1
|
Enciu VT, Ologeanu PM, Constantinescu A, Fierbinteanu-Braticevici C. Latest Insights in Alcohol-Related Liver Disease and Alcoholic Hepatitis. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2025:rjim-2025-0007. [PMID: 40245287 DOI: 10.2478/rjim-2025-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Alcohol-related liver disease (ALD) is still to this date one of the leading causes of chronic liver disease globally. ALD comprises a wide disease spectrum, from the benign liver steatosis, to the life-threatening inflammatory acute phenotype of alcoholic hepatitis (AH) and ultimately, advanced liver fibrosis and cirrhosis. AH represents an acute inflammatory liver condition caused by prolonged high quantities of alcohol intake. Disease outcome varies from mild to severe, with systemic implication and high mortality. Although the pathogenesis has been extensively studied over the years, little progress has been made regarding therapeutic options. In over 50 years, steroid treatment is still the cornerstone therapeutic option, albeit having multiple limitations and a low success rate. On the other hand, important progress has been made regarding disease management and severity stratification with the implementation of different prognostic score. Although highly prevalent, AH still has many unmet needs, with a growing necessity for novel non-invasive diagnosis, prognosis biomarkers and impactful treatment options.
Collapse
Affiliation(s)
- Vlad-Teodor Enciu
- 1Internal Medicine II and Gastroenterology Department, Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- 2Emergency University Hospital, 050098 Bucharest, Romania
| | - Priscila Madalina Ologeanu
- 1Internal Medicine II and Gastroenterology Department, Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- 2Emergency University Hospital, 050098 Bucharest, Romania
| | - Alexandru Constantinescu
- 2Emergency University Hospital, 050098 Bucharest, Romania
- 3Internal Medicine I and Gastroenterology Department, Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Carmen Fierbinteanu-Braticevici
- 1Internal Medicine II and Gastroenterology Department, Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- 2Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
2
|
Hu Y, Schnabl B, Stärkel P. Origin, Function, and Implications of Intestinal and Hepatic Macrophages in the Pathogenesis of Alcohol-Associated Liver Disease. Cells 2025; 14:207. [PMID: 39936998 PMCID: PMC11816606 DOI: 10.3390/cells14030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Macrophages are members of the human innate immune system, and the majority reside in the liver. In recent years, they have been recognized as essential players in the maintenance of liver and intestinal homeostasis as well as key guardians of their respective immune systems, and they are increasingly being recognized as such. Paradoxically, they are also likely involved in chronic pathologies of the gastrointestinal tract and potentially in the alteration of the gut-liver axis in alcohol use disorder (AUD) and alcohol-associated liver disease (ALD). To date, the causal relationship between macrophages, the pathogenesis of ALD, and the immune dysregulation of the gut remains unclear. In this review, we will discuss our current understanding of the heterogeneity of intestinal and hepatic macrophages, their ontogeny, the potential factors that regulate their origin, and the evidence of how they are associated with the manifestation of chronic inflammation. We will also illustrate how the micro-environment of the intestine shapes the phenotypes and functionality of the macrophage compartment in both the intestines and liver and how they change during chronic alcohol abuse. Finally, we highlight the obstacles to current research and the prospects for this field.
Collapse
Affiliation(s)
- Yifan Hu
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Burge KY, Zhong H, Wilson AP, Chaaban H. Network-Based Bioinformatics Highlights Broad Importance of Human Milk Hyaluronan. Int J Mol Sci 2024; 25:12679. [PMID: 39684390 DOI: 10.3390/ijms252312679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human milk (HM) is rich in bioactive factors promoting postnatal small intestinal development and maturation of the microbiome. HM is also protective against necrotizing enterocolitis (NEC), a devastating inflammatory condition predominantly affecting preterm infants. The HM glycosaminoglycan, hyaluronan (HA), is present at high levels in colostrum and early milk. Our group has demonstrated that HA with a molecular weight of 35 kDa (HA35) promotes maturation of the murine neonatal intestine and protects against two distinct models of NEC. However, the molecular mechanisms underpinning HA35-induced changes in the developing ileum are unclear. CD-1 mouse pups were treated with HA35 or vehicle control daily, from P7 to P14, and we used network and functional analyses of bulk RNA-seq ileal transcriptomes to further characterize molecular mechanisms through which HA35 likely influences intestinal maturation. HA35-treated pups separated well by principal component analysis, and cell deconvolution revealed increases in stromal, Paneth, and mature enterocyte and progenitor cells in HA35-treated pups. Gene set enrichment and pathway analyses demonstrated upregulation in key processes related to antioxidant and growth pathways, such as nuclear factor erythroid 2-related factor-mediated oxidative stress response, hypoxia inducible factor-1 alpha, mechanistic target of rapamycin, and downregulation of apoptotic signaling. Collectively, pro-growth and differentiation signals induced by HA35 may present novel mechanisms by which this HM bioactive factor may protect against NEC.
