1
|
Wang X, Huang JH, Meng B, Mao K, Zheng M, Tan A, Yang G, Feng X. LmGSTF3 Overexpression Enhances Cadmium Tolerance in Lemna minor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2711-2721. [PMID: 39723912 DOI: 10.1021/acs.est.4c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Glutathione S-transferase (GST) has been established to play an important role in regulating the responses of plants to stress, although its function and mechanisms of action in the cadmium (Cd)-tolerant Lemna minor remain unclear. In this study, we sought to identify a Cd-responsive GST gene from Lemna minor for functional analysis and mechanistic characterization. We accordingly identified a member of the GST gene family, LmGSTF3, which plays a positive role in adaptation of Lemna minor to Cd. Having successfully obtained overexpressing (OE) strains via genetic transformation, we established that these strains were characterized by elevated Cd tolerance compared with the wild-type strain, as evidenced by significant increases in growth rate, chlorophyll content, antioxidant enzyme activities, and Cd removal rate. At the transcriptome level, the OE strains were found to have a stronger regulatory ability in response to Cd, particularly with respect to photoprotection, antioxidant defense, and glycolytic metabolism, which may be key factors contributing to the Cd tolerance of Lemna minor. Our findings provide a basis for further elucidating the biochemical and molecular mechanisms underlying the Cd tolerance conferred by GST genes in Lemna minor and will potentially contribute to the utilization of Lemna minor in remediating aquatic pollution.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jen-How Huang
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Bo Meng
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Kang Mao
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Mengmeng Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Aijuan Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Guili Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Xinbin Feng
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| |
Collapse
|
2
|
Yu X, Liu Y, Yang L, Liu Y, Fan C, Yang Z, Xu Y, Zeng X, Xiao X, Yang L, Lei T, Jiang M, Li X, Gao S, Tao Q. Low concentrations of methyl jasmonate promote plant growth and mitigate Cd toxicity in Cosmos bipinnatus. BMC PLANT BIOLOGY 2024; 24:807. [PMID: 39187785 PMCID: PMC11348786 DOI: 10.1186/s12870-024-05526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) is a biologically non-essential heavy metal, a major soil pollutant, and extremely harmful to plants. The phytohormone methyl jasmonate (MeJA) plays an important role in plant heavy-metal resistance. However, the understanding of the effects of MeJA supply level on alleviating Cd toxicity in plants is limited. Here, we investigated how MeJA regulated the development of physiological processes and cell wall modification in Cosmos bipinnatus. We found that low concentrations of MeJA increased the dry weight of seedlings under 120 µM Cd stress by reducing the transport of Cd from roots to shoots. Moreover, a threshold concentration of exogenous MeJA increased the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in plant roots, the concentration of Cd in the root cell wall, and the contents of pectin and hemicellulose 1 polysaccharides, through converting Cd into pectin-bound forms. These results suggested that MeJA mitigated Cd toxicity by modulating root cell wall polysaccharide and functional group composition, especially through pectin polysaccharides binding to Cd, with effects on Cd transport capacity, specific chemical forms of Cd, and homeostatic antioxidant systems in C. bipinnatus.
Collapse
Affiliation(s)
- Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yujia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liu Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujing Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunyu Fan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zihan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhan Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Xiao
- Triticeae Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
3
|
Aslam A, Noreen Z, Rashid M, Aslam M, Hussain T, Younas A, Fiaz S, Attia KA, Mohammed AA. Understanding the role of magnetic (Fe 3O 4) nanoparticle to mitigate cadmium stress in radish (Raphanus sativus L.). BOTANICAL STUDIES 2024; 65:20. [PMID: 38995467 PMCID: PMC11245460 DOI: 10.1186/s40529-024-00420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 07/13/2024]
Abstract
Heavy metals stress particularly cadmium contamination is hotspot among researchers and considered highly destructive for both plants and human health. Iron is examined as most crucial element for plant development, but it is available in inadequate amount because they are present in insoluble Fe3+ form in soil. Fe3O4 have been recently found as growth promoting factor in plants. To understand, a sand pot experiment was conducted in completely randomized design (control, cadmium, 20 mg/L Fe3O4 nanoparticles,40 mg/L Fe3O4 nanoparticles, 20 mg/L Fe3O4 nanoparticles + cadmium, 40 mg/L Fe3O4 nanoparticles + cadmium) to study the mitigating role of Fe3O4 nanoparticles on cadmium stress in three Raphanus sativus cultivars namely i.e., MOL SANO, MOL HOL PARI, MOL DAQ WAL. The plant growth, physiological and biochemical parameters i.e.,shoot length, shoot fresh weight, shoot dry weight, root length, root fresh and dry weight, MDA content, soluble protein contents, APX, CAT, POD activities and ion concentrations, membrane permeability, chlorophyll a, chlorophyll b and anthocyanin content, respectively were studied. The results displayed that cadmium stress remarkably reduces all growth, physiological and biochemical parameters for allcultivars under investigation. However, Fe3O4 nanoparticles mitigated the adverse effect of cadmium by improving growth, biochemical and physiological attributes in all radish cultivars. While, 20 mg/L Fe3O4 nanoparticles have been proved to be more useful against cadmium stress. The outcome of present investigation displayed that Fe3O4 nanoparticles can be utilized for mitigating heavy metal stress.
