1
|
Gohar D, Põldmaa K, Pent M, Rahimlou S, Cerk K, Ng DY, Hildebrand F, Bahram M. Genomic evidence of symbiotic adaptations in fungus-associated bacteria. iScience 2025; 28:112253. [PMID: 40290873 PMCID: PMC12023794 DOI: 10.1016/j.isci.2025.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Fungi harbor diverse bacteria that engage in various relationships. While these relationships potentially influence fungal functioning, their underlying genetic mechanisms remain unexplored. Here, we aimed to elucidate the key genomic features of fungus-associated bacteria (FaB) by comparing 163 FaB genomes to 1,048 bacterial genomes from other hosts and habitats. Our analyses revealed several distinctive genomic features of FaB. We found that FaB are enriched in carbohydrate transport/metabolism- and motility-related genes, suggesting an adaptation for utilizing complex fungal carbon sources. They are also enriched in genes targeting fungal biomass, likely reflecting their role in recycling and rebuilding fungal structures. Additionally, FaB associated with plant-mutualistic fungi possess a wider array of carbon-acquisition enzymes specific to fungal and plant substrates compared to those residing with saprotrophic fungi. These unique genomic features highlight FaB' potential as key players in fungal nutrient acquisition and decomposition, ultimately influencing plant-fungal symbiosis and ecosystem functioning.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Natural History Museum and Botanical Garden, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
| | - Saleh Rahimlou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Klara Cerk
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Duncan Y.K. Ng
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
| | - Falk Hildebrand
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Mo Bahram
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden
| |
Collapse
|
2
|
Sánchez-Thomas R, Hernández-Garnica M, Granados-Rivas JC, Saavedra E, Peñalosa-Castro I, Rodríguez-Enríquez S, Moreno-Sánchez R. Intertwining of Cellular Osmotic Stress Handling Mechanisms and Heavy Metal Accumulation. Mol Biotechnol 2024:10.1007/s12033-024-01351-y. [PMID: 39690277 DOI: 10.1007/s12033-024-01351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Osmoregulation mechanisms are engaged in the detoxification and accumulation of heavy metals in plants, microalgae and other microorganisms. The present review paper analyzes osmotic resistance organisms and their heavy metal accumulation mechanisms closely related to osmoregulation. In prokaryotic and eukaryotic microorganisms, such as the green algae-like protist Euglena, osmotic and heavy metal stresses share similar cell responses and mechanisms. Likewise, some plants have developed specific mechanisms associated to water stress induced by salinity, flooding, or drought, which are also activated under heavy metal stress. Thus, synthesis of osmo-metabolites and strategies to maintain stable the intracellular water content under heavy metal exposure induce a state of apparent drought by blocking the water maintenance systems. Heavy metals affect the cellular redox state, triggering signaling pathways for intracellular water maintenance, which are mediated by the concentration of reactive oxygen species. Hence, cellular responses and mechanisms associated with osmotic stress, once fully elucidated, represent new opportunities to improve mechanistic strategies for bioremediation of heavy metal-polluted sites.
Collapse
Affiliation(s)
- Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico
| | | | - Juan Carlos Granados-Rivas
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico
| | - Ignacio Peñalosa-Castro
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico
| | - Sara Rodríguez-Enríquez
- Carrera de Medico Cirujano, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
| | - Rafael Moreno-Sánchez
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
| |
Collapse
|
3
|
Zafar S, Khan IM, Ashraf MA, Zafar M, Ahmad M, Rasheed R, Mehmood A, Ahmad KS. Insights into trehalose mediated physiological and biochemical mechanisms in Zea mays L. under chromium stress. BMC PLANT BIOLOGY 2024; 24:783. [PMID: 39152388 PMCID: PMC11330127 DOI: 10.1186/s12870-024-05514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Chromium (Cr) toxicity significantly threatens agricultural ecosystems worldwide, adversely affecting plant growth and development and reducing crop productivity. Trehalose, a non-reducing sugar has been identified as a mitigator of toxic effects induced by abiotic stressors such as drought, salinity, and heavy metals. The primary objective of this study was to investigate the influence of exogenously applied trehalose on maize plants exposed to Cr stress. RESULTS Two maize varieties, FH-1046 and FH-1453, were subjected to two different Cr concentrations (0.3 mM, and 0.5 mM). The results revealed significant variations in growth and biochemical parameters for both maize varieties under Cr-induced stress conditions as compared to the control group. Foliar application of trehalose at a concentration of 30 mM was administered to both maize varieties, leading to a noteworthy reduction in the detrimental effects of Cr stress. Notably, the Cr (0.5 mM) stress more adversely affected the shoot length more than 0.3mM of Cr stress. Cr stress (0.5 mM) significantly reduced the shoot length by 12.4% in FH-1046 and 24.5% in FH-1453 while Trehalose increased shoot length by 30.19% and 4.75% in FH-1046 and FH-1453 respectively. Cr stress significantly constrained growth and biochemical processes, whereas trehalose notably improved plant growth by reducing Cr uptake and minimizing oxidative stress caused by Cr. This reduction in oxidative stress was evidenced by decreased production of proline, SOD, POD, MDA, H2O2, catalase, and APX. Trehalose also enhanced photosynthetic activities under Cr stress, as indicated by increased values of chlorophyll a, b, and carotenoids. Furthermore, the ameliorative potential of trehalose was demonstrated by increased contents of proteins and carbohydrates and a decrease in Cr uptake. CONCLUSIONS The study demonstrates that trehalose application substantially improved growth and enhanced photosynthetic activities in both maize varieties. Trehalose (30 mM) significantly increased the plant biomass, reduced ROS production and enhanced resilience to Cr stress even at 0.5 mM.