Collapse
Affiliation(s)
- Kathryn Y Burge
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hua Zhong
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam P Wilson
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
5
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
6
|
Kim J, Seki E. Hyaluronan in liver fibrosis: basic mechanisms, clinical implications, and therapeutic targets. Hepatol Commun 2023; 7:e0083. [PMID: 36930869 PMCID: PMC10027054 DOI: 10.1097/hc9.0000000000000083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/01/2022] [Indexed: 03/19/2023] Open
Abstract
Hyaluronan (HA), also known as hyaluronic acid, is a glycosaminoglycan that is a critical component of the extracellular matrix (ECM). Production and deposition of ECM is a wound-healing response that occurs during chronic liver disease, such as cirrhosis. ECM production is a sign of the disease progression of fibrosis. Indeed, the accumulation of HA in the liver and elevated serum HA levels are used as biomarkers of cirrhosis. However, recent studies also suggest that the ECM, and HA in particular, as a functional signaling molecule, facilitates disease progression and regulation. The systemic and local levels of HA are regulated by de novo synthesis, cleavage, endocytosis, and degradation of HA, and the molecular mass of HA influences its pathophysiological effects. However, the regulatory mechanisms of HA synthesis and catabolism and the functional role of HA are still poorly understood in liver fibrosis. This review summarizes the role of HA in liver fibrosis at molecular levels as well as its clinical implications and discusses the potential therapeutic uses of targeting HA in liver fibrosis.
Collapse
Affiliation(s)
- Jieun Kim
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
7
|
Pei H, Han C, Bi J, He Z, Guo L. Dihydromyricetin suppresses inflammatory injury in microglial cells to improve neurological behaviors of Alzheimer's disease mice via the TLR4/MD2 signal. Int Immunopharmacol 2023; 118:110037. [PMID: 36958211 DOI: 10.1016/j.intimp.2023.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/18/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
AIM We analyzed the role and mechanism of dihydromyricetin (DHM) in suppressing inflammatory injury in microglial cells via targeting MD2. METHODS In vitro, BV2 cells were used as the objects of study to induce inflammatory injury with LPS + ATP, then the cell apoptosis level was identified, inflammatory factor levels were measured by ELISA, TLR4 and MD2 were stained with fluorescence staining, and protein expression was determined using Western-blot (WB) assay. Afterwards, MD2 expression was knocked down n BV2 cells to construct the BV2-MD2-/- cell line, so as to detect the role of DHM on BV2-MD2-/-. Moreover, the binding of DHM to MD2 was analyzed via mall molecule-protein docking and pull-down assays. In-vivo, wild-type (WT) C67BL/6 mice and APP/PS1 (AD) mice were used as the objects of study, which were intervened with DHM to detect the changes in mouse cognition. In addition, the pathological changes of brain tissues were analyzed with H&E staining. In addition, the inflammatory factor and protein levels in brain tissues were also detected. RESULTS DHM suppressed inflammatory injury in BV2 cells, reduced the cell apoptosis rate and inflammatory factor levels, and suppressed the level of TLR4 and MD2. After MD2 knockdown, DHM was unable to further suppress BV2 cell injury. Results of small molecule-protein docking and pull-down assays suggested that DHM bound to MD2 to suppress the formation of TLR4 complex. In AD mice, DHM improved the cognitive disorder in mice, suppressed inflammatory injury in brain tissues and lowered the expression of TLR4 protein. CONCLUSION DHM targeted MD2 to suppress the formation of TLR4 protein complex, thereby suppressing inflammatory injury in microglial cells and improving the cognition in AD mice.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Chenyang Han
- The Second Affiliated Hospital of Jiaxing University, China.
| | - Jinhao Bi
- Westlake Institute for Advanced Study, China.
| | - Zhongmei He
- The Second Affiliated Hospital of Jiaxing University, China.
| | - Li Guo
- The Second Affiliated Hospital of Jiaxing University, China.
