1
|
Nair SS, Kleffmann T, Smith B, Morris V, Göbl C, Pletzer D, Fellner M. Comparative lipidomics profiles of planktonic and biofilms of methicillin-resistant and -susceptible Staphylococcus aureus. Anal Biochem 2025; 698:115746. [PMID: 39672221 DOI: 10.1016/j.ab.2024.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Staphylococcus aureus is a significant human pathogen causing acute life-threatening, and chronic infections often linked to biofilms. This study conducted a comparative lipidomic analysis of a methicillin-resistant (MRSA) and a methicillin-susceptible (MSSA) S. aureus strain in both planktonic and biofilm cultures using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. The developed protocol successfully differentiates between the strains in various living states (planktonic and biofilm) and growth media (Tryptic Soy Broth and Brain Heart Infusion) using S. aureus USA300 LAC (MRSA) and S. aureus Newman (MSSA). LC-MS and NMR lipidomics profiles revealed global differences and particular ones among the following classes of bacterial lipids: phosphatidylglycerols, diacylglycerols, monoglycosyldiacylglycerols, diglycosyldiacylglycerols, and cardiolipins. Lipid content was higher in the biofilm states for most of these classes. Growth media differences were significant, while differences between MRSA and MSSA were less pronounced but still detectable. Additionally, we provide data on hundreds of unknown compounds that differ based on living state, strain background, or growth media. This study offer insights into the dynamic nature of S. aureus lipid composition and the used methods are adaptable to other organisms.
Collapse
Affiliation(s)
- Shilpa Saseendran Nair
- Biochemistry Department, University of Otago, Dunedin, New Zealand; Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | - Briana Smith
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Vanessa Morris
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Christoph Göbl
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matthias Fellner
- Biochemistry Department, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Cravero BH, Prez G, Lombardo VA, Guastaferri FV, Delprato CB, Altabe S, de Mendoza D, Binolfi A. A high-resolution 13C NMR approach for profiling fatty acid unsaturation in lipid extracts and in live Caenorhabditiselegans. J Lipid Res 2024; 65:100618. [PMID: 39127170 PMCID: PMC11418130 DOI: 10.1016/j.jlr.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Unsaturated fatty acids (UFA) play a crucial role in central cellular processes in animals, including membrane function, development, and disease. Disruptions in UFA homeostasis can contribute to the onset of metabolic, cardiovascular, and neurodegenerative disorders. Consequently, there is a high demand for analytical techniques to study lipid compositions in live cells and multicellular organisms. Conventional analysis of UFA compositions in cells, tissues, and organisms involves solvent extraction procedures coupled with analytical techniques such as gas chromatography, MS and/or NMR spectroscopy. As a nondestructive and nontargeted technique, NMR spectroscopy is uniquely capable of characterizing the chemical profiling of living cells and multicellular organisms. Here, we use NMR spectroscopy to analyze Caenorhabditis elegans, enabling the determination of their lipid compositions and fatty acid unsaturation levels both in cell-free lipid extracts and in vivo. The NMR spectra of lipid extracts from WT and fat-3 mutant C. elegans strains revealed notable differences due to the absence of Δ-6 fatty acid desaturase activity, including the lack of arachidonic and eicosapentaenoic acyl chains. Uniform 13C-isotope labeling and high-resolution 2D solution-state NMR of live worms confirmed these findings, indicating that the signals originated from fast-tumbling lipid molecules within lipid droplets. Overall, this strategy permits the analysis of lipid storage in intact worms and has enough resolution and sensitivity to identify differences between WT and mutant animals with impaired fatty acid desaturation. Our results establish methodological benchmarks for future investigations of fatty acid regulation in live C. elegans using NMR.
Collapse
Affiliation(s)
- Bruno Hernández Cravero
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina
| | - Gastón Prez
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina
| | - Verónica A Lombardo
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina; Center of Interdisciplinary Studies (CEI), National University of Rosario (UNR), Rosario, Argentina
| | - Florencia V Guastaferri
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina
| | - Carla B Delprato
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina
| | - Silvia Altabe
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina; Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences (FBIOyF), National University of Rosario (UNR) Suipacha 598, Rosario, Argentina
| | - Diego de Mendoza
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina; Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences (FBIOyF), National University of Rosario (UNR) Suipacha 598, Rosario, Argentina.
| | - Andres Binolfi
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina; Argentinian Platform of Structural Biology and Metabolomics (PLABEM), Ocampo y Esmeralda, Rosario, Argentina.
| |
Collapse
|
3
|
Singh U, Emwas AH, Jaremko M. Enhancement of weak signals by applying a suppression method to high-intense methyl and methylene signals of lipids in NMR spectroscopy. RSC Adv 2024; 14:26873-26883. [PMID: 39193283 PMCID: PMC11347981 DOI: 10.1039/d4ra03019b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Lipids play crucial roles in human biology, serving as energy stores, cell membranes, hormone production, and signaling molecules. Accordingly, their study under lipidomics has advanced the study of living organisms. 1-Dimensional (D) and 2D NMR methods, particularly 1D 1H and 2D 1H-1H Total Correlation Spectroscopy (TOCSY), are commonly used in lipidomics for quantification and structural identification. However, these NMR methods suffer from low sensitivity, especially in cases of low concentrated molecules such as protons attached to hydroxy, esters, aliphatic, or aromatic unsaturated carbons. Such molecules are common in complex mixtures such as dairy products and plant oils. On the other hand, lipids have highly populated fractions of methyl and methylene groups that result in intense peaks that overwhelm lower peaks and cause inhomogeneities in 2D TOCSY spectra. In this study, we applied a method of suppression to suppress these intense peaks of methyl and methylene groups to detect weaker peaks. The suppression method was investigated on samples of cheese, butter, a mixture of lipids, coconut oil, and olive oil. A significant improvement in peak sensitivity and visibility of cross-peaks was observed, leading to enhanced comparative quantification and structural identification of a greater number of lipids. Additionally, the enhanced sensitivity reduced the time required for the qualitative and comparative quantification of other lipid compounds and components. This, in turn, enables faster and more reliable structural identification and comparative quantification of a greater number of lipids. Additionally, it reduces the time required for the qualitative, and comparative quantification due to the enhancement of sensitivity.
