average properties of subcellular nanostructures, such as macromolecular crowding or molecular aggregation. Concerning the lysosome, fast RICS on a fluorescent tracer allowed us to quantitatively assess the increase in organelle viscosity in the pathological condition of Krabbe disease. In the case of ISGs, fast RICS on two ISG-specific secreting peptides unveiled their differential aggregation propensity depending on intragranular concentration. Finally, a combination of fast RICS and feedback-based 3D orbital tracking was used to subtract the slow movement of subcellular nanostructures from the fast diffusion of molecules contained within them and independently validate the results. Results presented here not only demonstrate the acquired ability to address the dynamic behavior of molecules in moving, nanoscopic reference systems, but prove the relevance of this approach to advance our knowledge on cell function at the subcellular scale.
Collapse
|
11
|
Ferri G, Pesce L, Tesi M, Marchetti P, Cardarelli F. β-Cell Pathophysiology: A Review of Advanced Optical Microscopy Applications. Int J Mol Sci 2021; 22:ijms222312820. [PMID: 34884624 PMCID: PMC8657725 DOI: 10.3390/ijms222312820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
β-cells convert glucose (input) resulting in the controlled release of insulin (output), which in turn has the role to maintain glucose homeostasis. β-cell function is regulated by a complex interplay between the metabolic processing of the input, its transformation into second-messenger signals, and final mobilization of insulin-containing granules towards secretion of the output. Failure at any level in this process marks β-cell dysfunction in diabetes, thus making β-cells obvious potential targets for therapeutic purposes. Addressing quantitatively β-cell (dys)function at the molecular level in living samples requires probing simultaneously the spatial and temporal dimensions at the proper resolution. To this aim, an increasing amount of research efforts are exploiting the potentiality of biophysical techniques. In particular, using excitation light in the visible/infrared range, a number of optical-microscopy-based approaches have been tailored to the study of β-cell-(dys)function at the molecular level, either in label-free mode (i.e., exploiting intrinsic autofluorescence of cells) or by the use of organic/genetically-encoded fluorescent probes. Here, relevant examples from the literature are reviewed and discussed. Based on this, new potential lines of development in the field are drawn.
Collapse
Affiliation(s)
- Gianmarco Ferri
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
| | - Luca Pesce
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
| | - Marta Tesi
- Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, 56127 Pisa, Italy; (M.T.); (P.M.)
| | - Piero Marchetti
- Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, 56127 Pisa, Italy; (M.T.); (P.M.)
| | - Francesco Cardarelli
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
- Correspondence:
| |
Collapse
|
12
|
EM-based algorithms for single particle tracking of Ornstein-Uhlenbeck motion from sCMOS camera data. PROCEEDINGS OF THE ... AMERICAN CONTROL CONFERENCE. AMERICAN CONTROL CONFERENCE 2021; 2021:3945-3950. [PMID: 34483468 DOI: 10.23919/acc50511.2021.9483034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single particle tracking plays an important role in studying physical and kinetic properties of biomolecules. In this work, we introduce the application of Expectation Maximization (EM) based algorithms for solving localization and parameter estimation problems in SPT using data captured from scientific complementary metal-oxide semiconductor (sCMOS) camera sensors. Two representative methods are considered for generating the filtered and smoothed distributions needed by EM: Sequential Monte Carlo - EM, and Unscented - EM. The SMC method uses particle filtering and particle smoothing to handle general distributions, while the U scheme reduces the computational burden through the use of an unscented Kalman Filter and an unscented Rauch-Tung Striebel Smoother. We also investigate the influence of the number of images in the dataset on the final estimates through intensive simulations as well as the computational efficiency of the two methods.