| |
Collapse
|
8
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
9
|
Kim A, Cajigas-Du Ross CK, Dasarathy J, Bellar A, Streem D, Welch N, Dasarathy S, Nagy LE. Diminished function of cytotoxic T- and NK- cells in severe alcohol-associated hepatitis. METABOLISM AND TARGET ORGAN DAMAGE 2022; 2:18. [PMID: 39148503 PMCID: PMC11326509 DOI: 10.20517/mtod.2022.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Aim Metabolic liver diseases, including alcohol- and non-alcoholic fatty liver diseases (ALD/NAFLD), are characterized by inflammation and decreased ability to prevent infections. Patients with severe alcohol-associated hepatitis (sAH) are particularly susceptible to infections while undergoing treatment with steroids. Understanding the immunological mechanisms for these responses is critical to managing the treatment of patients with metabolic liver diseases. Cytotoxic NK cells and CD8 T cells, using cytolytic granules, serve an important immunological role by killing infected cells, including monocytes. However, patients with sAH have dysfunctional NK cells, which cannot kill target cells, though the mechanism is unknown. Method We performed an exploratory study using single-cell RNA-seq (scRNA-seq) (n = 4) and multi-panel intracellular flow cytometry (n = 7-8 for all patient groups) on PBMCs isolated from patients with sAH and healthy controls (HC). Results ScRNA-seq revealed receptors in NK cells and CD8 T cells required for cytotoxic cell recognition of activated monocytes were downregulated in patients with sAH compared to healthy controls. Granulysin was the most downregulated gene in both NK cells and effector CD8 T cells. In NK cells from HC, expression of granulysin, perforin, and granzymes A and B was highly correlated; however, in sAH, these genes lost coordinate expression, indicative of dysfunctional cytolytic granule formation. Finally, the expression of cytolytic granule proteins in NK cells was decreased from sAH, indicating reduced cytolytic granules. Conclusion Together, these results suggest a loss of cytotoxic cell function in PBMCs from sAH that may contribute to a decreased ability to communicate with other immune cells, such as monocytes, and prevent the killing of infected cells, thus increasing the risk of infection.
Collapse
Affiliation(s)
- Adam Kim
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina K Cajigas-Du Ross
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Annette Bellar
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David Streem
- Lutheran Hospital, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nicole Welch
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Srinivasan Dasarathy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Osna NA, Rasineni K, Ganesan M, Donohue TM, Kharbanda KK. Pathogenesis of Alcohol-Associated Liver Disease. J Clin Exp Hepatol 2022; 12:1492-1513. [PMID: 36340300 PMCID: PMC9630031 DOI: 10.1016/j.jceh.2022.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
Collapse
Key Words
- AA, Arachidonic acid
- ADH, Alcohol dehydrogenase
- AH, Alcoholic hepatitis
- ALD, Alcohol-associated liver disease
- ALDH, Aldehyde dehydrogenase
- ALT, Alanine transaminase
- ASH, Alcohol-associated steatohepatitis
- AST, Aspartate transaminase
- AUD, Alcohol use disorder
- BHMT, Betaine-homocysteine-methyltransferase
- CD, Cluster of differentiation
- COX, Cycloxygenase
- CTLs, Cytotoxic T-lymphocytes
- CYP, Cytochrome P450
- CYP2E1, Cytochrome P450 2E1
- Cu/Zn SOD, Copper/zinc superoxide dismutase
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cells
- EDN1, Endothelin 1
- ER, Endoplasmic reticulum
- ETOH, Ethanol
- EVs, Extracellular vesicles
- FABP4, Fatty acid-binding protein 4
- FAF2, Fas-associated factor family member 2
- FMT, Fecal microbiota transplant
- Fn14, Fibroblast growth factor-inducible 14
- GHS-R1a, Growth hormone secretagogue receptor type 1a
- GI, GOsteopontinastrointestinal tract
- GSH Px, Glutathione peroxidase
- GSSG Rdx, Glutathione reductase
- GST, Glutathione-S-transferase
- GWAS, Genome-wide association studies
- H2O2, Hydrogen peroxide
- HA, Hyaluronan
- HCC, Hepatocellular carcinoma
- HNE, 4-hydroxynonenal
- HPMA, 3-hydroxypropylmercapturic acid
- HSC, Hepatic stellate cells
- HSD17B13, 17 beta hydroxy steroid dehydrogenase 13
- HSP 90, Heat shock protein 90
- IFN, Interferon
- IL, Interleukin
- IRF3, Interferon regulatory factor 3
- JAK, Janus kinase
- KC, Kupffer cells
- LCN2, Lipocalin 2
- M-D, Mallory–Denk
- MAA, Malondialdehyde-acetaldehyde protein adducts
- MAT, Methionine adenosyltransferase
- MCP, Macrophage chemotactic protein
- MDA, Malondialdehyde
- MIF, Macrophage migration inhibitory factor
- Mn SOD, Manganese superoxide dismutase