Collapse
Affiliation(s)
- Amina Aslam
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Madiha Rashid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Tanveer Hussain
- Department of Horticulture, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Afifa Younas
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
- Lahore College for Women University Lahore, Jinnah Town, Lahore, Punjab, 44444, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, KP, Pakistan.
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang City, Henan Province, China.
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Kong D, Ma H, Zhu C, Hao Y, Li C. Unraveling the toxicity response and metabolic compensation mechanism of tannic acid-Cr(III) complex on alga Raphidocelis subcapitata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172034. [PMID: 38657806 DOI: 10.1016/j.scitotenv.2024.172034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Due to their assembly properties and variable molecular weights, the potential biological toxicity effects of macromolecular organic ligand heavy metal complexes are more difficult to predict and their mechanisms are more complex. This study unraveled the toxicity response and metabolic compensation mechanism of tannic acid-Cr(III) (TA-Cr(III)) complex on alga Raphidocelis subcapitata using multi-omics approaches. Results showed TA-Cr(III) complex caused oxidative damage and photosystem disruption, destroying the cell morphology and inhibiting algal growth by >80 % at high exposure levels. TA-Cr(III) complex stress down-regulated proteins linked to proliferation, photosynthesis and antioxidation while upregulating carbon fixation, TCA cycle and amino acid metabolism. The increase of fumarate, citrate, isocitrate and semialdehyde succinate was validated by metabolomics analysis, which improved the TCA cycle, amino acid metabolism and carbon fixation. Activation of the above cellular processes somewhat compensated for the inhibition of algal photosynthesis by TA-Cr(III) complex exposure. In conclusion, physiological toxicity coupled with downstream metabolic compensation in response to Cr(III) complex of macromolecular was characterized in Raphidocelis subcapitata, unveiling the adaptive mechanism of algae under the stress of heavy metal complexes with macromolecular organic ligands.
Collapse
Affiliation(s)
- Deyi Kong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China.
| | - Chao Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| | - Yongyong Hao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| | - Chengtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| |
Collapse
|
5
|
Mohan I, Joshi B, Pathania D, Dhar S, Bhau BS. Phytobial remediation advances and application of omics and artificial intelligence: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37988-38021. [PMID: 38780844 DOI: 10.1007/s11356-024-33690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Industrialization and urbanization increased the use of chemicals in agriculture, vehicular emissions, etc., and spoiled all environmental sectors. It causes various problems among living beings at multiple levels and concentrations. Phytoremediation and microbial association are emerging as a potential method for removing heavy metals and other contaminants from soil. The treatment uses plant physiology and metabolism to remove or clean up various soil contaminants efficiently. In recent years, omics and artificial intelligence have been seen as powerful techniques for phytobial remediation. Recently, AI and modeling are used to analyze large data generated by omics technologies. Machine learning algorithms can be used to develop predictive models that can help guide the selection of the most appropriate plant and plant growth-promoting rhizobacteria combination that is most effective at remediation. In this review, emphasis is given to the phytoremediation techniques being explored worldwide in soil contamination.