Collapse
|
13
|
Ferri G, Tesi M, Pesce L, Bugliani M, Grano F, Occhipinti M, Suleiman M, De Luca C, Marselli L, Marchetti P, Cardarelli F. Spatiotemporal Correlation Spectroscopy Reveals a Protective Effect of Peptide-Based GLP-1 Receptor Agonism against Lipotoxicity on Insulin Granule Dynamics in Primary Human β-Cells. Pharmaceutics 2021; 13:pharmaceutics13091403. [PMID: 34575477 PMCID: PMC8464798 DOI: 10.3390/pharmaceutics13091403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are being used for the treatment of type 2 diabetes (T2D) and may have beneficial effects on the pancreatic β-cells. Here, we evaluated the effects of GLP-1R agonism on insulin secretory granule (ISG) dynamics in primary β-cells isolated from human islets exposed to palmitate-induced lipotoxic stress. Islets cells were exposed for 48 h to 0.5 mM palmitate (hereafter, ‘Palm’) with or without the addition of a GLP-1 agonist, namely 10 nM exendin-4 (hereafter, ‘Ex-4’). Dissociated cells were first transfected with syncollin-EGFP in order to fluorescently mark the ISGs. Then, by applying a recently established spatiotemporal correlation spectroscopy technique, the average structural (i.e., size) and dynamic (i.e., the local diffusivity and mode of motion) properties of ISGs are extracted from a calculated imaging-derived Mean Square Displacement (iMSD) trace. Besides defining the structural/dynamic fingerprint of ISGs in human cells for the first time, iMSD analysis allowed to probe fingerprint variations under selected conditions: namely, it was shown that Palm affects ISGs dynamics in response to acute glucose stimulation by abolishing the ISGs mobilization typically imparted by glucose and, concomitantly, by reducing the extent of ISGs active/directed intracellular movement. By contrast, co-treatment with Ex-4 normalizes ISG dynamics, i.e., re-establish ISG mobilization and ability to perform active transport in response to glucose stimulation. These observations were correlated with standard glucose-stimulated insulin secretion (GSIS), which resulted in being reduced in cells exposed to Palm but preserved in cells concomitantly exposed to 10 nM Ex-4. Our data support the idea that GLP-1R agonism may exert its beneficial effect on human β-cells under metabolic stress by maintaining ISGs’ proper intracellular dynamics.
Collapse
Affiliation(s)
- Gianmarco Ferri
- Laboratorio NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Luca Pesce
- Laboratorio NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Francesca Grano
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Margherita Occhipinti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Francesco Cardarelli
- Laboratorio NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
- Correspondence:
| |
Collapse
|
14
|
Pham TD. Fuzzy Recurrence Exponents of Subcellular-Nanostructure Dynamics in Time-lapse Confocal Imaging. IEEE Trans Nanobioscience 2021; 20:497-506. [PMID: 34398761 DOI: 10.1109/tnb.2021.3105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studying the dynamics of nanostructures in the intracellular space is important because it allows gaining insights into the mechanism of complex biological functions of organelles. Understanding such dynamical processes can contribute to the development of nanomedicine for the diagnosis and treatment of many diseases caused by the interaction of multiple genes and environmental factors. Here a quantitative measure of spatial-temporal dynamics of nanostructures within a cell line in the context of nonlinear dynamics is introduced, where early endosomes, late endosomes, and lysosomes recorded by time-lapse confocal imaging are examined. The mathematical derivation of the proposed technique is based on the concept of recurrence dynamics and sequential rate of change over time. The quantification introduced as fuzzy recurrence exponents can be generalized for characterizing the dynamics of experimental evolutions in other nanostructures of living cells captured under the optical microscope.