Collapse
Affiliation(s)
- Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, 54770, Pakistan.
| | - Inam Mehdi Khan
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, 54770, Pakistan
| | | | - Muhammad Zafar
- Department of Plant Systematics and Biodiversity Lab, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Systematics and Biodiversity Lab, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot, Rawalakot, 12350, Pakistan
| | | |
Collapse
|
4
|
Xiao D, Driller M, Dielentheis‐Frenken M, Haala F, Kohl P, Stein K, Blank LM, Tiso T. Advances in Aureobasidium research: Paving the path to industrial utilization. Microb Biotechnol 2024; 17:e14535. [PMID: 39075758 PMCID: PMC11286673 DOI: 10.1111/1751-7915.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.
Collapse
Affiliation(s)
- Difan Xiao
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marielle Driller
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marie Dielentheis‐Frenken
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Frederick Haala
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Philipp Kohl
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Karla Stein
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
5
|
Cheng L, Mu H, Zhang X, Jiang P, Liu L, Li J. Deinococcus arenicola sp. nov., a novel radiation-resistant bacterium isolated from sandy soil in Antarctica. Int J Syst Evol Microbiol 2024; 74. [PMID: 38787370 DOI: 10.1099/ijsem.0.006397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
A Gram-stain-positive, aerobic, non-mobile and spherical strain, designated ZS9-10T, belonging to the genus Deinococcus was isolated from soil sampled at the Chinese Zhong Shan Station, Antarctica. Growth was observed in the presence of 0-4 % (w/v) NaCl, at pH 7.0-8.0 and at 4-25 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZS9-10T formed a lineage in the genus Deinococcus. It exhibited highest sequence similarity (97.4 %) to Deinococcus marmoris DSM 12784T. The major phospholipids of ZS9-10T were unidentified phosphoglycolipid, unidentified glycolipids and unidentified lipids. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C16 : 1 ω7c. MK-8 was the predominant respiratory quinone. The digital DNA-DNA hybridization and average nucleotide identity values between strain ZS9-10T and its close relative D. marmoris DSM 12784T were 27.4 and 83.9 %, respectively. Based on phenotypic, phylogenetic and genotypic data, a novel species, named Deinococcus arenicola sp. nov., is proposed. The type strain iis ZS9-10T (=CCTCC AB 2019392T=KCTC43192T).
Collapse
Affiliation(s)
- Li Cheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Hongmei Mu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Xinyu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Peiqiang Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Lukuan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Jing Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| |
Collapse
|
6
|
Rensink S, van Nieuwenhuijzen EJ, Sailer MF, Struck C, Wösten HAB. Use of Aureobasidium in a sustainable economy. Appl Microbiol Biotechnol 2024; 108:202. [PMID: 38349550 PMCID: PMC10864419 DOI: 10.1007/s00253-024-13025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair make them a potential engineered living material avant la lettre. KEY POINTS: •Aureobasidium produces products of interest to the industry •Aureobasidium can stimulate plant growth and protect crops •Biofinish of A. pullulans is a sustainable alternative to petrol-based coatings •Aureobasidium biofilms have the potential to function as engineered living materials.
Collapse
Affiliation(s)
- Stephanie Rensink
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands.
| | - Elke J van Nieuwenhuijzen
- Faculty of Technology, Amsterdam University of Applied Sciences, Rhijnspoorplein 2, 1091 GC, Amsterdam, The Netherlands
| | - Michael F Sailer
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands
| | - Christian Struck
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands
| | - Han A B Wösten
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
7
|
Yuzon JD, Schultzhaus Z, Wang Z. Transcriptomic and genomic effects of gamma-radiation exposure on strains of the black yeast Exophiala dermatitidis evolved to display increased ionizing radiation resistance. Microbiol Spectr 2023; 11:e0221923. [PMID: 37676019 PMCID: PMC10581076 DOI: 10.1128/spectrum.02219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/15/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE Ionizing radiation poses a significant threat to living organisms and human health, given its destructive nature and widespread use in fields such as medicine and the potential for nuclear disasters. Melanized fungi exhibit remarkable survival capabilities, enduring doses up to 1,000-fold higher than mammals. Through adaptive laboratory evolution, we validated the protective role of constitutive upregulation of DNA repair genes in the black yeast Exophiala dermatitidis, enhancing survival after radiation exposure. Surprisingly, we found that evolved strains lacking melanin still achieved high levels of radioresistance. Our study unveiled the significance of robust activation and enhancement of redox homeostasis, as evidenced by the profound transcriptional changes and increased accumulation of mutations, in substantially improving ionizing radiation resistance in the absence of melanin. These findings underscore the delicate balance between DNA repair and redox homeostasis for an organism's ability to endure and recover from radiation exposure.