Collapse
Affiliation(s)
- Indica Mohan
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P., 226001, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
6
|
Sana S, Ramzan M, Ejaz S, Danish S, Salmen SH, Ansari MJ. Differential responses of chili varieties grown under cadmium stress. BMC PLANT BIOLOGY 2024; 24:7. [PMID: 38163887 PMCID: PMC10759427 DOI: 10.1186/s12870-023-04678-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Heavy metal cadmium (Cd) naturally occurs in soil and is a hazardous trace contaminant for humans, animals, and plants. The main sources of Cd pollution in soil include overuse of phosphatic fertilizers, manure, sewage sludge, and aerial deposition. That's why an experiment was conducted to analyze the effect of Cd toxicity in Capsicum annuum L. by selecting its seven varieties: Hybrid, Desi, Sathra, G-916, BR-763, BG-912, and F1-9226. Cadmium was spiked in soil with four levels, i.e., (0, 3, 4, and 5 mg Cd kg- 1 of soil) for a week for homogeneous dispersion of heavy metal. Chili seeds were sown in compost-filled loamy soil, and 25-day-old seedlings were transplanted into Cd-spiked soil. Cadmium increasing concentration in soil decreased chili growth characteristics, total soluble sugars, total proteins, and amino acids. On the other hand, the activities of antioxidant enzymes were increased with the increasing concentration of Cd in almost all the varieties. Treatment 5 mg Cd/kg application caused - 197.39%, -138.78%, -60.77%, -17.84%, -16.34%, -11.82% and - 10.37% decrease of carotenoids level in chili V2 (Desi) followed by V4 (G-916), V1 (Hy7brid), V7 (F1-9226), V6 (BG-912), V5 (BR-763) and V3 (Sathra) as compared to their controls. The maximum flavonoids among varieties were in V5 (BR-763), followed by V6 (BG-912), V7 (F1-9226), V3 (Sathra) and V1 (Hybrid). Flavonoids content was decreased with - 37.63% (Sathra), -34.78% (Hybrid), -33.85% (G-916), -31.96% (F1-9226), -31.44% (Desi), -30.58% (BR-763), -22.88% (BG-912) as compared to their control at 5 mg Cd/kg soil stress. The maximum decrease in POD, SOD, and CAT was - 31.81%, -25.98%, -16.39% in chili variety V7 (F1-9226) at 5 mg Cd/kg stress compared to its control. At the same time, maximum APX content decrease was - 82.91%, followed by -80.16%, -65.19%, -40.31%, -30.14%, -10.34% and - 6.45% in V4 (G-916), V2 (Desi), V3 (Sathra), V6 (BG-912), V1 (Hybrid), V7 (F1-9226) and V5 (BR-763) at 5 mg Cd/kg treatment as compared to control chili plants. The highest CAT was found in 5 chili varieties except Desi and G-916. Desi and G-916 varieties. V5 (BR-763) and V6 (BG-912) were susceptible, while V1 (Hybrid), V3 (Sathra), and V7 (F1-9226) were with intermediate growth attributes against Cd stress. Our results suggest that Desi and G-916 chili varieties are Cd tolerant and can be grown on a large scale to mitigate Cd stress naturally.
Collapse
Affiliation(s)
- Sundas Sana
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
- Al-Waili foundation of Science, New York, USA
| |
Collapse
|
7
|
Duan Y, Zhang Y, Zhao B. Lead, zinc tolerance mechanism and phytoremediation potential of Alcea rosea (Linn.) Cavan. and Hydrangea macrophylla (Thunb.) Ser. and ethylenediaminetetraacetic acid effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41329-41343. [PMID: 35088277 DOI: 10.1007/s11356-021-18243-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/16/2021] [Indexed: 05/15/2023]
Abstract
In this study, we aimed to elucidate the defense mechanism of Alcea rosea (Linn.) Cavan. and Hydrangea macrophylla (Thunb.) Ser. against the single and compound toxicity of lead (Pb) and zinc (Zn) along with the synergistic effect of ethylenediaminetetraacetic acid (EDTA) in accumulation of metals in these two species. The two plant species were subjected to single metal treatment (Pb 1000 mg kg-1, Zn 600 mg kg-1) and compound metal treatment (Pb 1000 mg kg-1 + Zn 600 mg kg-1) in a greenhouse. Besides, different levels of EDTA were applied (2.5, 5.0, and 10.0 mmol kg-1) with compound metal treatment. Several physiological and biochemical parameters, including plant photosynthetic parameters, enzymatic antioxidant system, accumulation concentration of metals, and subcellular distribution were estimated. The results showed that the antioxidative enzymes, proline, root morphological changes, and metal localization all played important roles in resisting Pb and Zn toxicity. A notable difference was that Zn was concentrated in the roots (58.5%) of H. macrophylla to reduce the damage but in the leaves (38.5%) of A. rosea to promote photosynthesis and resist the toxicity of metals. In addition, Zn reduced the toxicity of Pb to plants by regulating photosynthesis, Pb absorption and Pb distribution in subcells. The biological concentration factors (BCF) and translocation factors (TF) for Pb in two plants were less than 1, indicating that they could be considered as phytostabilizators in Pb-contaminated soils. Moreover, EDTA could enhance the enrichment and transport capacity of Pb and Zn to promote the phytoremediation effect. In summary, both plants have a certain application potential for repairing Pb-Zn-contaminated soil.