Collapse
|
15
|
Durso W, Martins M, Marchetti L, Cremisi F, Luin S, Cardarelli F. Lysosome Dynamic Properties during Neuronal Stem Cell Differentiation Studied by Spatiotemporal Fluctuation Spectroscopy and Organelle Tracking. Int J Mol Sci 2020; 21:ijms21093397. [PMID: 32403391 PMCID: PMC7247004 DOI: 10.3390/ijms21093397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
We investigated lysosome dynamics during neuronal stem cell (NSC) differentiation by two quantitative and complementary biophysical methods based on fluorescence: imaging-derived mean square displacement (iMSD) and single-particle tracking (SPT). The former extracts the average dynamics and size of the whole population of moving lysosomes directly from imaging, with no need to calculate single trajectories; the latter resolves the finest heterogeneities and dynamic features at the single-lysosome level, which are lost in the iMSD analysis. In brief, iMSD analysis reveals that, from a structural point of view, lysosomes decrement in size during NSC differentiation, from 1 μm average diameter in the embryonic cells to approximately 500 nm diameter in the fully differentiated cells. Concomitantly, iMSD analysis highlights modification of key dynamic parameters, such as the average local organelle diffusivity and anomalous coefficient, which may parallel cytoskeleton remodeling during the differentiation process. From average to local, SPT allows mapping heterogeneous dynamic responses of single lysosomes in different districts of the cells. For instance, a dramatic decrease of lysosomal transport in the soma is followed by a rapid increase of transport in the projections at specific time points during neuronal differentiation, an observation compatible with the hypothesis that lysosomal active mobilization shifts from the soma to the newborn projections. Our combined results provide new insight into the lysosome size and dynamics regulation throughout NSC differentiation, supporting new functions proposed for this organelle.
Collapse
Affiliation(s)
- William Durso
- NEST Laboratory—Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Manuella Martins
- Bio@SNS Laboratory—Scuola Normale Superiore, via G. Moruzzi, 1, 56126 Pisa, Italy; (M.M.); (F.C.)
| | - Laura Marchetti
- Center for Nanotechnology Innovation@NEST (CNI@NEST), Piazza San Silvestro 12, 56126 Pisa, Italy;
| | - Federico Cremisi
- Bio@SNS Laboratory—Scuola Normale Superiore, via G. Moruzzi, 1, 56126 Pisa, Italy; (M.M.); (F.C.)
| | - Stefano Luin
- NEST Laboratory—Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
- NEST, Istituto Nanoscienze, CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
- Correspondence: (S.L.); (F.C.)
| | - Francesco Cardarelli
- NEST Laboratory—Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
- Correspondence: (S.L.); (F.C.)
| |
Collapse
|
16
|
A mechanistic explanation of the inhibitory role of the protein corona on liposomal gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183159. [PMID: 31857070 DOI: 10.1016/j.bbamem.2019.183159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022]
Abstract
The past three decades have witnessed fast advances in the use of cationic liposome-DNA complexes (lipoplexes) for gene delivery applications. However, no lipoplex formulation has reached into the clinical practice so far. The primary drawback limiting clinical use of lipoplexes is the lack of mechanistic understanding of their low transfection efficiency (TE) in vivo. In physiological environments, lipoplexes are coated by a protein corona (PC) that mediates the interactions with the cell machinery. Here we show that the formation of PC can change the interactions of multicomponent (MC) lipoplexes with our cell model (i.e., HeLa). At the highest lipoplex concentration, the formation of PC can reduce the TE of MC lipoplexes from 60% to <5%. Combining dynamic light scattering and synchrotron small-angle X-ray scattering (SAXS), we clarify that the formation of PC modifies physical-chemical properties of MC lipoplexes so as to affect their TE. Moreover, we examined single transfection barriers by a combination of fluorescence-activated cell sorting, single-cell real-time fluorescence confocal microscopy, and synchrotron SAXS. We demonstrate that PC formation has the ability to modify the relative contribution of caveolae-mediated endocytosis and macropinocytosis in lipoplexes uptake, in favor of the latter, increasing accumulation of PC-decorated lipoplexes into degradative lysosomal compartments. Finally, we report evidences that PC reduces the structural stability of lipoplexes against solubilization by cellular lipids, likely favoring premature DNA release and cytosolic digestion by DNAase. These combined effects revealed here offer a comprehensive mechanistic explanation on the reason behind reduction in gene expression of MC lipoplexes.