Collapse
Affiliation(s)
- Jennifer D. Yuzon
- National Research Council Postdoctoral Research Associate, US Naval Research Laboratory, Washington, USA
| | - Zachary Schultzhaus
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, USA
| | - Zheng Wang
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, USA
| |
Collapse
|
8
|
Dordevic D, Dordevic S, Abdullah FAA, Mader T, Medimorec N, Tremlova B, Kushkevych I. Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil. Foods 2023; 12:2626. [PMID: 37444364 DOI: 10.3390/foods12132626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Following petroleum, coffee ranks as the second most extensively exchanged commodity worldwide. The definition of spent coffee ground (SCG) can be outlined as the waste generated after consuming coffee. The aims of the study are to produce edible/biodegradable packaging with the addition of spent coffee grounds (SCG) oil and to investigate how this fortification can affect chemical, textural, and solubility properties of experimentally produced films. METHODS The produced films were based on κ-carrageenan and pouring-drying techniques in petri dishes. Two types of emulsifiers were used: Tween 20 and Tween 80. The films were analyzed by antioxidant and textural analysis, and their solubility was also tested. RESULTS Edible/biodegradable packaging samples produced with the addition of SCG oil showed higher (p < 0.05) antioxidant capacity in comparison with control samples produced without the addition of SCG oil. The results of the research showed that the fortification of edible/biodegradable packaging with the addition of SCG oil changed significantly (p < 0.05) both chemical and physical properties of the films. CONCLUSIONS Based on the findings obtained, it was indicated that films manufactured utilizing SCG oil possess considerable potential to serve as an effective and promising material for active food packaging purposes.
Collapse
Affiliation(s)
- Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Simona Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Fouad Ali Abdullah Abdullah
- Department of Meat Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, 612 42 Brno, Czech Republic
- Department of Medical Laboratory Technology, College of Health and Medical Techniques, Duhok Polytechnic University, Duhok 42001, Iraq
| | - Tamara Mader
- University North, Dr. Zarka Dolinar Square 1, 48000 Koprivnica, Croatia
| | - Nino Medimorec
- University North, Dr. Zarka Dolinar Square 1, 48000 Koprivnica, Croatia
| | - Bohuslava Tremlova
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Messant M, Hani U, Hennebelle T, Guérard F, Gakière B, Gall A, Thomine S, Krieger-Liszkay A. Manganese concentration affects chloroplast structure and the photosynthetic apparatus in Marchantia polymorpha. PLANT PHYSIOLOGY 2023; 192:356-369. [PMID: 36722179 DOI: 10.1093/plphys/kiad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 05/03/2023]
Abstract
Manganese (Mn) is an essential metal for plant growth. The most important Mn-containing enzyme is the Mn4CaO5 cluster that catalyzes water oxidation in photosystem II (PSII). Mn deficiency primarily affects photosynthesis, whereas Mn excess is generally toxic. Here, we studied Mn excess and deficiency in the liverwort Marchantia polymorpha, an emerging model ideally suited for analysis of metal stress since it accumulates rapidly toxic substances due to the absence of well-developed vascular and radicular systems and a reduced cuticle. We established growth conditions for Mn excess and deficiency and analyzed the metal content in thalli and isolated chloroplasts. In vivo super-resolution fluorescence microscopy and transmission electron microscopy revealed changes in the organization of the thylakoid membrane under Mn excess and deficiency. Both Mn excess and Mn deficiency increased the stacking of the thylakoid membrane. We investigated photosynthetic performance by measuring chlorophyll fluorescence at room temperature and 77 K, measuring P700 absorbance, and studying the susceptibility of thalli to photoinhibition. Nonoptimal Mn concentrations changed the ratio of PSI to PSII. Upon Mn deficiency, higher non-photochemical quenching was observed, electron donation to PSI was favored, and PSII was less susceptible to photoinhibition. Mn deficiency seemed to favor cyclic electron flow around PSI, thereby protecting PSII in high light. The results presented here suggest an important role of Mn in the organization of the thylakoid membrane and photosynthetic electron transport.
Collapse
Affiliation(s)
- Marine Messant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Umama Hani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Thaïs Hennebelle
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Florence Guérard
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Andrew Gall
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Sébastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
10
|
Draft Genome Sequences of Fungi Isolated from Mars 2020 Spacecraft Assembly Facilities. Microbiol Resour Announc 2022; 11:e0046422. [PMID: 36200893 PMCID: PMC9671001 DOI: 10.1128/mra.00464-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the Mars 2020 mission, several fungal strains were isolated from surfaces where spacecraft components were assembled. Draft genome sequencing and characterization will help identify the genes responsible for radiation resistance, supporting the development of countermeasures to prevent fungal contamination of extraterrestrial environments.