Collapse
Affiliation(s)
- Yaping Duan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, China
| | - Ying Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, China
| | - Bing Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
8
|
Cross-Kingdom Comparative Transcriptomics Reveals Conserved Genetic Modules in Response to Cadmium Stress. mSystems 2021; 6:e0118921. [PMID: 34874779 PMCID: PMC8651089 DOI: 10.1128/msystems.01189-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It is known that organisms have developed various mechanisms to cope with cadmium (Cd) stress, while we still lack a system-level understanding of the functional isomorphy among them. In the present study, a cross-kingdom comparison was conducted among Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii, through toxicological tests, comparative transcriptomics, as well as conventional functional genomics. An equivalent level of Cd stress was determined via inhibition tests. Through transcriptome comparison, the three organisms exhibited differential gene expression under the same Cd stress relative to the corresponding no-treatment control. Results from functional enrichment analysis of differentially expressed genes (DEGs) showed that four metabolic pathways responsible for combating Cd stress were commonly regulated in the three organisms, including antioxidant reactions, sulfur metabolism, cell wall remodeling, and metal transport. In vivo expression patterns of 43 DEGs from the four pathways were further examined using quantitative PCR and resulted in a relatively comparable dynamic of gene expression patterns with transcriptome sequencing (RNA-seq). Cross-kingdom comparison of typical Cd stress-responding proteins resulted in the detection of 12 groups of homologous proteins in the three species. A class of potential metal transporters were subjected to cross-transformation to test their functional complementation. An ABC transporter gene in E. coli, possibly homologous to the yeast ycf1, was heterologously expressed in S. cerevisiae, resulting in enhanced Cd tolerance. Overall, our findings indicated that conserved genetic modules against Cd toxicity were commonly regulated among distantly related microbial species, which will be helpful for utilizing them in modifying microbial traits for bioremediation. IMPORTANCE Research is establishing a systems biology view of biological response to Cd stress. It is meaningful to explore whether there is regulatory isomorphy among distantly related organisms. A transcriptomic comparison was done among model microbes, leading to the identification of a conserved cellular model pinpointing the generic strategies utilized by microbes for combating Cd stress. A novel E. coli transporter gene substantially increased yeast’s Cd tolerance. Knowledge on systems understanding of the cellular response to metals provides the basis for developing bioengineering remediation technology.
Collapse
|
9
|
Kabir AH, Das U, Rahman MA, Lee KW. Silicon induces metallochaperone-driven cadmium binding to the cell wall and restores redox status through elevated glutathione in Cd-stressed sugar beet. PHYSIOLOGIA PLANTARUM 2021; 173:352-368. [PMID: 33848008 DOI: 10.1111/ppl.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is toxic; however, whether silicon (Si) alleviates Cd toxicity was never studied in sugar beet. The study was conducted on 2-week-old sugar beet cultivated in the presence or absence of Cd (10 μM CdSO4 ) and Si (1 mM Na2 SiO3 ) in hydroponic conditions. The morphological impairment and cellular damages observed in sugar beet upon Cd toxicity were entirely reversed due to Si. Si substantially restored the energy-providing ability, absorbed energy flux, and electron transport toward PSII, which might be correlated with the upregulation of BvIRT1 and ferric chelate reductase activity leading to the restoration of Fe status in Cd-stressed sugar beet. Although Si caused a reduction of shoot Cd, the root Cd substantially increased under Cd stress, a significant part of which was retained in the cell wall rather than in the root vacuole. While the concentration of phytochelatin and the expression of BvPCS3 (PHYTOCHELATIN SYNTHASE 3) showed no changes upon Si exposure, Si induced the expression of BvHIPP32 (HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN 32) in the Cd-exposed root. The BvHIPP32 and AtHIPP32 metallochaperone proteins are localized in the cell wall and they share similar sequence alignment, physiochemical properties, secondary structure, cellular localization, motif locations, domain association, and metal-binding site (cd00371) linked to the metallochaperone-like protein. It suggests that Si reduces the Cd level in shoot by retaining the excess Cd in the cell wall of roots due to the induction of BvHIPP32 gene. Also, Si stimulates glutathione-related antioxidants along with the BvGST23 expression, inferring an ascorbate-glutathione ROS detoxification pathway in Cd-exposed plants.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Urmi Das
