1
|
Ren H, Yang AH, Cai YS, Qin Y, Luo TY. Study on correlation between Chinese medicine syndromes in stroke and neurological deficits during recovery phase: Perspective. Medicine (Baltimore) 2024; 103:e39600. [PMID: 39331899 PMCID: PMC11441972 DOI: 10.1097/md.0000000000039600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/16/2024] [Indexed: 09/29/2024] Open
Abstract
Stroke is a leading cause of long-term disability and mortality worldwide, necessitating effective rehabilitation strategies for successful recovery. Traditional Chinese medicine (TCM) has gained recognition as a complementary and alternative approach in stroke rehabilitation, owing to its unique syndromes that offer valuable insights for personalized treatment plans. This study aims to elucidate the correlation between TCM syndromes observed during the recovery phase of stroke and the associated neurological deficits. Syndromes such as Blood stasis, Phlegm-dampness, Qi deficiency, and Yin deficiency were systematically examined, while standardized neurological assessments, encompassing motor function, sensory perception, and cognitive abilities, were employed to evaluate the extent of neurological impairment. Rigorous statistical analyses were conducted to discern potential correlations between TCM syndromes and the severity of neurological deficits. The results revealed statistically significant positive associations between certain TCM syndromes, particularly Blood stasis and Phlegm-dampness, and heightened neurological deficits during the recovery phase post-stroke. These findings suggest that these syndromes may serve as indicators of more severe brain injury post-stroke, thereby guiding the development of tailored rehabilitation strategies. By establishing robust connections between TCM syndromes and neurological deficits, this study contributes to advancing our understanding of stroke recovery through an integrated approach that incorporates TCM principles. Moreover, it underscores the potential benefits of integrating TCM into conventional rehabilitation protocols, offering valuable insights for healthcare professionals and potentially improving patient outcomes.
Collapse
Affiliation(s)
- Hao Ren
- Department of Rehabilitation, Fengdu People’s Hospital, Chongqing, China
| | - Ai-hua Yang
- Department of Rehabilitation, Fengdu People’s Hospital, Chongqing, China
| | - Yi-sheng Cai
- Department of Rehabilitation, Fengdu People’s Hospital, Chongqing, China
| | - Yi Qin
- Department of Gastroenterology, Fengdu People’s Hospital, Chongqing, China
| | - Tong-you Luo
- Department of Rehabilitation, Fengdu People’s Hospital, Chongqing, China
| |
Collapse
|
2
|
Yao B, Xu D, Wang Q, Liu L, Hu Z, Liu W, Zheng Q, Meng H, Xiao R, Xu Q, Hu Y, Wang J. Neuroprotective and vasoprotective effects of herb pair of Zhiqiao-Danggui in ischemic stroke uncovered by LC-MS/MS-based metabolomics approach. Metab Brain Dis 2024; 39:1131-1148. [PMID: 39002017 DOI: 10.1007/s11011-024-01387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Ischemic stroke is the most important cause of disability and death worldwide, but current treatments remain limited. Traditional Chinese medicine (TCM) including the herb pair of Zhiqiao-Danggui (ZD) offers a multifaceted treatment approach through promoting blood circulation, yet its specific anti-ischemic mechanism remains unclear. This study used the photochemically induced thrombosis (PIT) mouse model and the oxygen glucose deprivation/reoxygenation (OGD/R) cell model to explore the therapeutic effect of ZD on ischemic stroke. Mice were treated with high and low doses of ZD extract or positive control. Behavior was assessed using the grid test. The brain tissue was then subjected to infarct volume assessment, histopathology, oxidative stress marker detection, LC/MS metabolomic analysis and qRT-PCR validation. The therapeutic effect of ZD-medicated serum on OGD/R model was tested on cells. Experimental results show that ZD can improve motor function, reduce infarct size, neuronal damage and apoptosis as well as alleviate oxidative stress in mice. ZD-medicated serum promotes endothelial cell proliferation, improves cell survival against OGD/R-induced injury, reduces oxidative damage and protects mitochondrial function. Metabolomics reveals ZD regulation of metabolites in energy metabolism, amino acid metabolism, TCA cycle, and angiogenesis signaling pathways. qRT-PCR results also showed that ZD could attenuate abnormal conduction of angiogenic signals and enhance vessel stability. This study confirmed the neuroprotective and vasoprotective effects of ZD, highlighted its potential in treating ischemic stroke, and provided a scientific basis for the traditional use of ZD.