Collapse
|
11
|
From Glaciers to Refrigerators: the Population Genomics and Biocontrol Potential of the Black Yeast Aureobasidium subglaciale. Microbiol Spectr 2022; 10:e0145522. [PMID: 35880866 PMCID: PMC9430960 DOI: 10.1128/spectrum.01455-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Apples are affected by numerous fungi known as storage rots, which cause significant losses before and after harvest. Concerns about increasing antimicrobial resistance, bans on various fungicides, and changing consumer preferences are motivating the search for safer means to prevent fruit rot. The use of antagonistic microbes has been shown to be an efficient and environmentally friendly alternative to conventional phytopharmaceuticals. Here, we investigate the potential of Aureobasidium subglaciale for postharvest rot control. We tested the antagonistic activity of 9 strains of A. subglaciale and 7 closely related strains against relevant phytopathogenic fungi under conditions simulating low-temperature storage: Botrytis cinerea, Penicillium expansum, and Colletotrichum acutatum. We also investigated a selection of phenotypic traits of all strains and sequenced their whole genomes. The tested strains significantly reduced postharvest rot of apples at low temperatures caused by B. cinerea, C. acutatum (over 60%), and P. expansum (about 40%). Several phenotypic traits were observed that may contribute to this biocontrol capacity: growth at low temperatures, tolerance to high temperatures and elevated solute concentrations, and strong production of several extracellular enzymes and siderophores. Population genomics revealed that 7 of the 15 strains originally identified as A. subglaciale most likely belong to other, possibly undescribed species of the same genus. In addition, the population structure and linkage disequilibrium of the species suggest that A. subglaciale is strictly clonal and therefore particularly well suited for use in biocontrol. Overall, these data suggest substantial biological control potential for A. subglaciale, which represents another promising biological agent for disease control in fresh fruit. IMPORTANCE After harvest, fruits are often stored at low temperatures to prolong their life. However, despite the low temperatures, much of the fruit is lost to rot caused by a variety of fungi, resulting in major economic losses and food safety risks. An increasingly important environmentally friendly alternative to conventional methods of mitigating the effects of plant diseases is the use of microorganisms that act similarly to probiotics—occupying the available space, producing antimicrobial compounds, and consuming the nutrients needed by the rot-causing species. To find a new microorganism for biological control that is particularly suitable for cold storage of fruit, we tested different isolates of the cold-loving yeast Aureobasidium subglaciale and studied their phenotypic characteristics and genomes. We demonstrated that A. subglaciale can significantly reduce rotting of apples caused by three rot-causing molds at low temperatures and thus has great potential for preventing fruit rot during cold storage.
Collapse
|
12
|
Fungi are key players in extreme ecosystems. Trends Ecol Evol 2022; 37:517-528. [PMID: 35246323 DOI: 10.1016/j.tree.2022.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
Extreme environments on Earth are typically devoid of macro life forms and are inhabited predominantly by highly adapted and specialized microorganisms. The discovery and persistence of these extremophiles provides tools to model how life arose on Earth and inform us on the limits of life. Fungi, in particular, are among the most extreme-tolerant organisms with highly versatile lifestyles and stunning ecological and morphological plasticity. Here, we overview the most notable examples of extremophilic and stress-tolerant fungi, highlighting their key roles in the functionality and balance of extreme ecosystems. The remarkable ability of fungi to tolerate and even thrive in the most extreme environments, which preclude most organisms, have reshaped current concepts regarding the limits of life on Earth.
Collapse
|
13
|
Lombardino J, Bijlani S, Singh NK, Wood JM, Barker R, Gilroy S, Wang CCC, Venkateswaran K. Genomic Characterization of Potential Plant Growth-Promoting Features of Sphingomonas Strains Isolated from the International Space Station. Microbiol Spectr 2022; 10:e0199421. [PMID: 35019675 PMCID: PMC8754149 DOI: 10.1128/spectrum.01994-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
In an ongoing microbial tracking investigation of the International Space Station (ISS), several Sphingomonas strains were isolated. Based on the 16S rRNA gene sequence, phylogenetic analysis identified the ISS strains as Sphingomonas sanguinis (n = 2) and one strain isolated from the Kennedy Space Center cleanroom (used to assemble various Mars mission spacecraft components) as Sphingomonas paucimobilis. Metagenomic sequence analyses of different ISS locations identified 23 Sphingomonas species. An abundance of shotgun metagenomic reads were detected for S. sanguinis in the location from where the ISS strains were isolated. A complete metagenome-assembled genome was generated from the shotgun reads metagenome, and its comparison with the whole-genome sequences (WGS) of the ISS S. sanguinis isolates revealed that they were highly similar. In addition to the phylogeny, the WGS of these Sphingomonas strains were compared with the WGS of the type strains to elucidate genes that can potentially aid in plant growth promotion. Furthermore, the WGS comparison of these strains with the well-characterized Sphingomonas sp. LK11, an arid desert strain, identified several genes responsible for the production of phytohormones and for stress tolerance. Production of one of the phytohormones, indole-3-acetic acid, was further confirmed in the ISS strains using liquid chromatography-mass spectrometry. Pathways associated with phosphate uptake, metabolism, and solubilization in soil were conserved across all the S. sanguinis and S. paucimobilis strains tested. Furthermore, genes thought to promote plant resistance to abiotic stress, including heat/cold shock response, heavy metal resistance, and oxidative and osmotic stress resistance, appear to be present in these space-related S. sanguinis and S. paucimobilis strains. Characterizing these biotechnologically important microorganisms found on the ISS and harnessing their key features will aid in the development of self-sustainable long-term space missions in the future. IMPORTANCESphingomonas is ubiquitous in nature, including the anthropogenically contaminated extreme environments. Members of the Sphingomonas genus have been identified as potential candidates for space biomining beyond earth. This study describes the isolation and identification of Sphingomonas members from the ISS, which are capable of producing the phytohormone indole-3-acetic acid. Microbial production of phytohormones will help future in situ studies, grow plants beyond low earth orbit, and establish self-sustainable life support systems. Beyond phytohormone production, stable genomic elements of abiotic stress resistance, heavy metal resistance, and oxidative and osmotic stress resistance were identified, rendering the ISS Sphingomonas isolate a strong candidate for biotechnology-related applications.