- Mt, Mitochondrial
- NK, Natural killer
- NKT, Natural killer T-lymphocytes
- OPN, Osteopontin
- PAMP, Pathogen-associated molecular patterns
- PNPLA3, Patatin-like phospholipase domain containing 3
- PUFA, Polyunsaturated fatty acid
- RIG1, Retinoic acid inducible gene 1
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SCD, Stearoyl-CoA desaturase
- STAT, Signal transduction and activator of transcription
- TIMP1, Tissue inhibitor matrix metalloproteinase 1
- TLR, Toll-like receptor
- TNF, Tumor necrosis factor-α
- alcohol
- alcohol-associated liver disease
- ethanol metabolism
- liver
- miRNA, MicroRNA
- p90RSK, 90 kDa ribosomal S6 kinase
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
11
|
Zhao F, Barber CJ, Sammani S, Wan L, Miller BW, Furenlid LR, Li Z, Gotur DB, Barrios R, Woolfenden JM, Martin DR, Liu Z. Use of radiolabeled hyaluronic acid for preclinical assessment of inflammatory injury and acute respiratory distress syndrome. Nucl Med Biol 2022; 114-115:86-98. [PMID: 36270074 PMCID: PMC9562607 DOI: 10.1016/j.nucmedbio.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 12/27/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is accompanied by a dramatic increase in lung hyaluronic acid (HA), leading to a dose-dependent reduction of pulmonary oxygenation. This pattern is associated with severe infections, such as COVID-19, and other important lung injury etiologies. HA actively participates in molecular pathways involved in the cytokine storm of COVID-19-induced ARDS. The objective of this study was to evaluate an imaging approach of radiolabeled HA for assessment of dysregulated HA deposition in mouse models with skin inflammation and lipopolysaccharide (LPS)-induced ARDS using a novel portable intensified Quantum Imaging Detector (iQID) gamma camera system. METHODS HA of 10 kDa molecular weight (HA10) was radiolabeled with 125I and 99mTc respectively to produce [125I]I-HA10 and [99mTc]Tc-HA10, followed by comparative studies on stability, in vivo biodistribution, and uptake at inflammatory skin sites in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA)-inflamed ears. [99mTc]Tc-HA10 was used for iQID in vivo dynamic imaging of mice with ARDS induced by intratracheal instillation of LPS. RESULTS [99mTc]Tc-HA10 and [125I]I-HA10 had similar biodistribution and localization at inflammatory sites. [99mTc]Tc-HA10 was shown to be feasible in measuring skin injury and monitoring skin wound healing. [99mTc]Tc-HA10 dynamic pulmonary images yielded good visualization of radioactive uptake in the lungs. There was significantly increased lung uptake and slower lung washout in mice with LPS-induced ARDS than in control mice. Postmortem biodistribution measurement of [99mTc]TcHA10 (%ID/g) was 11.0 ± 3.9 vs. 1.3 ± 0.3 in the ARDS mice (n = 6) and controls (n = 6) (P < 0.001), consistent with upregulated HA expression as determined by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) staining. CONCLUSIONS [99mTc]Tc-HA10 is promising as a biomarker for evaluating HA dysregulation that contributes to pulmonary injury in ARDS. Rapid iQID imaging of [99mTc]Tc-HA10 clearance from injured lungs may provide a functional template for timely assessment and quantitative monitoring of pulmonary pathophysiology and intervention in ARDS.
Collapse
Affiliation(s)
- Fangyuan Zhao
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America; Food Science and Engineering College, Qingdao Agricultural University, China
| | - Christy J Barber
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| | - Saad Sammani
- Department of Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Li Wan
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| | - Brian W Miller
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America; College of Optical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Lars R Furenlid
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America; College of Optical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Zheng Li
- Department of Radiology, Houston Methodist Hospital, Houston, TX, United States of America
| | - Deepa B Gotur
- Department of Medicine, Houston Methodist Hospital, Houston, TX, United States of America
| | - Roberto Barrios
- Department of Pathology, Houston Methodist Hospital, Houston, TX, United States of America
| | - James M Woolfenden
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| | - Diego R Martin
- Department of Radiology, Houston Methodist Hospital, Houston, TX, United States of America
| | - Zhonglin Liu
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America; Department of Radiology, Houston Methodist Hospital, Houston, TX, United States of America.