Collapse
Affiliation(s)
- Upendra Singh
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal Makkah 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST) Thuwal Makkah 23955-6900 Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI), Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal Makkah 23955-6900 Saudi Arabia
| |
Collapse
|
4
|
Moxley-Paquette V, Pellizzari J, Lane D, Steiner K, Costa PM, Wolff WW, Lysak DH, Ghosh Biswas R, Downey K, Ronda K, Soong R, Zverev D, De Castro P, Frei T, Al Adwan-Stojilkovic D, Graf S, Gloor S, Schmidig D, Kuemmerle R, Kuehn T, Busse F, Haberer N, Domaszewicz J, Scatena R, Lacerda A, Nashman B, Anders J, Utz M, Simpson AJ. Exploration of Materials for Three-Dimensional NMR Microcoil Production via CNC Micromilling and Laser Etching. Anal Chem 2024; 96:13588-13597. [PMID: 39116295 DOI: 10.1021/acs.analchem.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The excellent versatility of 5-axis computer numerical control (CNC) micromilling has led to its application for prototyping NMR microcoils tailored to mass-limited samples (reducing development time and cost). However, vibrations during 5-axis milling can hinder the creation of complex 3D volume microcoils (i.e., solenoids and saddle coils). To address these limitations, a high-resolution NSCNC ELARA 4-axis milling machine was developed with the extra precision required for making complex 3D volume microcoils. Upon investigating the performance of resonators made with various copper-coated dielectrics, resonators with poly(methyl methacrylate) (PMMA) provided the best SNR/line shape. Thus, complex 1.7 mm microcoil designs were machined from Cu-coated PMMA. A milled 6.4 mm solenoid also provided 6.6× the total carbon signal for a 13C-labeled broccoli seed compared to a commercial inverse 5 mm NMR probe (demonstrating potential for larger coil designs). However, the manufacture of coils <1.7 mm with copper-coated PMMA rods was challenging as ∼0.5 mm of remaining PMMA was needed to retain their structural integrity. To manufacture smaller microcoils, both a solenoid and saddle coil (both with 1 mm O.D., 0.1 mm thick walls) were etched from Cu-coated glass capillaries using a UV picosecond laser that was mounted onto an NSCNC 5-axis MiRA7L. Both resonators showed excellent signal and identified a wide range of metabolites in a 13C-labeled algae extract, while the solenoid was further tested on two copepod egg sacs (∼4 μg of total sample). In summary, the flexibility to prototype complex microcoils in-house allows laboratories to tailor microcoils to specific mass-limited samples while avoiding the costs of cleanrooms.
Collapse
Affiliation(s)
- Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Jacob Pellizzari
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Lane
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Katrina Steiner
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Peter M Costa
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - William W Wolff
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Rajshree Ghosh Biswas
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Kiera Ronda
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Dmitri Zverev
- NSCNC Manufacturing LTD, 19358 96 Ave, Unit 150, Surrey, British Colombia V4N 4C1, Canada
| | - Peter De Castro
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | | | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Simon Gloor
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Falko Busse
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Nathan Haberer
- Aidlab, 651 N., Broad St., Suite 201, Middletown, Delaware 19709, United States
| | - Jakub Domaszewicz
- Aidlab, 651 N., Broad St., Suite 201, Middletown, Delaware 19709, United States
| | - Ryan Scatena
- Thermal Conductive Bonding Inc., 6210 88th Street, Sacramento, California 95828, United States
| | - Andressa Lacerda
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Ben Nashman
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Jens Anders
- University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - André J Simpson
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
5
|
Pontes JGDM, Jadranin M, Assalin MR, Quintero Escobar M, Stanisic D, Costa TBBC, van Helvoort Lengert A, Boldrini É, Morini da Silva SR, Vidal DO, Liu LHB, Maschietto M, Tasic L. Lipidomics by Nuclear Magnetic Resonance Spectroscopy and Liquid Chromatography-High-Resolution Mass Spectrometry in Osteosarcoma: A Pilot Study. Metabolites 2024; 14:416. [PMID: 39195512 DOI: 10.3390/metabo14080416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer is a complex disease that can also affect the younger population; however, it is responsible for a relatively high mortality rate of children and youth, especially in low- and middle-income countries (LMICs). Besides that, lipidomic studies in this age range are scarce. Therefore, we analyzed blood serum samples from young patients (12 to 35 years) with bone sarcoma (osteosarcoma) and compared their lipidomics to the ones from the control group of samples, named healthy control (HC group), using NMR and LC-MS techniques. Furthermore, differences in the lipidomic profiles between OS patients with and without metastasis indicate higher glycerophosphocholine (GPC) and glycerophospholipid (GPL) levels in osteosarcoma and increased cholesterol, choline, polyunsaturated fatty acids (PUFAs), and glycerols during the metastasis. These differences, detected in the peripheral blood, could be used as biomarkers for liquid biopsy.