Collapse
Affiliation(s)
| | - Swati Bijlani
- University of Southern California, Los Angeles, California, USA
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason M. Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Richard Barker
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Simon Gilroy
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Clay C. C. Wang
- University of Southern California, Los Angeles, California, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
14
|
Yadav A, Maertens L, Meese T, Van Nieuwerburgh F, Mysara M, Leys N, Cuypers A, Janssen PJ. Genetic Responses of Metabolically Active Limnospira indica Strain PCC 8005 Exposed to γ-Radiation during Its Lifecycle. Microorganisms 2021; 9:1626. [PMID: 34442705 PMCID: PMC8400943 DOI: 10.3390/microorganisms9081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Two morphotypes of the cyanobacterial Limnospira indica (formerly Arthrospira sp.) strain PCC 8005, denoted as P2 (straight trichomes) and P6 (helical trichomes), were subjected to chronic gamma radiation from spent nuclear fuel (SNF) rods at a dose rate of ca. 80 Gy·h-1 for one mass doubling period (approximately 3 days) under continuous light with photoautotrophic metabolism fully active. Samples were taken for post-irradiation growth recovery and RNA-Seq transcriptional analysis at time intervals of 15, 40, and 71.5 h corresponding to cumulative doses of ca. 1450, 3200, and 5700 Gy, respectively. Both morphotypes, which were previously reported by us to display different antioxidant capacities and differ at the genomic level in 168 SNPs, 48 indels and 4 large insertions, recovered equally well from 1450 and 3200 Gy. However, while the P2 straight type recovered from 5700 Gy by regaining normal growth within 6 days, the P6 helical type took about 13 days to recover from this dose, indicating differences in their radiation tolerance and response. To investigate these differences, P2 and P6 cells exposed to the intermediate dose of gamma radiation (3200 Gy) were analyzed for differential gene expression by RNA-Seq analysis. Prior to batch normalization, a total of 1553 genes (887 and 666 of P2 and P6, respectively, with 352 genes in common) were selected based on a two-fold change in expression and a false discovery rate FDR smaller or equal to 0.05. About 85% of these 1553 genes encoded products of yet unknown function. Of the 229 remaining genes, 171 had a defined function while 58 genes were transcribed into non-coding RNA including 21 tRNAs (all downregulated). Batch normalization resulted in 660 differentially expressed genes with 98 having a function and 32 encoding RNA. From PCC 8005-P2 and PCC 8005-P6 expression patterns, it emerges that although the cellular routes used by the two substrains to cope with ionizing radiation do overlap to a large extent, both strains displayed a distinct preference of priorities.
Collapse
Affiliation(s)
- Anu Yadav
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Laurens Maertens
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Research Unit in Biology of Microorganisms (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium
| | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Mohamed Mysara
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Natalie Leys
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Paul Jaak Janssen
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| |
Collapse
|
15
|
Micewicz ED, Damoiseaux RD, Deng G, Gomez A, Iwamoto KS, Jung ME, Nguyen C, Norris AJ, Ratikan JA, Ruchala P, Sayre JW, Schaue D, Whitelegge JP, McBride WH. Classes of Drugs that Mitigate Radiation Syndromes. Front Pharmacol 2021; 12:666776. [PMID: 34084139 PMCID: PMC8167044 DOI: 10.3389/fphar.2021.666776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
We previously reported several vignettes on types and classes of drugs able to mitigate acute and, in at least one case, late radiation syndromes in mice. Most of these had emerged from high throughput screening (HTS) of bioactive and chemical drug libraries using ionizing radiation-induced lymphocytic apoptosis as a readout. Here we report the full analysis of the HTS screen of libraries with 85,000 small molecule chemicals that identified 220 "hits." Most of these hits could be allocated by maximal common substructure analysis to one of 11 clusters each containing at least three active compounds. Further screening validated 23 compounds as being most active; 15 of these were cherry-picked based on drug availability and tested for their ability to mitigate acute hematopoietic radiation syndrome (H-ARS) in mice. Of these, five bore a 4-nitrophenylsulfonamide motif while 4 had a quinoline scaffold. All but two of the 15 significantly (p < 0.05) mitigated H-ARS in mice. We had previously reported that the lead 4-(nitrophenylsulfonyl)-4-phenylpiperazine compound (NPSP512), was active in mitigating multiple acute and late radiation syndromes in mice of more than one sex and strain. Unfortunately, the formulation of this drug had to be changed for regulatory reasons and we report here on the synthesis and testing of active analogs of NPSP512 (QS1 and 52A1) that have increased solubility in water and in vivo bioavailability while retaining mitigator activity against H-ARS (p < 0.0001) and other radiation syndromes. The lead quinoline 057 was also active in multiple murine models of radiation damage. Taken together, HTS of a total of 150,000 bioactive or chemical substances, combined with maximal common substructure analysis has resulted in the discovery of diverse groups of compounds that can mitigate H-ARS and at least some of which can mitigate multiple radiation syndromes when given starting 24 h after exposure. We discuss what is known about how these agents might work, and the importance of formulation and bioavailability.