| |
Collapse
|
12
|
Habash NW, Sehrawat TS, Shah VH, Cao S. Epigenetics of alcohol-related liver diseases. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100466. [PMID: 35462859 PMCID: PMC9018389 DOI: 10.1016/j.jhepr.2022.100466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Alcohol-related liver disease (ARLD) is a primary cause of chronic liver disease in the United States. Despite advances in the diagnosis and management of ARLD, it remains a major public health problem associated with significant morbidity and mortality, emphasising the need to adopt novel approaches to the study of ARLD and its complications. Epigenetic changes are increasingly being recognised as contributing to the pathogenesis of multiple disease states. Harnessing the power of innovative technologies for the study of epigenetics (e.g., next-generation sequencing, DNA methylation assays, histone modification profiling and computational techniques like machine learning) has resulted in a seismic shift in our understanding of the pathophysiology of ARLD. Knowledge of these techniques and advances is of paramount importance for the practicing hepatologist and researchers alike. Accordingly, in this review article we will summarise the current knowledge about alcohol-induced epigenetic alterations in the context of ARLD, including but not limited to, DNA hyper/hypo methylation, histone modifications, changes in non-coding RNA, 3D chromatin architecture and enhancer-promoter interactions. Additionally, we will discuss the state-of-the-art techniques used in the study of ARLD (e.g. single-cell sequencing). We will also highlight the epigenetic regulation of chemokines and their proinflammatory role in the context of ARLD. Lastly, we will examine the clinical applications of epigenetics in the diagnosis and management of ARLD.
Collapse
Key Words
- 3C, chromosome conformation capture
- 4C, chromosome conformation capture-on-chip
- AH, alcohol-related hepatitis
- ARLD, alcohol-related liver disease
- ASH, alcohol-related steatohepatitis
- ATAC, assay for transposase-accessible chromatin
- Acetylation
- Alcohol liver disease
- BET, bromodomain and extraterminal motif
- BETi, BET inhibitor
- BRD, bromodomain
- CCL2, C-C motif chemokine ligand 2
- CTCF, CCCTC-binding factor
- CXCL, C-X-C motif chemokine ligand
- Chromatin architecture
- Computational biology
- DNA methylation
- DNMT, DNA methyltransferase
- E-P, enhancer-promoter
- Epidrugs
- Epigenetics
- FKBP5, FK506-binding protein 5
- HCC, hepatocellular carcinoma
- HDAC, histone deacetylase
- HIF1α, hypoxia inducible factor-1α
- HMGB1, high-mobility group box protein 1
- HNF4α, hepatocyte nuclear factor 4α
- HSC, hepatic stellate cell
- Hi-C, chromosome capture followed by high-throughput sequencing
- Histones
- IL, interleukin
- LPS, lipopolysaccharide
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MECP2, methyl-CpG binding protein 2
- NAFLD, non-alcohol-related fatty liver disease
- PPARG, peroxisome proliferator activated receptor-γ
- SAA, salvianolic acid A
- SIRT, sirtuin
- SREBPs, sterol regulatory element-binding proteins
- Single cell epigenome
- TAD, topologically associating domain
- TEAD, TEA domain transcription factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- YAP, Yes-associated protein
- lncRNA, long non-coding RNA
- miRNA, microRNA
Collapse
Affiliation(s)
| | | | - Vijay H. Shah
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| | - Sheng Cao
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| |
Collapse
|
13
|
Chen L, Zhu Y, Hou X, Yang L, Chu H. The Role of Gut Bacteria and Fungi in Alcohol-Associated Liver Disease. Front Med (Lausanne) 2022; 9:840752. [PMID: 35308525 PMCID: PMC8927088 DOI: 10.3389/fmed.2022.840752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Cirrhosis and liver cancer caused by alcohol-associated liver disease (ALD) are serious threats to people's health. In addition to hepatic cell apoptosis and liver inflammation caused by oxidative stress during alcohol metabolism, intestinal microbiota disorders are also involved in the onset and development of ALD. Ethanol and its' oxidative and non-oxidative metabolites, together with dysbiosis-caused-inflammation, destroys the intestinal barrier. Changes of several microbial metabolites, such as bile acids, short-chain fatty acids, and amino acid, are closely associated with gut dysbiosis in ALD. The alcohol-caused dysbiosis can further influence intestinal barrier-related proteins, such as mucin2, bile acid-related receptors, and aryl hydrocarbon receptor (AhR), and these abnormal changes also participate in the injury of the intestinal barrier and hepatic steatosis. Gut-derived bacteria, fungi, and their toxins, such as lipopolysaccharide (LPS) and β-glucan translocate into the liver through the damaged intestinal barrier and promote the progression of inflammation and fibrosis of ALD. Thus, the prevention of alcohol-induced disruption of intestinal permeability has a beneficial effect on ALD. Currently, multiple therapeutic treatments have been applied to restore the gut microbiota of patients with ALD. Fecal microbial transplantation, probiotics, antibiotics, and many other elements has already shown their ability of restoring the gut microbiota. Targeted approaches, such as using bacteriophages to remove cytolytic Enterococcus faecalis, and supplement with Lactobacillus, Bifidobacterium, or boulardii are also powerful therapeutic options for ALD.