Collapse
Affiliation(s)
| | - Milka Jadranin
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Márcia Regina Assalin
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
- Embrapa Environment, Jaguariúna 13820-000, Brazil
| | - Melissa Quintero Escobar
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Danijela Stanisic
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | | | | | - Érica Boldrini
- Barretos Children's Cancer Hospital, Barretos 14784-400, Brazil
| | | | - Daniel Onofre Vidal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | - Leticia Huan Bacellar Liu
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil
| | - Ljubica Tasic
- Laboratory of Biological Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| |
Collapse
|
6
|
Kikuchi S, Iwasaki Y, Yoshioka M, Hino K, Morita SY, Tada R, Uchimura Y, Kubo Y, Kobayashi T, Kinoshita Y, Hayashi M, Furusho Y, Tamiaki H, Ishiyama H, Kuroda M, Udagawa J. Solitary and Synergistic Effects of Different Hydrophilic and Hydrophobic Phospholipid Moieties on Rat Behaviors. Pharmaceutics 2024; 16:762. [PMID: 38931883 PMCID: PMC11207216 DOI: 10.3390/pharmaceutics16060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Glycerophospholipids have hydrophobic and hydrophilic moieties. Previous studies suggest that phospholipids with different moieties have different effects on rodent behavior; however, the relationship between chemical structures and behavioral effects remains unclear. To clarify the functions of phospholipid moieties, we injected male rats with phospholipids with different moieties and conducted behavioral tests. Exploratory activity was reduced by phosphatidylethanolamine (PE)(18:0/22:6) but not PE(18:0/18:0) or PE(18:0/20:4). Conversely, exploratory activity was increased by plasmanyl PE(16:0/22:6), which harbors an alkyl-ether linkage, but not by phosphatidylcholine (PC)(16:0/22:6) or plasmanyl PC(16:0/22:6). Docosahexaenoic acid (DHA)(22:6) and an alkyl-ether linkage in PE were thus postulated to be involved in exploratory activity. Anxiety-like behavior was reduced by plasmenyl PC(18:0/20:4), which harbors a vinyl-ether linkage, but not by PC(18:0/20:4) or plasmanyl PC(18:0/20:4), suggesting the anxiolytic effects of vinyl-ether linkage. The activation of social interaction was suppressed by PE(18:0/18:0), PE(18:0/22:6), PC(16:0/22:6), plasmanyl PE(16:0/22:6), and plasmanyl PC(16:0/22:6) but not by PE(18:0/20:4), plasmenyl PE(18:0/20:4), or plasmanyl PC(18:0/22:6). DHA may suppress social interaction, whereas arachidonic acid(20:4) or a combination of alkyl-ether linkage and stearic acid(18:0) may restore social deficits. Our findings indicate the characteristic effects of different phospholipid moieties on rat behavior, and may help to elucidate patterns between chemical structures and their effects.
Collapse
Affiliation(s)
- Shuhei Kikuchi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yugo Iwasaki
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan;
| | - Mina Yoshioka
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Kodai Hino
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Shin-ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Ryu Tada
- Molecular Engineering Institute, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Yasuhiro Uchimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yoshinori Kubo
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Tomoya Kobayashi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (Y.K.); (H.T.)
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Miyazaki, Japan;
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (Y.K.); (H.T.)
| | - Hiroaki Ishiyama
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Minoru Kuroda
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| |
Collapse
|
7
|
Lu HC, Melvin SD, Ziajahromi S, Neale PA, Leusch FDL, Kumar A. Polyethylene microplastics induced lipidomic responses in Chironomus tepperi: A two-generational exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170837. [PMID: 38350569 DOI: 10.1016/j.scitotenv.2024.170837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Microplastics (MPs) accumulating in freshwater sediment have raised concerns about potential risks to benthic dwelling organisms, yet few studies have examined the long-term impacts caused by MP exposure. This study investigated alterations to lipid profiles in an Australian freshwater invertebrate, Chironomus tepperi, induced by polyethylene MP fragments (1-45 μm) at environmentally relevant concentrations (125, 250, 500 and 1000 MPs/kg sediment), using a two-generational experimental design. In the parental generation, the relative abundance of triacylglycerols, total fatty acids and unsaturated fatty acids exhibited apparent hormetic patterns, with low-concentration stimulation and high-concentration inhibition observed. The overall trend in these lipid classes is consistent with previously observed changes to polar metabolite profiles, indicating that ingestion of MPs could inhibit nutrient assimilation from food leading to disruption of energy availability. In the first filial generation continuously exposed to MPs, however, abundance of cholesterol and total fatty acids increased with increasing exposure concentrations, suggesting different effects on energy metabolism between the parental generation and offspring. No differences in the lipidome were observed in first filial larvae that were not exposed, implying that MPs pose negligible carry-over effects. Overall, the combined results of this study together with a preceding metabolomics study provide evidence of a physical effect of MPs with subsequent impacts to bioenergetics. Nevertheless, future research is required to explore the potential long-term impacts caused by MPs, and to unravel the impacts of the surfactant control as a potential contributor to the observed hormetic response, particularly for studies exploring sub-lethal effects of MP exposure using sensitive omics techniques.
Collapse
Affiliation(s)
- Hsuan-Cheng Lu
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia; Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA 5064, Australia.