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Ki-Won Lee
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| |
Collapse
|
10
|
NGS Methodologies and Computational Algorithms for the Prediction and Analysis of Plant Circular RNAs. Methods Mol Biol 2021; 2362:119-145. [PMID: 34195961 DOI: 10.1007/978-1-0716-1645-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs derived from exonic, intronic, and intergenic regions from precursor messenger RNAs (pre-mRNA), where a noncanonical back-splicing event occurs, in which the 5' and 3' ends are attached by covalent bond. CircRNAs participate in the regulation of gene expression at the transcriptional and posttranscriptional level primarily as miRNA and RNA-binding protein (RBP) sponges, but also involved in the regulation of alternative RNA splicing and transcription. CircRNAs are widespread and abundant in plants where they have been involved in stress responses and development. Through the analysis of all publications in this field in the last five years, we can summarize that the identification of these molecules is carried out through next generation sequencing studies, where samples have been previously treated to eliminate DNA, rRNA, and linear RNAs as a means to enrich circRNAs. Once libraries are prepared, they are sequenced and subsequently studied from a bioinformatics point of view. Among the different tools for identifying circRNAs, we can highlight CIRI as the most used (in 60% of the published studies), as well as CIRCExplorer (20%) and find_circ (20%). Although it is recommended to use more than one program in combination, and preferably developed specifically to treat with plant samples, this is not always the case. It should also be noted that after identifying these circular RNAs, most of the authors validate their findings in the laboratory in order to obtain bona fide results.
Collapse
|
11
|
Alharby HF, Al-Zahrani HS, Hakeem KR, Alsamadany H, Desoky ESM, Rady MM. Silymarin-Enriched Biostimulant Foliar Application Minimizes the Toxicity of Cadmium in Maize by Suppressing Oxidative Stress and Elevating Antioxidant Gene Expression. Biomolecules 2021; 11:biom11030465. [PMID: 33801090 PMCID: PMC8004092 DOI: 10.3390/biom11030465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/18/2023] Open
Abstract
For maize, the potential preventive role of foliar spraying with an extract derived from maize grain (MEg, 2%), silymarin (Sm, 0.5 mM), or silymarin-enriched MEg (MEg-Sm) in attenuating the stress effects of cadmium (Cd, 0.5 mM) was examined using a completely randomized design layout. Under normal conditions, foliar spraying with MEg, Sm, or MEg-Sm was beneficial (with MEg-Sm preferred) for maize plants, whereas the benefit was more pronounced under Cd stress. The use of Cd through irrigation water decreased plant growth traits, photosynthetic efficiency, including instantaneous carboxylation efficiency, Fv/Fm, and pigment contents, and hormonal contents (e.g., auxin, gibberellins, cytokinins including trans-zeatin, and salicylic acid). These undesired findings were due to an increase in Cd content, leading to increased levels of oxidative stress (O2•− and H2O2), ionic leakage, and lipid peroxidation. Therefore, this damage resulted in an increase in the activities of nonenzymatic antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. However, under Cd stress, although foliar spray with MEg or Sm had better findings than control, MEg-Sm had better findings than MEg or Sm. Application of MEg-Sm greatly increased photosynthesis efficiency, restored hormonal homeostasis, and further increased the activities of various antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. These desired findings were due to the suppression of the Cd content, and thus the levels of O2•−, H2O2, ionic leakage, and lipid peroxidation, which were positively reflected in the growth and accumulation of dry matter in maize plants. The data obtained in this study recommend applying silymarin-enriched maize grain extract (MEg-Sm at 0.24 g Sm L−1 of MEg) as a spray solution to maize plants when exposed to excess Cd in soil or irrigation water.
Collapse
Affiliation(s)
- Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; (H.F.A.); (H.S.A.-Z.); (K.R.H.); (H.A.)
| | - Hassan S. Al-Zahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; (H.F.A.); (H.S.A.-Z.); (K.R.H.); (H.A.)
| | - Khalid R. Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; (H.F.A.); (H.S.A.-Z.); (K.R.H.); (H.A.)
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; (H.F.A.); (H.S.A.-Z.); (K.R.H.); (H.A.)