Collapse
Affiliation(s)
- Liuying Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixin Zhu
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Xiaohua Hou
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ling Yang
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Huikuan Chu
| |
Collapse
|
14
|
He J, Liu MW, Wang ZY, Shi RJ. Protective effects of the notoginsenoside R1 on acute lung injury by regulating the miR-128-2-5p/Tollip signaling pathway in rats with severe acute pancreatitis. Innate Immun 2022; 28:19-36. [PMID: 35142579 PMCID: PMC8841636 DOI: 10.1177/17534259211068744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Notoginsenoside R1 (NG-R1), the extract and the main ingredient of Panax notoginseng, has anti-inflammatory effects and can be used in treating acute lung injury (ALI). In this study, we explored the pulmonary protective effect and the underlying mechanism of the NG-R1 on rats with ALI induced by severe acute pancreatitis (SAP). MiR-128-2-5p, ERK1, Tollip, HMGB1, TLR4, IκB, and NF-κB mRNA expression levels were measured using real-time qPCR, and TLR4, Tollip, HMGB1, IRAK1, MyD88, ERK1, NF-κB65, and P-IκB-α protein expression levels using Western blot. The NF-κB and the TLR4 activities were determined using immunohistochemistry, and TNF-α, IL-6, IL-1β, and ICAM-1 levels in the bronchoalveolar lavage fluid (BALF) using ELISA. Lung histopathological changes were observed in each group. NG-R1 treatment reduced miR-128-2-5p expression in the lung tissue, increased Tollip expression, inhibited HMGB1, TLR4, TRAF6, IRAK1, MyD88, NF-κB65, and p-IκB-α expression levels, suppressed NF-κB65 and the TLR4 expression levels, reduced MPO activity, reduced TNF-α, IL-1β, IL-6, and ICAM-1 levels in BALF, and alleviated SAP-induced ALI. NG-R1 can attenuate SAP-induced ALI. The mechanism of action may be due to a decreased expression of miR-128-2-5p, increased activity of the Tollip signaling pathway, decreased activity of HMGB1/TLR4 and ERK1 signaling pathways, and decreased inflammatory response to SAP-induced ALI. Tollip was the regulatory target of miR-128-2-5p.