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia
| | - Shima Ziajahromi
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia
| | - Anupama Kumar
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA 5064, Australia
| |
Collapse
|
8
|
Moxley-Paquette V, Lane D, Steiner K, Downey K, Costa PM, Lysak DH, Ronda K, Soong R, Zverev D, De Castro P, Frei T, Stuessi J, Al Adwan-Stojilkovic D, Graf S, Gloor S, Schmidig D, Kuemmerle R, Kuehn T, Busse F, Utz M, Lacerda A, Nashman B, Albert L, Anders J, Simpson AJ. Development of Low-Magnetic Susceptibility Microcoils via 5-Axis Machining for Analysis of Biological and Environmental Samples. Anal Chem 2023; 95:13932-13940. [PMID: 37676066 DOI: 10.1021/acs.analchem.3c02437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In environmental research, it is critical to understand how toxins impact invertebrate eggs and egg banks, which, due to their tiny size, are very challenging to study by conventional nuclear magnetic resonance (NMR) spectroscopy. Microcoil technology has been extensively utilized to enhance the mass-sensitivity of NMR. In a previous study, 5-axis computer numerical control (CNC) micromilling (shown to be a viable alternative to traditional microcoil production methods) was used to create a prototype copper slotted-tube resonator (STR). Despite the excellent limit of detection (LOD) of the resonator, the quality of the line shape was very poor due to the magnetic susceptibility of the copper resonator itself. This is best solved using magnetic susceptibility-matched materials. In this study, approaches are investigated that improve the susceptibility while retaining the versatility of coil milling. One method involves machining STRs from various copper/aluminum alloys, while the other involves machining ones from an aluminum 2011 alloy and electroplating them with copper. In all cases, combining copper and aluminum to produce resonators resulted in improved line shape and SNR compared to pure copper resonators due to their reduced magnetic susceptibility. However, the copper-plated aluminum resonators showed optimal performance from the devices tested. The enhanced LOD of these STRs allowed for the first 1H-13C heteronuclear multiple quantum coherence (HMQC) of a single intact 13C-labeled Daphnia magna egg (∼4 μg total biomass). This is a key step toward future screening programs that aim to elucidate the toxic processes in aquatic eggs.
Collapse
Affiliation(s)
- Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Lane
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Katrina Steiner
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Peter M Costa
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Kiera Ronda
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Dimitri Zverev
- NSCNC Manufacturing LTD, 1515 Broadway Street Unit 607, Port Coquitlam, British Columbia V3C 6M2, Canada
| | - Peter De Castro
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Juerg Stuessi
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | | | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Simon Gloor
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Rainer Kuemmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Falko Busse
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Andressa Lacerda
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8Canada
| | - Ben Nashman
- Synex Medical, 2 Bloor Street E, Suite 310, Toronto, Ontario M4W 1A8Canada
| | - Larry Albert
- ACI Alloys, Inc, 1458 Seareel Place, San Jose, California 95131, United States
| | - Jens Anders
- Institute of Smart Sensors,University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - André J Simpson
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
9
|
Bellot PENR, Braga ES, Omage FB, da Silva Nunes FL, Lima SCVC, Lyra CO, Marchioni DML, Pedrosa LFC, Barbosa F, Tasic L, Sena-Evangelista KCM. Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications. Sci Rep 2023; 13:11729. [PMID: 37474543 PMCID: PMC10359283 DOI: 10.1038/s41598-023-38703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
Lipidomics studies have indicated an association between obesity and lipid metabolism dysfunction. This study aimed to evaluate and compare cardiometabolic risk factors, and the lipidomic profile in adults and older people. A cross-sectional study was conducted with 72 individuals, divided into two sex and age-matched groups: obese (body mass index-BMI ≥ 30 kg/m2; n = 36) and non-obese (BMI < 30 kg/m2; n = 36). The lipidomic profiles were evaluated in plasma using 1H nuclear magnetic resonance (1H-NMR) spectroscopy. Obese individuals had higher waist circumference (p < 0.001), visceral adiposity index (p = 0.029), homeostatic model assessment insulin resistance (HOMA-IR) (p = 0.010), and triacylglycerols (TAG) levels (p = 0.018). 1H-NMR analysis identified higher amounts of saturated lipid metabolite fragments, lower levels of unsaturated lipids, and some phosphatidylcholine species in the obese group. Two powerful machine learning (ML) models-k-nearest neighbors (kNN) and XGBoost (XGB) were employed to characterize the lipidomic profile of obese individuals. The results revealed metabolic alterations associated with obesity in the NMR signals. The models achieved high accuracy of 86% and 81%, respectively. The feature importance analysis identified signal at 1.50-1.60 ppm (-CO-CH2-CH2-, Cholesterol and fatty acid in TAG, Phospholipids) to have the highest importance in the two models.
Collapse
Affiliation(s)
- Paula Emília Nunes Ribeiro Bellot
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Erik Sobrinho Braga
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Folorunsho Bright Omage
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Computational Biology Research Group, Embrapa Agricultural Informatics, Campinas, São Paulo, Brazil
| | - Francisca Leide da Silva Nunes
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Clélia Oliveira Lyra
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Dirce Maria Lobo Marchioni
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo Campus, São Paulo, SP, Brazil
| | | | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | |
Collapse
|
10
|
Increased Amount of Polyunsaturated Fatty Acids in the Intestinal Contents of Patients with Morbid Obesity. Obes Surg 2023; 33:1228-1236. [PMID: 36829082 PMCID: PMC10079747 DOI: 10.1007/s11695-023-06518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION Obesity is associated with disturbed gut microbiota homeostasis that translates into altered intestinal and blood metabolite profiles. The long-chain fatty acid (LCFA) may be absorbed in the intestine, but until now, their composition in intestinal contents of patients with obesity has not been studied. The aim of the present study was to verify whether obesity is related to any changes in fecal LCFA content and whether intestinal LCFA content may be associated with the health status of patients with obesity. METHODS The fatty acid composition has been studied in stool samples obtained from 26 patients with morbid obesity and 25 lean subjects by gas chromatography-mass spectrometry. The dietary habits were assessed using the Food Frequency Questionnaire (FFQ-6). RESULTS Our results show for the first time that lean subjects and patients with obesity differ in their stool LCFA profiles. The levels of most n-3 polyunsaturated fatty acids (PUFAs) and n-6 PUFAs were significantly higher in fecal samples from people with obesity than in those from lean controls. CONCLUSIONS Based on the current knowledge, we have defined three hypotheses that may explain proving the cause-and-effect relationships observed differences in fecal LCFA profiles between patients with obesity and lean subjects. They may be related to alterations in fat digestion and/or LCFA absorption and diet. However, proving the cause-and-effect relationships requires further research.