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
- Correspondence:
| |
Collapse
|
12
|
Liu Q, Zhang Y, Wang Y, Wang W, Gu C, Huang S, Yuan H, Dhankher OP. Quantitative proteomic analysis reveals complex regulatory and metabolic response of Iris lactea Pall. var. chinensis to cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123165. [PMID: 32569986 DOI: 10.1016/j.jhazmat.2020.123165] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/13/2020] [Accepted: 06/06/2020] [Indexed: 05/28/2023]
Abstract
Cadmium pollution has become a serious environmental problem. Iris lactea var. chinensis showed strong Cd tolerance and accumulation ability, which has significant potential to be applied for the phytoremediation of Cd-contaminated soil. However, the lack of molecular information on the mechanism of I. lactea response to Cd limited the improvement of phytoremediation efficiency. In this study, label-free proteomics analysis of Cd response in I. lactea showed that there were 163 and 196 differentially expressed proteins (DEPs) in the shoots and roots, respectively. Bioinformatics analysis indicated the DEPs responding to Cd stress mainly involved in signal transduction, ion transport, redox etc., and participate in the pathway of amino acid biosynthesis, lignin biosynthesis, glycerolipid metabolism and glutathione metabolism. Besides, differential expression of seven DEPs was validated via gene expression analysis. Finally, we found that a Cd-induced mannose-specific lectin (IlMSL) from I. lactea enhanced the Cd sensitivity and increased Cd accumulation in yeast. The results of this study will enhance our understanding of the molecular mechanism of Cd tolerance and accumulation in I. lactea and ultimately provide valuable resources for using Cd tolerant genes for developing efficient strategies for phytoremediation of Cd-contaminated soils or limiting Cd accumulation in food crops.
Collapse
Affiliation(s)
- Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yinjie Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Weilin Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Suzhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
13
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
14
|
Cai Z, Xian P, Wang H, Lin R, Lian T, Cheng Y, Ma Q, Nian H. Transcription Factor GmWRKY142 Confers Cadmium Resistance by Up-Regulating the Cadmium Tolerance 1-Like Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:724. [PMID: 32582254 PMCID: PMC7283499 DOI: 10.3389/fpls.2020.00724] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) is a widespread pollutant that is toxic to living organisms. Previous studies have identified certain WRKY transcription factors, which confer Cd tolerance in different plant species. In the present study, we have identified 29 Cd-responsive WRKY genes in Soybean [Glycine max (L.) Merr.], and confirmed that 26 of those GmWRKY genes were up-regulated, while 3 were down-regulated. We have also cloned the novel, positively regulated GmWRKY142 gene from soybean and investigated its regulatory mechanism in Cd tolerance. GmWRKY142 was highly expressed in the root, drastically up-regulated by Cd, localized in the nucleus, and displayed transcriptional activity. The overexpression of GmWRKY142 in Arabidopsis thaliana and soybean hairy roots significantly enhanced Cd tolerance and lead to extensive transcriptional reprogramming of stress-responsive genes. ATCDT1, GmCDT1-1, and GmCDT1-2 encoding cadmium tolerance 1 were induced in overexpression lines. Further analysis showed that GmWRKY142 activated the transcription of ATCDT1, GmCDT1-1, and GmCDT1-2 by directly binding to the W-box element in their promoters. In addition, the functions of GmCDT1-1 and GmCDT1-2, responsible for decreasing Cd uptake, were validated by heterologous expression in A. thaliana. Our combined results have determined GmWRKYs to be newly discovered participants in response to Cd stress, and have confirmed that GmWRKY142 directly targets ATCDT1, GmCDT1-1, and GmCDT1-2 to decrease Cd uptake and positively regulate Cd tolerance. The GmWRKY142-GmCDT1-1/2 cascade module provides a potential strategy to lower Cd accumulation in soybean.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Huan Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Rongbin Lin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Du J, Zeng J, Ming X, He Q, Tao Q, Jiang M, Gao S, Li X, Lei T, Pan Y, Chen Q, Liu S, Yu X. The presence of zinc reduced cadmium uptake and translocation in Cosmos bipinnatus seedlings under cadmium/zinc combined stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:223-232. [PMID: 32234661 DOI: 10.1016/j.plaphy.2020.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) and zinc (Zn) coexist in the environment but interact differently in plants. Cosmos bipinnatus has been potentially considered as a Cd-accumulator. Thus, this study investigated the detoxification mechanism in C. bipinnatus seedlings under Cd, Zn and Cd + Zn stresses. In the present study, the presence of Zn inhibited Cd uptake and translocation, whereas Cd merely hindered Zn uptake. The concentration of Cd in soluble fraction significantly decreased and Cd was bounded to the cell wall in root under Cd + Zn stress. Meanwhile, Zn and Cd mutually decreased their concentrations in the ethanol extractable form (FE) and water extractable form (FW) in roots and shoots. Furthermore, Cd + Zn stress enhanced the activities of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7) and catalase (CAT, EC 1.11.1.6) compared to Cd stress alone. These results suggested that Zn effectively decreased Cd uptake and translocation, changed their subcellular distributions, regulated their chemical forms composition and increased antioxidative enzyme activities, thereby enhancing the tolerance to Cd in C. bipinnatus. This study physiologically revealed the interactive effect of Cd and Zn on the detoxification mechanism of Cd in C. bipinnatus and provided new information on phytoremediation of the heavy metal contaminated soils.