Collapse
Affiliation(s)
- Ewa D. Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Robert D. Damoiseaux
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, Henry Samueli School of Engineering, University of California at Los Angeles, Los Angeles, CA, United States
| | - Gang Deng
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, United States
| | - Adrian Gomez
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, United States
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | | | - Josephine A. Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Piotr Ruchala
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - James W. Sayre
- Department of Biostatistics and Radiology, Fielding School of Public Health, University of California at Los Angeles, Los Angeles, CA, United States
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - William H. McBride
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Edible Films from Carrageenan/Orange Essential Oil/Trehalose-Structure, Optical Properties, and Antimicrobial Activity. Polymers (Basel) 2021; 13:polym13030332. [PMID: 33494246 PMCID: PMC7864528 DOI: 10.3390/polym13030332] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
The research aim was to use orange essential oil and trehalose in a carrageenan matrix to form edible packaging. The edible packaging experimentally produced by casting from an aqueous solution were evaluated by the following analysis: UV-Vis spectrum, transparency value, transmittance, attenuated total reflectance Fourier-Transform spectroscopy (FTIR), scanning electron microscopy (SEM) and antimicrobial activity. The obtained results showed that the combination of orange essential oil with trehalose decreases the transmittance value in the UV and Vis regions (up to 0.14% ± 0.02% at 356 nm), meaning that produced films can act as a UV protector. Most produced films in the research were resistant to Gram-positive bacteria (Staphylococcus aureus subsp. aureus), though most films did not show antibacterial properties against Gram-negative bacteria and yeasts. FTIR and SEM confirmed that both the amount of carrageenan used and the combination with orange essential oil influenced the compatibility of trehalose with the film matrix. The research showed how different combinations of trehalose, orange essential oils and carrageenan can affect edible film properties. These changes represent important information for further research and the possible practical application of these edible matrices.
Collapse
|
17
|
Chen D, Cang R, Zhang ZD, Huang H, Zhang ZG, Ji XJ. Efficient reduction of 5-hydroxymethylfurfural to 2, 5-bis (hydroxymethyl) furan by a fungal whole-cell biocatalyst. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Shen L, Cang R, Yang G, Zeng A, Huang H, Zhang Z. Aureobasidium subglaciale F134 is a bifunctional whole-cell biocatalyst for Baeyer–Villiger oxidation or selective carbonyl reduction controllable by temperature. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Di Francesco A, Zajc J, Gunde-Cimerman N, Aprea E, Gasperi F, Placì N, Caruso F, Baraldi E. Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape. World J Microbiol Biotechnol 2020; 36:171. [PMID: 33067644 PMCID: PMC7567711 DOI: 10.1007/s11274-020-02947-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022]
Abstract
Aureobasidium strains isolated from diverse unconventional environments belonging to the species A. pullulans, A. melanogenum, and A. subglaciale were evaluated for Volatile Organic Compounds (VOCs) production as a part of their modes of action against Botrytis cinerea of tomato and table grape. By in vitro assay, VOCs generated by the antagonists belonging to the species A. subglaciale showed the highest inhibition percentage of the pathogen mycelial growth (65.4%). In vivo tests were conducted with tomatoes and grapes artificially inoculated with B. cinerea conidial suspension, and exposed to VOCs emitted by the most efficient antagonists of each species (AP1, AM10, AS14) showing that VOCs of AP1 (A. pullulans) reduced the incidence by 67%, partially confirmed by the in vitro results. Conversely, on table grape, VOCs produced by all the strains did not control the fungal incidence but were only reducing the infection severity (< 44.4% by A. pullulans; < 30.5% by A. melanogenum, and A. subglaciale). Solid-phase microextraction (SPME) and subsequent gas chromatography coupled to mass spectrometry identified ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol as the most produced VOCs. However, there were differences in the amounts of produced VOCs as well as in their repertoire. The EC50 values of VOCs for reduction of mycelial growth of B. cinerea uncovered 3-methyl-1-butanol as the most effective compound. The study demonstrated that the production and the efficacy of VOCs by Aureobasidium could be directly related to the specific species and pathosystem and uncovers new possibilities for searching more efficient VOCs producing strains in unconventional habitats other than plants.