Collapse
|
11
|
Marin-Dett FH, Campanella JEM, Trovatti E, Bertolini MC, Vergani CE, Barbugli PA. Extracellular lipids of Candida albicans biofilm induce lipid droplet formation and decreased response to a topoisomerase I inhibitor in dysplastic and neoplastic oral cells. J Appl Oral Sci 2023; 30:e20220319. [PMID: 36753070 DOI: 10.1590/1678-7757-2022-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Some microorganisms, i.e., Candida albicans, have been associated with cancer onset and development, although whether the fungus promotes cancer or whether cancer facilitates the growth of C. albicans is unclear. In this context, microbial-derived molecules can modulate the growth and resistance of cancer cells. This study isolated extracellular lipids (ECL) from a 36-h Candida albicans biofilm incubated with oral dysplastic (DOK) and neoplastic (SCC 25) cells, which were further challenged with the topoisomerase I inhibitor camptothecin (CPT), a lipophilic anti-tumoral molecule. METHODOLOGY ECL were extracted from a 36-h Candida albicans biofilm with the methanol/chloroform precipitation method and identified with Nuclear Magnetic Resonance (1H-NMR). The MTT tetrazolium assay measured ECL cytotoxicity in DOK and SCC 25 cells, alamarBlue™ assessed cell metabolism, flow cytometry measured cell cycle, and confocal microscopy determined intracellular features. RESULTS Three major classes of ECL of C. albicans biofilm were found: phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylglycerol (PG). The ECL of C. albicans biofilm had no cytotoxic effect on neither cell after 24 hours, with a tendency to disturb the SCC 25 cell cycle profile (without statistical significance). The ECL-induced intracellular lipid droplet (LD) formation on both cell lines after 72 hours. In this context, ECL enhanced cell metabolism, decreased the response to CPT, and modified intracellular drug distribution. CONCLUSION The ECL (PI, PC, and PG) of 36-h Candida albicans biofilm directly interacts with dysplastic and neoplastic oral cells, highlighting the relevance of better understanding C. albicans biofilm signaling in the microenvironment of tumor cells.
Collapse
Affiliation(s)
- Freddy Humberto Marin-Dett
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, Brasil
| | | | - Eliane Trovatti
- Universidade de Araraquara (UNIARA), Departamento de Saúde e Ciências Biológicas, Araraquara, Brasil
| | - Maria Célia Bertolini
- Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Bioquímica e Química Orgânica, Araraquara, Brasil
| | - Carlos Eduardo Vergani
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Departamento de Materiais Dentários e Prótese, Araraquara, Brasil
| | - Paula Aboud Barbugli
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, Brasil.,Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Departamento de Materiais Dentários e Prótese, Araraquara, Brasil
| |
Collapse
|
12
|
Kostara CE, Bairaktari ET, Tsimihodimos V. Effect of Clinical and Laboratory Parameters on HDL Particle Composition. Int J Mol Sci 2023; 24:ijms24031995. [PMID: 36768319 PMCID: PMC9916693 DOI: 10.3390/ijms24031995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The functional status of High-Density Lipoprotein (HDLs) is not dependent on the cholesterol content but is closely related to structural and compositional characteristics. We reported the analysis of HDL lipidome in the healthy population and the influence of serum lipids, age, gender and menopausal status on its composition. Our sample comprised 90 healthy subjects aged between 30 and 77 years. HDL lipidome was investigated by Nuclear Magnetic Resonance (NMR) spectroscopy. Among serum lipids, triglycerides, apoAI, apoB and the ratio HDL-C/apoAI had a significant influence on HDL lipid composition. Aging was associated with significant aberrations, including an increase in triglyceride content, lysophosphatidylcholine, free cholesterol, and a decrease in esterified cholesterol, phospholipids, and sphingomyelin that may contribute to increased cardiovascular risk. Aging was also associated with an atherogenic fatty acid pattern. Changes occurring in the HDL lipidome between the two genders were more pronounced in the decade from 30 to 39 years of age and over 60 years. The postmenopausal group displayed significant pro-atherogenic changes in HDLs compared to the premenopausal group. The influence of serum lipids and intrinsic factors on HDL lipidome could improve our understanding of the remodeling capacity of HDLs directly related to its functionality and antiatherogenic properties, and also in appropriate clinical research study protocol design. These data demonstrate that NMR analysis can easily follow the subtle alterations of lipoprotein composition due to serum lipid parameters.
Collapse
Affiliation(s)
- Christina E. Kostara
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni T. Bairaktari
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Correspondence: ; Tel.: +30-2651007362
| |
Collapse
|
13
|
NMR-Based Metabolomics to Decipher the Molecular Mechanisms in the Action of Gut-Modulating Foods. Foods 2022; 11:foods11172707. [PMID: 36076892 PMCID: PMC9455659 DOI: 10.3390/foods11172707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Metabolomics deals with uncovering and characterizing metabolites present in a biological system, and is a leading omics discipline as it provides the nearest link to the biological phenotype. Within food and nutrition, metabolomics applied to fecal samples and bio-fluids has become an important tool to obtain insight into how food and food components may exert gut-modulating effects. This review aims to highlight how nuclear magnetic resonance (NMR)-based metabolomics in food and nutrition science may help us get beyond where we are today in understanding foods’ inherent, or added, biofunctionalities in relation to gut health.