Collapse
Affiliation(s)
- Ju He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Dali University, Dali City, China
| | - Ming-Wei Liu
- Department of Emergency, 36657The First Hospital Affiliated of Kunming Medical University, Kunming, China
| | - Zhi-Yi Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Dali University, Dali City, China
| | - Rong-Jie Shi
- Department of Gastroenterology, First Affiliated Hospital of Dali University, Dali City, China
| |
Collapse
|
15
|
Malherbe DC, Messaoudi I. Transcriptional and Epigenetic Regulation of Monocyte and Macrophage Dysfunction by Chronic Alcohol Consumption. Front Immunol 2022; 13:911951. [PMID: 35844518 PMCID: PMC9277054 DOI: 10.3389/fimmu.2022.911951] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Drinking alcohol, even in moderation, can affect the immune system. Studies have shown disproportionate effects of alcohol on circulating and tissue-resident myeloid cells (granulocytes, monocytes, macrophages, dendritic cells). These cells orchestrate the body's first line of defense against microbial challenges as well as maintain tissue homeostasis and repair. Alcohol's effects on these cells are dependent on exposure pattern, with acute drinking dampening but chronic drinking enhancing production of inflammatory mediators. Although chronic drinking is associated with heightened systemic inflammation, studies on tissue resident macrophage populations in several organs including the spleen, liver, brain, and lung have also shown compromised functional and metabolic capacities of these cells. Many of these effects are thought to be mediated by oxidative stress caused by alcohol and its metabolites which can directly impact the cellular epigenetic landscapes. In addition, since myeloid cells are relatively short-lived in circulation and are under constant repopulation from the bone marrow compartment, alcohol's effects on bone marrow progenitors and hematopoiesis are important for understanding the impact of alcohol systemically on these myeloid populations. Alcohol-induced disruption of progenitor, circulating, and tissue resident myeloid populations contribute to the increased susceptibility of patients with alcohol use disorders to viral and bacterial infections. In this review, we provide an overview of the impact of chronic alcohol consumption on the function of monocytes and macrophages in host defense, tissue repair and inflammation. We then summarize our current understanding of the mechanisms underlying alcohol-induced disruption and examine changes in transcriptome and epigenome of monocytes and mcrophages. Overall, chronic alcohol consumption leads to hyper-inflammation concomitant with decreased microbial and wound healing responses by monocytes/macrophages due to a rewiring of the epigentic and transcriptional landscape. However, in advanced alcoholic liver disease, myeloid cells become immunosuppressed as a response to the surrounding hyper-inflammatory milieu. Therefore, the effect of chronic alcohol on the inflammatory response depends on disease state and the immune cell population.
Collapse
|
16
|
Bardhi E, McDaniels J, Rousselle T, Maluf DG, Mas VR. Nucleic acid biomarkers to assess graft injury after liver transplantation. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100439. [PMID: 35243279 PMCID: PMC8856989 DOI: 10.1016/j.jhepr.2022.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Many risk factors and complications impact the success of liver transplantation, such as ischaemia-reperfusion injury, acute rejection, and primary graft dysfunction. Molecular biomarkers have the potential to accurately diagnose, predict, and monitor injury progression or organ failure. There is a critical opportunity for reliable and non-invasive biomarkers to reduce the organ shortage by enabling i) the assessment of donor organ quality, ii) the monitoring of short- and long-term graft function, and iii) the prediction of acute and chronic disease development. To date, no established molecular biomarkers have been used to guide clinical decision-making in transplantation. In this review, we outline the recent advances in cell-free nucleic acid biomarkers for monitoring graft injury in liver transplant recipients. Prior work in this area can be divided into two categories: biomarker discovery and validation studies. Circulating nucleic acids (CNAs) can be found in the extracellular environment pertaining to different biological fluids such as bile, blood, urine, and perfusate. CNAs that are packaged into extracellular vesicles may facilitate intercellular and interorgan communication. Thus, decoding their biological function, cellular origins and molecular composition is imperative for diagnosing causes of graft injury, guiding immunosuppression and improving overall patient survival. Herein, we discuss the most promising molecular biomarkers, their state of development, and the critical aspects of study design in biomarker research for early detection of post-transplant liver injury. Future advances in biomarker studies are expected to personalise post-transplant therapy, leading to improved patient care and outcomes.
Collapse
|
17
|
Li X, Goobie GC, Gregory AD, Kass DJ, Zhang Y. Toll-Interacting Protein in Pulmonary Diseases. Abiding by the Goldilocks Principle. Am J Respir Cell Mol Biol 2021; 64:536-546. [PMID: 33233920 PMCID: PMC8086045 DOI: 10.1165/rcmb.2020-0470tr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TOLLIP (Toll-interacting protein) is an intracellular adaptor protein with diverse actions throughout the body. In a context- and cell type–specific manner, TOLLIP can function as an inhibitor of inflammation and endoplasmic-reticulum stress, an activator of autophagy, or a critical regulator of intracellular vacuole trafficking. The distinct functions of this protein have been linked to innate immune responses and lung epithelial-cell apoptosis. TOLLIP genetic variants have been associated with a variety of chronic lung diseases, including idiopathic pulmonary fibrosis, asthma, and primary graft dysfunction after lung transplantation, and with infections, such as tuberculosis, Legionella pneumonia, and respiratory viruses. TOLLIP exists in a delicate homeostatic balance, with both positive and negative effects on the trajectory of pulmonary diseases. This translational review summarizes the genetic and molecular associations that link TOLLIP to the development and progression of noninfectious and infectious pulmonary diseases. We highlight current limitations of in vitro and in vivo models in assessing the role of TOLLIP in these conditions, and we describe future approaches that will enable a more nuanced exploration of the role of TOLLIP in pulmonary conditions. There has been a surge in recent research evaluating the role of this protein in human diseases, but critical mechanistic pathways require further exploration. By understanding its biologic functions in disease-specific contexts, we will be able to determine whether TOLLIP can be therapeutically modulated to treat pulmonary diseases.