Collapse
Affiliation(s)
- A Di Francesco
- CRIOF-Department of Agricultural Sciences, University of Bologna, Via Gandolfi, 19, 40057, Cadriano, Bologna, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy.
| | - J Zajc
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - E Aprea
- Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, 38010, San Michele all'Adige, TN, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - F Gasperi
- Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, 38010, San Michele all'Adige, TN, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - N Placì
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy
| | - F Caruso
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy
| | - E Baraldi
- CRIOF-Department of Agricultural Sciences, University of Bologna, Via Gandolfi, 19, 40057, Cadriano, Bologna, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy
| |
Collapse
|
20
|
Liu T, Liu X, Zhu J, Tang Q, Wang W, Zhu L, Zhang Z, Zhang Z, Jiang L, Huang H. Characterization of Radiation-Resistant Yeast Isolated from Radiation-Polluted Areas and Its Potential Application in Bioremediation. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820050117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Unconventional Yeasts Are Tolerant to Common Antifungals, and Aureobasidium pullulans Has Low Baseline Sensitivity to Captan, Cyprodinil, and Difenoconazole. Antibiotics (Basel) 2020; 9:antibiotics9090602. [PMID: 32942551 PMCID: PMC7557980 DOI: 10.3390/antibiotics9090602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023] Open
Abstract
Many yeasts have demonstrated intrinsic insensitivity to certain antifungal agents. Unlike the fungicide resistance of medically relevant yeasts, which is highly undesirable, intrinsic insensitivity to fungicides in antagonistic yeasts intended for use as biocontrol agents may be of great value. Understanding how frequently tolerance exists in naturally occurring yeasts and their underlying molecular mechanisms is important for exploring the potential of biocontrol yeasts and fungicide combinations for plant protection. Here, yeasts were isolated from various environmental samples in the presence of different fungicides (or without fungicide as a control) and identified by sequencing the internal transcribed spacer (ITS) region or through matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Among 376 isolates, 47 taxa were identified, and Aureobasidium pullulans was the most frequently isolated yeast. The baseline sensitivity of this yeast was established for 30 isolates from different environmental samples in vitro to captan, cyprodinil, and difenoconazole. For these isolates, the baseline minimum inhibitory concentration (MIC50) values for all the fungicides were higher than the concentrations used for the control of plant pathogenic fungi. For some isolates, there was no growth inhibition at concentrations as high as 300 µg/mL for captan and 128 µg/mL for cyprodinil. This information provides insight into the presence of resistance among naturally occurring yeasts and allows the choice of strains for further mechanistic analyses and the assessment of A. pullulans for novel applications in combination with chemical agents and as part of integrated plant-protection strategies.
Collapse
|
22
|
Liu T, Jiang C, Zhu L, Jiang L, Huang H. Fe 3O 4@chitosan Microspheres Coating as Cytoprotective Exoskeletons for the Enhanced Production of Butyric Acid With Clostridium tyrobutyricum Under Acid Stress. Front Bioeng Biotechnol 2020; 8:449. [PMID: 32500066 PMCID: PMC7243709 DOI: 10.3389/fbioe.2020.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
The introduction of inorganic nano-materials may endow microbial cells with unique new features, including greater resistance to adverse abiotic stress. The aim of this work was to enhance the acid tolerance of Clostridium tyrobutyricum ATCC 25755 by coating cells with self-assembled Fe3O4@chitosan (Fe3O4@CS) microspheres, and thereby increase the production of butyric acid. The optimal coating efficiency of 81.19% was obtained by systematically optimizing the three operational parameters temperature, rpm and mass ratio, which were determined to be 37°C, 80 rpm and 1:2, respectively. Physicochemical characterization was used to assess the superparamagnetism, thermostability and subsize of Fe3O4@CS attached to the cells. Compared to free cells, C. tyrobutyricum coated with Fe3O4@CS (CtFC) exhibited stronger acid tolerance at low pH. At a pH of 4 or 5, the levels of ROS, MDA, LDH, and SOD caused by the acid environment in free cells were significant higher than in CtFC. Moreover, without adding NaOH, CtFC fermentation showed a higher butyric acid titer (37.60 vs. 31.56 g/L) compared to free-cell fermentation. At the same time, an average butyric acid yield of 0.46 g/g in each repeated-batch fermentation was also obtained by taking advantage of the biocatalyst’s reusability and convenient separation from the fermentation broth via an external magnetic force. Overall, the developed CtFC illustrates a new paradigm for developing an economical and reusable biocatalyst for industrial application in butyric acid production.
Collapse
Affiliation(s)
- Tingting Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Cheng Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - He Huang
- College of Pharmaceutical Science, Nanjing Tech University, Nanjing, China
| |
Collapse
|
23
|
Schultzhaus Z, Romsdahl J, Chen A, Tschirhart T, Kim S, Leary D, Wang Z. The response of the melanized yeast Exophiala dermatitidis to gamma radiation exposure. Environ Microbiol 2020; 22:1310-1326. [PMID: 32011087 DOI: 10.1111/1462-2920.14936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 01/21/2023]
Abstract
The melanized yeast Exophiala dermatitidis is resistant to many environmental stresses and is used as a model for understanding the diverse roles of melanin in fungi. Here, we describe the extent of resistance of E. dermatitidis to acute γ-radiation exposure and the major mechanisms it uses to recover from this stress. We find that melanin does not protect E. dermatitidis from γ-radiation. Instead, environmental factors such as nutrient availability, culture age and culture density are much greater determinants of cell survival after exposure. We also observe a dramatic transcriptomic response to γ-radiation that mobilizes pathways involved in morphological development, protein degradation and DNA repair, and is unaffected by the presence of melanin. Together, these results suggest that the ability of E. dermatitidis to survive γ-radiation exposure is determined by the prior and the current metabolic state of the cells as well as DNA repair mechanisms, and that small changes in these conditions can lead to large effects in radiation resistance, which should be taken into account when understanding how diverse fungi recover from this unique stress.