Collapse
|
17
|
Ferri G, Digiacomo L, Lavagnino Z, Occhipinti M, Bugliani M, Cappello V, Caracciolo G, Marchetti P, Piston DW, Cardarelli F. Insulin secretory granules labelled with phogrin-fluorescent proteins show alterations in size, mobility and responsiveness to glucose stimulation in living β-cells. Sci Rep 2019; 9:2890. [PMID: 30814595 PMCID: PMC6393586 DOI: 10.1038/s41598-019-39329-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
The intracellular life of insulin secretory granules (ISGs) from biogenesis to secretion depends on their structural (e.g. size) and dynamic (e.g. diffusivity, mode of motion) properties. Thus, it would be useful to have rapid and robust measurements of such parameters in living β-cells. To provide such measurements, we have developed a fast spatiotemporal fluctuation spectroscopy. We calculate an imaging-derived Mean Squared Displacement (iMSD), which simultaneously provides the size, average diffusivity, and anomalous coefficient of ISGs, without the need to extract individual trajectories. Clustering of structural and dynamic quantities in a multidimensional parametric space defines the ISGs' properties for different conditions. First, we create a reference using INS-1E cells expressing proinsulin fused to a fluorescent protein (FP) under basal culture conditions and validate our analysis by testing well-established stimuli, such as glucose intake, cytoskeleton disruption, or cholesterol overload. After, we investigate the effect of FP-tagged ISG protein markers on the structural and dynamic properties of the granule. While iMSD analysis produces similar results for most of the lumenal markers, the transmembrane marker phogrin-FP shows a clearly altered result. Phogrin overexpression induces a substantial granule enlargement and higher mobility, together with a partial de-polymerization of the actin cytoskeleton, and reduced cell responsiveness to glucose stimulation. Our data suggest a more careful interpretation of many previous ISG-based reports in living β-cells. The presented data pave the way to high-throughput cell-based screening of ISG structure and dynamics under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Gianmarco Ferri
- NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Margherita Occhipinti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | | | - Giulio Caracciolo
- Department of Molecular Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Francesco Cardarelli
- NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy.
| |
Collapse
|
18
|
Begarani F, D'Autilia F, Signore G, Del Grosso A, Cecchini M, Gratton E, Beltram F, Cardarelli F. Capturing Metabolism-Dependent Solvent Dynamics in the Lumen of a Trafficking Lysosome. ACS NANO 2019; 13:1670-1682. [PMID: 30649861 DOI: 10.1021/acsnano.8b07682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The eukaryotic cell compartmentalizes into spatially confined, membrane-enclosed, intracellular structures ( e. g., organelles, endosomes, and vesicles). Here, peculiar physicochemical properties of the local environment occur and participate in the regulation of ongoing molecular processes. In spite of the huge amount of available environmental probes, experiments on subcellular structures are severely challenged by their three-dimensional (3D) movement. This bottleneck is tackled here by focusing an excitation light beam in a periodic orbit around the structure of interest. The recorded signal is used as feedback to localize the structure position at high temporal resolution: microseconds along the orbit, milliseconds between orbits. The lysosome is selected as the intracellular target, together with 6-acetyl-2-dimethylaminonaphthalene (ACDAN) as probe of the physicochemical properties of the intralysosomal environment. Generalized polarization (GP) analysis of ACDAN emission is used to get a quantitative view on intralysosomal solvent dipolar relaxation. Thus, raster image correlation spectroscopy (RICS) analysis reveals that the ACDAN GP signal is fluctuating in the micro-to-millisecond time range during natural organelle 3D trafficking. We show that ACDAN GP fluctuations are characteristic of lysosomes in living cells, are selectively abolished by lysosomal basification, and depend on metabolic energy in the form of ATP. We argue that intralysosomal ACDAN GP fluctuates according to the ongoing organelle metabolism. Indeed, we report alterations in amplitude and timing of GP fluctuations in a cellular model of lysosomal storage disorder (LSD). The strategy proposed provides insight into the elusive local environment of a trafficking lysosome and supports similar molecular investigations at the subcellular level.