Collapse
Affiliation(s)
- Jie Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaoyu Ming
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qinglin He
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Jiang W, Wu Z, Wang T, Mantri N, Huang H, Li H, Tao Z, Guo Q. Physiological and transcriptomic analyses of cadmium stress response in Dendrobium officinale seedling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:152-165. [PMID: 31962204 DOI: 10.1016/j.plaphy.2020.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 05/21/2023]
Abstract
Dendrobium officinale is an economically important Chinese herb with ornamental and medicinal values. However, the mechanisms by which D. officinale adapts to cadmium (Cd) stress is unknown. Here, physiological changes in D. officinale roots and leaves exposed to increasing levels of Cd stress (CdSO4 concentration of 2, 5, 9, 14 mg L-1) were analyzed at 7, 15, 30, and 45 days after treatment. The Cd stress of 14 mg L-1 significantly increased the levels of antioxidants and induced malondialdehyde and proline accumulation (P < 0.05). Cd subcellular distribution showed that Cd sequestration into soluble fraction is the major detoxification mechanism in D. officinale roots. Subsequently, the transcriptome profile of D. officinale roots treated with 14 mg L-1 Cd for 15 and 30 days was analyzed. Compared to control, 2,469 differentially expressed genes (DEGs) were identified, comprising 1,486 up-regulated genes and 983 down-regulated genes. The DEGs associated with metabolic pathways for Cd uptake, transportation and detoxification were analyzed. Several processes such as metal transporter, sulfate glutathione metabolism, cell wall metabolism, phenylpropanoid metabolism were identified to be important for Cd stress adaptation. More genes were expressed at 15 days after treatment compared to 30 days. WRKY, Trihelix, NF-YC, MYB, bZIP and bHLH transcription factors were over-expressed at both time points. Furthermore, candidate genes from the glutathione metabolism pathway were identified, and qRT-PCR analysis of ten DEGs indicated a high coorelation with RNA-seq expression profiles. Our findings provide significant information for further research of Cd stress responsive genes functions in D. officinale, especially the genes from the glutathione metabolism pathway.
Collapse
Affiliation(s)
- Wu Jiang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China; Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zhigang Wu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Tao Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Huilian Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Haowen Li
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Zhengming Tao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
17
|
Combined Effect of Cadmium and Lead on Durum Wheat. Int J Mol Sci 2019; 20:ijms20235891. [PMID: 31771264 PMCID: PMC6929116 DOI: 10.3390/ijms20235891] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd) and lead (Pb) are two toxic heavy metals (HMs) whose presence in soil is generally low. However, industrial and agricultural activities in recent years have significantly raised their levels, causing progressive accumulations in plant edible tissues, and stimulating research in this field. Studies on toxic metals are commonly focused on a single metal, but toxic metals occur simultaneously. The understanding of the mechanisms of interaction between HMs during uptake is important to design agronomic or genetic strategies to limit contamination of crops. To study the single and combined effect of Cd and Pb on durum wheat, a hydroponic experiment was established to examine the accumulation of the two HMs. Moreover, the molecular mechanisms activated in the roots were investigated paying attention to transcription factors (bHLH family), heavy metal transporters and genes involved in the biosynthesis of metal chelators (nicotianamine and mugineic acid). Cd and Pb are accumulated following different molecular strategies by durum wheat plants, even if the two metals interact with each other influencing their respective uptake and translocation. Finally, we demonstrated that some genes (bHLH 29, YSL2, ZIF1, ZIFL1, ZIFL2, NAS2 and NAAT) were induced in the durum wheat roots only in response to Cd.