Collapse
|
14
|
Abstract
Metabolomics emerged as an important tool to gain insights on how the body responds to therapeutic interventions. Bariatric surgery is the most effective treatment for severe obesity and obesity-related co-morbidities. Our aim was to conduct a systematic review of the available data on metabolomics profiles that characterize patients submitted to different bariatric surgery procedures, which could be useful to predict clinical outcomes including weight loss and type 2 diabetes remission. For that, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines were followed. Data from forty-seven original study reports addressing metabolomics profiles induced by bariatric surgery that met eligibility criteria were compiled and summarized. Amino acids, lipids, energy-related and gut microbiota-related were the metabolite classes most influenced by bariatric surgery. Among these, higher pre-operative levels of specific lipids including phospholipids, long-chain fatty acids and bile acids were associated with post-operative T2D remission. As conclusion, metabolite profiling could become a useful tool to predict long term response to different bariatric surgery procedures, allowing more personalized interventions and improved healthcare resources allocation.
Collapse
Affiliation(s)
- Matilde Vaz
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Sofia S Pereira
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana P Monteiro
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
15
|
Islam R, Melvin SD, Kit Yu RM, O'Connor WA, Anh Tran TK, Andrew-Priestley M, Leusch FDL, MacFarlane GR. Estrogenic mixtures induce alterations in lipidomic profiles in the gonads of female oysters. CHEMOSPHERE 2022; 291:132997. [PMID: 34822861 DOI: 10.1016/j.chemosphere.2021.132997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to reveal possible alterations to lipidomic profiles in Sydney rock oysters, Saccostrea glomerata, exposed to estrogenic mixtures (i.e., estrone, E1; 17β-estradiol, E2; estriol, E3; 17α-ethinylestradiol, EE2; bisphenol A, BPA; 4-t-octylphenol, 4-t-OP; and 4-nonylphenol, 4-NP) at "low" and "high" concentrations, typical of those detected in Australian and global receiving waters. A seven-day acute exposure window exhibited significantly lower abundances of many non-polar metabolites in digestive gland, gills, and gonads. Overall, there was a strong effect of the carrier solvent ethanol (despite a low exposure of 0.0002%), with all solvent containing treatments exhibiting lower abundances of lipidic metabolites, especially in the gill and digestive gland. No significant changes of the lipidome were exhibited in the male gonad by estrogenic exposure. However, in the female gonad, significant reductions of phospholipids and phosphatidylcholine were associated with exposure to high estrogenic mixtures. We hypothesise that the decreases in these phospholipids in the female gonad may be attributable to 1) lower algal consumption and thus lower uptake of lipidic building blocks; 2) a reduction of available substrates for phospholipid and phosphatidylcholine synthesis; and/or 3) induction of reactive oxygen species via estrogen metabolism, which may cause lipid peroxidation and lower abundance of phospholipids.
Collapse
Affiliation(s)
- Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD, 4222, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; School of Agriculture and Resources, Vinh University, Viet Nam
| | | | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD, 4222, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
16
|
Jones B, Sands C, Alexiadou K, Minnion J, Tharakan G, Behary P, Ahmed AR, Purkayastha S, Lewis MR, Bloom S, Li JV, Tan TM. The Metabolomic Effects of Tripeptide Gut Hormone Infusion Compared to Roux-en-Y Gastric Bypass and Caloric Restriction. J Clin Endocrinol Metab 2022; 107:e767-e782. [PMID: 34460933 PMCID: PMC8764224 DOI: 10.1210/clinem/dgab608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/23/2022]
Abstract
CONTEXT The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM), and peptide YY (PYY) are regulators of energy intake and glucose homeostasis and are thought to contribute to the glucose-lowering effects of bariatric surgery. OBJECTIVE To establish the metabolomic effects of a combined infusion of GLP-1, OXM, and PYY (tripeptide GOP) in comparison to a placebo infusion, Roux-en-Y gastric bypass (RYGB) surgery, and a very low-calorie diet (VLCD). DESIGN AND SETTING Subanalysis of a single-blind, randomized, placebo-controlled study of GOP infusion (ClinicalTrials.gov NCT01945840), including VLCD and RYGB comparator groups. PATIENTS AND INTERVENTIONS Twenty-five obese patients with type 2 diabetes or prediabetes were randomly allocated to receive a 4-week subcutaneous infusion of GOP (n = 14) or 0.9% saline control (n = 11). An additional 22 patients followed a VLCD, and 21 underwent RYGB surgery. MAIN OUTCOME MEASURES Plasma and urine samples collected at baseline and 4 weeks into each intervention were subjected to cross-platform metabolomic analysis, followed by unsupervised and supervised modeling approaches to identify similarities and differences between the effects of each intervention. RESULTS Aside from glucose, very few metabolites were affected by GOP, contrasting with major metabolomic changes seen with VLCD and RYGB. CONCLUSIONS Treatment with GOP provides a powerful glucose-lowering effect but does not replicate the broader metabolomic changes seen with VLCD and RYGB. The contribution of these metabolomic changes to the clinical benefits of RYGB remains to be elucidated.