Collapse
Affiliation(s)
- Zachary Schultzhaus
- National Research Council Postdoctoral Research Associate, National Research Laboratory, Washington, DC, USA
| | - Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, National Research Laboratory, Washington, DC, USA
| | - Amy Chen
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Tanya Tschirhart
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Seongwon Kim
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Dagmar Leary
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Zheng Wang
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
24
|
Jin M, Xiao A, Zhu L, Zhang Z, Huang H, Jiang L. The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express 2019; 9:138. [PMID: 31482336 PMCID: PMC6722170 DOI: 10.1186/s13568-019-0862-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023] Open
Abstract
Deinococcus is an extremophilic microorganism found in a wide range of habitats, including hot springs, radiation-contaminated areas, Antarctic soils, deserts, etc., and shows some of the highest levels of resistance to ionizing radiation known in nature. The highly efficient radiation-protection mechanisms of Deinococcus depend on a combination of passive and active defense mechanisms, including self-repair of DNA damage (homologous recombination, MMR, ER and ESDSA), efficient cellular damage clearance mechanisms (hydrolysis of damaged proteins, overexpression of repair proteins, etc.), and effective clearance of reactive oxygen species (ROS). Due to these mechanisms, Deinococcus cells are highly resistant to oxidation, radiation and desiccation, which makes them potential chassis cells for wide applications in many fields. This article summarizes the latest research on the radiation-resistance mechanisms of Deinococcus and prospects its biotechnological application potentials.
Collapse
|
25
|
Zhang D, Ma N, Guo Z, Chen P, Ma R, Sun X, Wang D, Wang J, Xu Y. Improved cadmium resistance and removal capacity in Pichia kudriavzevii A16 by sucrose preincubation. J Basic Microbiol 2019; 59:867-878. [PMID: 31347180 DOI: 10.1002/jobm.201900272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022]
Abstract
Removal of heavy metals from food material by growing micro-organisms is limited by the toxicity to cells. In this study, different preincubation treatments were investigated to analyze their effects on cadmium resistance and removal ability of Pichia kudriavzevii A16 and Saccharomyces cerevisiae CICC1211. Sucrose preincubation improved the cadmium resistance of both yeast cells and increased the cadmium-removal rate of P. kudriavzevii A16. An evident decrease of intracellular and cell-surface cadmium accumulation was observed after sucrose preincubation, which may be the primary reason responsible for the improved cadmium resistance. Flow cytometry assay showed that sucrose significantly reduced the production of reactive oxygen species (ROS) and cell death rate of both yeasts under cadmium compared with those normally cultured cells. Under cadmium stress, the content of both protein carbonyls and malonyldialdehyde were also reduced by the addition of sucrose, the results were in accordance with the tendency of ROS, exhibiting a defending function of sucrose. Osmotic regulators as proline and trehalose were increased by sucrose preincubation in P. kudriavzevii A16 in the presence of cadmium. The results suggested that sucrose preincubation could be applied to improve cadmium resistance and removal rate of yeasts.
Collapse
Affiliation(s)
- Dandan Zhang
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ning Ma
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhen Guo
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Peng Chen
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ranran Ma
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaowen Sun
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Dongfeng Wang
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Junwei Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Ying Xu
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
26
|
Schultzhaus Z, Chen A, Kim S, Shuryak I, Chang M, Wang Z. Transcriptomic analysis reveals the relationship of melanization to growth and resistance to gamma radiation in Cryptococcus neoformans. Environ Microbiol 2019; 21:2613-2628. [PMID: 30724440 DOI: 10.1111/1462-2920.14550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 11/29/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans produces melanin within its cell wall for infection and resistance against external stresses such as exposure to UV, temperature fluctuations and reactive oxygen species. It has been reported that melanin may also protect cells from ionizing radiation damage, against which C. neoformans is extremely resistant. This has tagged melanin as a potential radioprotective biomaterial. Here, we report the effect of melanin on the transcriptomic response of C. neoformans to gamma radiation. We did not observe a substantial protective effect of melanin against gamma radiation, and the general gene expression patterns in irradiated cells were independent of the presence of melanin. However, melanization itself dramatically altered the C. neoformans transcriptome, primarily by repressing genes involved in respiration and cell growth. We suggest that, in addition to providing a physical and chemical barrier against external stresses, melanin production alters the transcriptional landscape of C. neoformans with the result of increased resistance to uncertain environmental conditions. This observation demonstrates the importance of the melanization process in understanding the stress response of C. neoformans and for understanding fungal physiology.
Collapse
Affiliation(s)
- Zachary Schultzhaus
- National Research Council Postdoctoral Research Associate, Naval Research Laboratory, Washington, DC, USA
| | - Amy Chen
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Seongwon Kim
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Melody Chang
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Zheng Wang
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|