Collapse
Affiliation(s)
- Benxing Yao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Di Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qing Wang
- Department of Interventional Surgery, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, Shandong, China
| | - Lin Liu
- Department of Interventional Surgery, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, Shandong, China
| | - Ziyun Hu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wenya Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qi Zheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Huihui Meng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Ran Xiao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qian Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Yudie Hu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Junsong Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| |
Collapse
|
3
|
Zhu D, Liu Y, Zhao Y, Yan L, Zhu L, Qian F, Wu M. Dynamic changes of resting state functional network following acute ischemic stroke. J Chem Neuroanat 2023; 130:102272. [PMID: 37044352 DOI: 10.1016/j.jchemneu.2023.102272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Stroke, the second common cause of death in the world, is commonly considered to the well-known phenomenon of diaschisis. After stroke, regions far from the lesion can show altered neural activity. However, the comprehensive treatment recovery mechanism of acute ischemic stroke remains unclear. This study aims to investigate the impact of comprehensive treatment on resting state brain functional connectivity to reveal the therapeutic mechanism through a three time points study design. Twenty-one acute ischemic stroke patients and twenty matched healthy controls (HC) were included. Resting state functional magnetic resonance imaging (fMRI) and clinical evaluations were assessed in three stages: baseline (less than 72hours after stroke onset), post-first month and post-third month. Amplitude of low-frequency fluctuations (ALFF) and Independent component analysis (ICA) were conducted. We found: 1) stroke patients had decreased ALFF in the right cuneus (one of the important parts of the visual network). After three months, ALFF increased to the normal level; 2) the decreased functional connectivity in the right cuneus within the visual network and restored three months after onset. However, the decreased functional connectivity in the right precuneus within the default mode network restored one month after onset; 3) a significant association was found between the clinical scale score change over time and improvement in the cuneus and precuneus functional connectivity. Our results demonstrate the importance of the cuneus and precuneus within the visual network and default mode network in stroke recovery. These findings suggest that the different restored patterns of neural functional networks may contribute to the neurological function recovery. It has potential applications from stroke onset through rehabilitation because different rehabilitation phase corresponds to specific strategies.
Collapse
Affiliation(s)
- Dan Zhu
- Department of General Internal Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongkang Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yudong Zhao
- Department of General Internal Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Yan
- Department of General Internal Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Zhu
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Fei Qian
- Department of General Internal Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Minghua Wu
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, Wang PQ. The role of traditional herbal medicine for ischemic stroke: from bench to clinic-A critical review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154609. [PMID: 36610141 DOI: 10.1016/j.phymed.2022.154609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Jiang YL, Wang XS, Li XB, Liu A, Fan QY, Yang L, Feng B, Zhang K, Lu L, Qi JY, Yang F, Song DK, Wu YM, Zhao MG, Liu SB. Tanshinone IIA improves contextual fear- and anxiety-like behaviors in mice via the CREB/BDNF/TrkB signaling pathway. Phytother Res 2022; 36:3932-3948. [PMID: 35801985 DOI: 10.1002/ptr.7540] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/11/2022]
Abstract
Posttraumatic stress disorder (PTSD) is one of the most common psychiatric diseases, which is characterized by the typical symptoms such as re-experience, avoidance, and hyperarousal. However, there are few drugs for PTSD treatment. In this study, conditioned fear and single-prolonged stress were employed to establish PTSD mouse model, and we investigated the effects of Tanshinone IIA (TanIIA), a natural product isolated from traditional Chinese herbal Salvia miltiorrhiza, as well as the underlying mechanisms in mice. The results showed that the double stress exposure induced obvious PTSD-like symptoms, and TanIIA administration significantly decreased freezing time in contextual fear test and relieved anxiety-like behavior in open field and elevated plus maze tests. Moreover, TanIIA increased the spine density and upregulated synaptic plasticity-related proteins as well as activated CREB/BDNF/TrkB signaling pathway in the hippocampus. Blockage of CREB remarkably abolished the effects of TanIIA in PTSD model mice and reversed the upregulations of p-CREB, BDNF, TrkB, and synaptic plasticity-related protein induced by TanIIA. The molecular docking simulation indicated that TanIIA could interact with the CREB-binding protein. These findings indicate that TanIIA ameliorates PTSD-like behaviors in mice by activating the CREB/BDNF/TrkB pathway, which provides a basis for PTSD treatment.
Collapse
Affiliation(s)
- Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - An Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qing-Yu Fan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jing-Yu Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Fan Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|