Collapse
MESH Headings
- Adult
- Aged
- Blood Glucose/analysis
- Caloric Restriction/methods
- Caloric Restriction/statistics & numerical data
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Diabetes Mellitus, Type 2/urine
- Drug Therapy, Combination/methods
- Female
- Gastric Bypass/methods
- Gastric Bypass/statistics & numerical data
- Gastrointestinal Hormones/administration & dosage
- Glucagon-Like Peptide 1/administration & dosage
- Humans
- Infusions, Subcutaneous
- Male
- Metabolomics/statistics & numerical data
- Middle Aged
- Obesity, Morbid/blood
- Obesity, Morbid/metabolism
- Obesity, Morbid/therapy
- Obesity, Morbid/urine
- Oxyntomodulin/administration & dosage
- Peptide YY/administration & dosage
- Single-Blind Method
- Treatment Outcome
- Weight Loss
- Young Adult
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Caroline Sands
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kleopatra Alexiadou
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - George Tharakan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Preeshila Behary
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, UK
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew R Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Stephen Bloom
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jia V Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Correspondence: Tricia M. Tan, MB, ChB, BSc, PhD, FRCP, FRCPath, 6th Floor, Commonwealth Building, Hammersmith Campus, Imperial College London, London W12 0HS, UK.
| |
Collapse
|
17
|
Shrestha N, Melvin SD, McKeating DR, Holland OJ, Cuffe JSM, Perkins AV, McAinch AJ, Hryciw DH. Sex-Specific Differences in Lysine, 3-Hydroxybutyric Acid and Acetic Acid in Offspring Exposed to Maternal and Postnatal High Linoleic Acid Diet, Independent of Diet. Int J Mol Sci 2021; 22:10223. [PMID: 34638563 PMCID: PMC8508705 DOI: 10.3390/ijms221910223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Linoleic acid (LA) is an essential polyunsaturated fatty acid (PUFA) that is required for foetal growth and development. Excess intake of LA can be detrimental for metabolic health due to its pro-inflammatory properties; however, the effect of a diet high in LA on offspring metabolites is unknown. In this study, we aimed to determine the role of maternal or postnatal high linoleic acid (HLA) diet on plasma metabolites in adult offspring. METHODS Female Wistar Kyoto (WKY) rats were fed with either low LA (LLA) or HLA diet for 10 weeks prior to conception and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), treated with either LLA or HLA diets and sacrificed at PN180. Metabolite analysis was performed in plasma samples using Nuclear Magnetic Resonance. RESULTS Maternal and postnatal HLA diet did not alter plasma metabolites in male and female adult offspring. There was no specific clustering among different treatment groups as demonstrated by principal component analysis. Interestingly, there was clustering among male and female offspring independent of maternal and postnatal dietary intervention. Lysine was higher in female offspring, while 3-hydroxybutyric acid and acetic acid were significantly higher in male offspring. CONCLUSION In summary, maternal or postnatal HLA diet did not alter the plasma metabolites in the adult rat offspring; however, differences in metabolites between male and female offspring occurred independently of dietary intervention.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia;
| | - Daniel R. McKeating
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - Olivia J. Holland
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - James S. M. Cuffe
- School of Biomedical Science, The University of Queensland, Brisbane, QLD 4061, Australia;
| | - Anthony V. Perkins
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (D.R.M.); (O.J.H.); (A.V.P.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC 8001, Australia
| | - Deanne H. Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
18
|
Piché ME, Tardif I, Auclair A, Poirier P. Effects of bariatric surgery on lipid-lipoprotein profile. Metabolism 2021; 115:154441. [PMID: 33248063 DOI: 10.1016/j.metabol.2020.154441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Most patients with severe obesity will present some lipid-lipoprotein abnormalities. The atherogenic dyslipidemia associated with severe obesity is characterized by elevated fasting and postprandial triglyceride levels, low high-density lipoprotein cholesterol concentrations, and increased proportion of small and dense low-density lipoproteins. Bariatric surgery has been proven safe and successful in terms of long-term weight loss and improvement in obesity co-existing metabolic conditions including lipid-lipoprotein abnormalities. Nevertheless, bariatric surgery procedures are not all equivalent. We conducted a comprehensive critical analysis of the literature related to severe obesity, bariatric surgery and lipid-lipoprotein metabolism/profile. In this review, we described the metabolic impacts of different bariatric surgery procedures on the lipid-lipoprotein profile, and the mechanisms linking bariatric surgery and dyslipidemia remission based on recent epidemiological, clinical and preclinical studies. Further mechanistic studies are essential to assess the potential of bariatric/metabolic surgery in the management of lipid-lipoprotein abnormalities associated with severe obesity. Understanding the beneficial effects of various bariatric surgery procedures on the lipid-lipoprotein metabolism and profile may result in a wider acceptance of this strategy as a long-term metabolic treatment of lipid-lipoprotein abnormalities in severe obesity and help clinician to develop an individualized and optimal approach in the management of dyslipidemia associated with severe obesity. BRIEF SUMMARY: Abnormal lipid-lipoprotein profile is frequent in patients with severe obesity. Significant improvements in lipid-lipoprotein profile following bariatric surgery occur early in the postoperative period, prior to weight loss, and persists throughout the follow-up. The mechanisms that facilitate the remission of dyslipidemia after bariatric surgery, may involve positive effects on adipose tissue distribution/function, insulin sensitivity, liver fat content/function and lipid-lipoprotein metabolism.