Collapse
|
18
|
Han M, Lu X, Yu J, Chen X, Wang X, Malik WA, Wang J, Wang D, Wang S, Guo L, Chen C, Cui R, Yang X, Ye W. Transcriptome Analysis Reveals Cotton ( Gossypium hirsutum) Genes That Are Differentially Expressed in Cadmium Stress Tolerance. Int J Mol Sci 2019; 20:ijms20061479. [PMID: 30909634 PMCID: PMC6470502 DOI: 10.3390/ijms20061479] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
High concentrations of heavy metals in the soil should be removed for environmental safety. Cadmium (Cd) is a heavy metal that pollutes the soil when its concentration exceeds 3.4 mg/kg. Although the potential use of cotton to remediate heavy Cd-polluted soils is known, little is understood about the molecular mechanisms of Cd tolerance. In this study, transcriptome analysis was used to identify Cd tolerance genes and their potential mechanisms in cotton. We exposed cotton plants to excess Cd and identified 4627 differentially expressed genes (DEGs) in the root, 3022 DEGs in the stem and 3854 DEGs in the leaves through RNA-Seq analysis. Among these genes were heavy metal transporter coding genes (ABC, CDF, HMA, etc.), annexin genes and heat shock genes (HSP), amongst others. Gene ontology (GO) analysis showed that the DEGs were mainly involved in the oxidation–reduction process and metal ion binding. The DEGs were mainly enriched in two pathways, the influenza A and pyruvate pathway. GhHMAD5, a protein containing a heavy-metal binding domain, was identified in the pathway to transport or to detoxify heavy metal ions. We constructed a GhHMAD5 overexpression system in Arabidopsis thaliana that showed longer roots compared to control plants. GhHMAD5-silenced cotton plants showed more sensitivity to Cd stress. The results indicate that GhHMAD5 is involved in Cd tolerance, which gives a preliminary understanding of the Cd tolerance mechanism in upland cotton. Overall, this study provides valuable information for the use of cotton to remediate soils polluted with Cd and potentially other heavy metals.
Collapse
Affiliation(s)
- Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - John Yu
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA.
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Xiaoge Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Xiaoming Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Science, State Key Laboratory of Cotton Biology, Key Laboratory for Cotton Genetic Improvement, Anyang 455000, Henan, China.
| |
Collapse
|
19
|
Wei H, Huang M, Quan G, Zhang J, Liu Z, Ma R. Turn bane into a boon: Application of invasive plant species to remedy soil cadmium contamination. CHEMOSPHERE 2018; 210:1013-1020. [PMID: 30208525 DOI: 10.1016/j.chemosphere.2018.07.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/22/2018] [Indexed: 05/22/2023]
Abstract
Cadmium (Cd) is one of the mostly hazardous soil pollutants and has threatened human health by accumulating in grains of crops. Phytoremediation is a promising technique to remedy soil Cd contamination, but reported Cd hyperaccumulators remain limited. In this study, we explored potential applicability of three invasive plant species (Chromolaena odorata, Bidens pilosa and Praxelis clematidea) to remove soil Cd using greenhouse experiment. Results showed that the three species grew well with Cd treatments compared to the controlled individuals, suggesting that the species had high Cd tolerance by physiological adjustments such as up-regulating the antioxidant enzyme activities. The only exception was that the height of P. clematidea in the 60 mg kg-1 Cd treatment was less than that in the control. Within the tested Cd concentration range, the C. odorata exhibited high bioaccumulation characteristics that meet the recommended standards to identify as a hyperaccumulator (shoot Cd concentration > 100 mg kg-1 with bioconcentration and transfer factors > 1). The other two species had also the shoot bioconcentration factor and transfer factor greater than one, while the shoot Cd concentration was relatively lower. Our results highlight a potential applicability of the invasive species used in this study for remediation of the soil Cd contamination, which turns bane into a boon.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyu Huang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Guoming Quan
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China; Department of Urban Construction Engineering, Guangzhou City Polytechnic, Guangzhou, 510405, China
| | - Jiaen Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China.
| | - Ziqiang Liu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Ma
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
20
|
Meena M, Aamir M, Kumar V, Swapnil P, Upadhyay R. Evaluation of morpho-physiological growth parameters of tomato in response to Cd induced toxicity and characterization of metal sensitive NRAMP3 transporter protein. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 148:144-167. [DOI: 10.1016/j.envexpbot.2018.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|