Collapse
Affiliation(s)
- Filippo Begarani
- Laboratorio NEST, Scuola Normale Superiore , Pisa 56127 , Italy
- Center for Nanotechnology Innovation@NEST (CNI@NEST) , Pisa 56127 , Italy
| | | | | | - Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore , Pisa 56127 , Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore , Pisa 56127 , Italy
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering , University of California , Irvine , California 92697-2715 , United States
| | - Fabio Beltram
- Laboratorio NEST, Scuola Normale Superiore , Pisa 56127 , Italy
| | | |
Collapse
|
19
|
Durso W, D'Autilia F, Amodeo R, Marchetti L, Cardarelli F. Probing labeling-induced lysosome alterations in living cells by imaging-derived mean squared displacement analysis. Biochem Biophys Res Commun 2018; 503:2704-2709. [PMID: 30100062 DOI: 10.1016/j.bbrc.2018.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
Abstract
Lysosomes are not merely degradative organelles but play a central role in nutrient sensing, metabolism and cell-growth regulation. Our ability to study their function in living cells strictly relies on the use of lysosome-specific fluorescent probes tailored to optical microscopy applications. Still, no report thus far quantitatively analyzed the effect of labeling strategies/procedures on lysosome properties in live cells. We tackle this issue by a recently developed spatiotemporal fluctuation spectroscopy strategy that extracts structural (size) and dynamic (diffusion) properties directly from imaging, with no a-priori knowledge of the system. We highlight hitherto neglected alterations of lysosome properties upon labeling. In particular, we demonstrate that Lipofectamine reagents, used to transiently express lysosome markers fused to fluorescent proteins (FPs) (e.g. LAMP1-FP or CD63-FP), irreversibly alter the organelle structural identity, inducing a ∼2-fold increase of lysosome average size. The organelle structural identity is preserved, instead, if electroporation or Effectene are used as transfection strategies, provided that the expression levels of the recombinant protein marker are kept low. This latter condition can be achieved also by generating cell lines stably expressing the desired FP-tagged marker. Reported results call into question the interpretation of a massive amount of data collected so far using fluorescent protein markers and suggest useful guidelines for future studies.
Collapse
Affiliation(s)
- William Durso
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy; NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy
| | - Francesca D'Autilia
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Rosy Amodeo
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy; NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy
| | - Laura Marchetti
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Francesco Cardarelli
- NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy.
| |
Collapse
|
20
|
Ferri G, Digiacomo L, D'Autilia F, Durso W, Caracciolo G, Cardarelli F. Time-lapse confocal imaging datasets to assess structural and dynamic properties of subcellular nanostructures. Sci Data 2018; 5:180191. [PMID: 30226484 PMCID: PMC6142892 DOI: 10.1038/sdata.2018.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/23/2018] [Indexed: 01/14/2023] Open
Abstract
Time-lapse optical microscopy datasets from living cells can potentially afford an enormous amount of quantitative information on the relevant structural and dynamic properties of sub-cellular organelles/structures, provided that both the spatial and temporal dimensions are properly sampled during the experiment. Here we provide exemplary live-cell, time-lapse confocal imaging datasets corresponding to three sub-cellular structures of the endo-lysosomal pathway, i.e. early endosomes, late endosomes and lysosomes, along with detailed guidelines to produce analogous experiments. Validation of the datasets is conducted by means of established analytical tools to extract the structural and dynamic properties at the sub-cellular scale, such as Single Particle Tracking (SPT) and imaging derived Mean Square Displacement (iMSD) analyses. In our aim, the present work would help other researchers in the field to reuse the provided datasets for their own scopes, and to combine their creative approaches/analyses to similar acquisitions.
Collapse
Affiliation(s)
- Gianmarco Ferri
- NEST-Scuola Normale Superiore, Istituto Nanoscienze-CNR (CNR-NANO), 56127 Pisa, Italy.,Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, "La Sapienza" University of Rome, 00161 Rome, Italy
| | - Francesca D'Autilia
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - William Durso
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, "La Sapienza" University of Rome, 00161 Rome, Italy
| | - Francesco Cardarelli
- NEST-Scuola Normale Superiore, Istituto Nanoscienze-CNR (CNR-NANO), 56127 Pisa, Italy
| |
Collapse
|