Collapse
Affiliation(s)
- Marie-Eve Piché
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec, Canada; Faculty of Medicine, Laval University, Quebec, Canada
| | - Isabelle Tardif
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec, Canada
| | - Audrey Auclair
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec, Canada
| | - Paul Poirier
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec, Canada.
| |
Collapse
|
19
|
Bispo D, Fabris V, Lamb CA, Lanari C, Helguero LA, Gil AM. Hormone-Independent Mouse Mammary Adenocarcinomas with Different Metastatic Potential Exhibit Different Metabolic Signatures. Biomolecules 2020; 10:E1242. [PMID: 32867141 PMCID: PMC7563858 DOI: 10.3390/biom10091242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
The metabolic characteristics of metastatic and non-metastatic breast carcinomas remain poorly studied. In this work, untargeted Nuclear Magnetic Resonance (NMR) metabolomics was used to compare two medroxyprogesterone acetate (MPA)-induced mammary carcinomas lines with different metastatic abilities. Different metabolic signatures distinguished the non-metastatic (59-2-HI) and the metastatic (C7-2-HI) lines, with glucose, amino acid metabolism, nucleotide metabolism and lipid metabolism as the major affected pathways. Non-metastatic tumours appeared to be characterised by: (a) reduced glycolysis and tricarboxylic acid cycle (TCA) activities, possibly resulting in slower NADH biosynthesis and reduced mitochondrial transport chain activity and ATP synthesis; (b) glutamate accumulation possibly related to reduced glutathione activity and reduced mTORC1 activity; and (c) a clear shift to lower phosphoscholine/glycerophosphocholine ratios and sphingomyelin levels. Within each tumour line, metabolic profiles also differed significantly between tumours (i.e., mice). Metastatic tumours exhibited marked inter-tumour changes in polar compounds, some suggesting different glycolytic capacities. Such tumours also showed larger intra-tumour variations in metabolites involved in nucleotide and cholesterol/fatty acid metabolism, in tandem with less changes in TCA and phospholipid metabolism, compared to non-metastatic tumours. This study shows the valuable contribution of untargeted NMR metabolomics to characterise tumour metabolism, thus opening enticing opportunities to find metabolic markers related to metastatic ability in endocrine breast cancer.
Collapse
Affiliation(s)
- Daniela Bispo
- Department of Chemistry and CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Victoria Fabris
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Caroline A. Lamb
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Claudia Lanari
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Luisa A. Helguero
- iBIMED—Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal;
| | - Ana M. Gil
- Department of Chemistry and CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
20
|
Decreased Triacylglycerol Content and Elevated Contents of Cell Membrane Lipids in Colorectal Cancer Tissue: A Lipidomic Study. J Clin Med 2020; 9:jcm9041095. [PMID: 32290558 PMCID: PMC7230725 DOI: 10.3390/jcm9041095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that lipid composition in cancer tissues may undergo multiple alterations. However, no comprehensive analysis of various lipid groups in colorectal cancer (CRC) tissue has been conducted thus far. To address the problem in question, we determined the contents of triacylglycerols (TG), an energetic substrate, various lipids necessary for cell membrane formation, among them phospholipids (phosphatidylcholine, phosphatidylethanolamine), sphingolipids (sphingomyelin) and cholesterol (free, esterified and total), and fatty acids included in complex lipids. 1H-nuclear magnetic resonance (1H-NMR) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the lipid composition of colon cancer tissue and normal large intestinal mucosa from 25 patients. Compared with normal tissue, cancer tissues had significantly lower TG content, along with elevated levels of phospholipids, sphingomyelin, and cholesterol. Moreover, the content of oleic acid, the main component of TG, was decreased in cancer tissues, whereas the levels of saturated fatty acids and polyunsaturated fatty acids (PUFAs), which are principal components of polar lipids, were elevated. These lipidome rearrangements were associated with the overexpression of genes associated with fatty acid oxidation, and the synthesis of phospholipids and cholesterol. These findings suggest that reprogramming of lipid metabolism might occur in CRC tissue, with a shift towards increased utilization of TG for energy production and enhanced synthesis of membrane lipids, necessary for the rapid proliferation of cancer cells.
Collapse
|
21
|
Correlations between the metabolic profile and 18F-FDG-Positron Emission Tomography-Computed Tomography parameters reveal the complexity of the metabolic reprogramming within lung cancer patients. Sci Rep 2019; 9:16212. [PMID: 31700108 PMCID: PMC6838313 DOI: 10.1038/s41598-019-52667-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/12/2019] [Indexed: 12/15/2022] Open
Abstract
Several studies have demonstrated that the metabolite composition of plasma may indicate the presence of lung cancer. The metabolism of cancer is characterized by an enhanced glucose uptake and glycolysis which is exploited by 18F-FDG positron emission tomography (PET) in the work-up and management of cancer. This study aims to explore relationships between 1H-NMR spectroscopy derived plasma metabolite concentrations and the uptake of labeled glucose (18F-FDG) in lung cancer tissue. PET parameters of interest are standard maximal uptake values (SUVmax), total body metabolic active tumor volumes (MATVWTB) and total body total lesion glycolysis (TLGWTB) values. Patients with high values of these parameters have higher plasma concentrations of N-acetylated glycoproteins which suggest an upregulation of the hexosamines biosynthesis. High MATVWTB and TLGWTB values are associated with higher concentrations of glucose, glycerol, N-acetylated glycoproteins, threonine, aspartate and valine and lower levels of sphingomyelins and phosphatidylcholines appearing at the surface of lipoproteins. These higher concentrations of glucose and non-carbohydrate glucose precursors such as amino acids and glycerol suggests involvement of the gluconeogenesis pathway. The lower plasma concentration of those phospholipids points to a higher need for membrane synthesis. Our results indicate that the metabolic reprogramming in cancer is more complex than the initially described Warburg effect.
Collapse
|