Collapse
Affiliation(s)
- Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Gillian C Goobie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Clinician Investigator Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alyssa D Gregory
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
18
|
Chaaban H, Burge K, Eckert J, Trammell M, Dyer D, Keshari RS, Silasi R, Regmi G, Lupu C, Good M, McElroy SJ, Lupu F. Acceleration of Small Intestine Development and Remodeling of the Microbiome Following Hyaluronan 35 kDa Treatment in Neonatal Mice. Nutrients 2021; 13:2030. [PMID: 34204790 PMCID: PMC8231646 DOI: 10.3390/nu13062030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
The beneficial effects of human milk suppressing the development of intestinal pathologies such as necrotizing enterocolitis in preterm infants are widely known. Human milk (HM) is rich in a multitude of bioactive factors that play major roles in promoting postnatal maturation, differentiation, and the development of the microbiome. Previous studies showed that HM is rich in hyaluronan (HA) especially in colostrum and early milk. This study aims to determine the role of HA 35 KDa, a HM HA mimic, on intestinal proliferation, differentiation, and the development of the intestinal microbiome. We show that oral HA 35 KDa supplementation for 7 days in mouse pups leads to increased villus length and crypt depth, and increased goblet and Paneth cells, compared to controls. We also show that HA 35 KDa leads to an increased predominance of Clostridiales Ruminococcaceae, Lactobacillales Lactobacillaceae, and Clostridiales Lachnospiraceae. In seeking the mechanisms involved in the changes, bulk RNA seq was performed on samples from the terminal ileum and identified upregulation in several genes essential for cellular growth, proliferation, and survival. Taken together, this study shows that HA 35 KDa supplemented to mouse pups promotes intestinal epithelial cell proliferation, as well as the development of Paneth cells and goblet cell subsets. HA 35 KDa also impacted the intestinal microbiota; the implications of these responses need to be determined.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - David Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - Ravi S. Keshari
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Girija Regmi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Steven J. McElroy
- Department of Microbiology and Immunology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA;
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| |
Collapse
|
19
|
Liu SY, Tsai IT, Hsu YC. Alcohol-Related Liver Disease: Basic Mechanisms and Clinical Perspectives. Int J Mol Sci 2021; 22:5170. [PMID: 34068269 PMCID: PMC8153142 DOI: 10.3390/ijms22105170] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-related liver disease (ALD) refers to the liver damage occurring due to excessive alcohol consumption and involves a broad spectrum of diseases that includes liver steatosis, steatohepatitis, hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The progression of ALD is mainly associated with the amount and duration of alcohol usage; however, it is also influenced by genetic, epigenetic, and environmental factors. The definite diagnosis of ALD is based on a liver biopsy, although several non-invasive diagnostic tools and serum biomarkers have emerging roles in the early detection of ALD. While alcohol abstinence and nutritional support remain the cornerstone of ALD treatment, growing evidence has revealed that the therapeutic agents that target oxidative stress or gut-liver axis, inflammatory response inhibition, and liver regeneration enhancement also play a role in ALD management. Furthermore, microRNAs modulation and mesenchymal stem cell-based therapy have emerging potential as ALD therapeutic options. This review summarizes the updated understanding of the pathophysiology, diagnosis, and novel therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Szu-Yi Liu
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-Y.L.); (I.-T.T.)
| | - I-Ting Tsai
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-Y.L.); (I.-T.T.)
- School of Medicine for International Student, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yin-Chou Hsu
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-Y.L.); (I.-T.T.)
- School of Medicine for International Student, I-Shou University, Kaohsiung 82445, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
20
|
Stenson WF, Ciorba MA. Nonmicrobial Activation of TLRs Controls Intestinal Growth, Wound Repair, and Radioprotection. Front Immunol 2021; 11:617510. [PMID: 33552081 PMCID: PMC7859088 DOI: 10.3389/fimmu.2020.617510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
TLRs, key components of the innate immune system, recognize microbial molecules. However, TLRs also recognize some nonmicrobial molecules. In particular, TLR2 and TLR4 recognize hyaluronic acid, a glycosaminoglycan in the extracellular matrix. In neonatal mice endogenous hyaluronic acid binding to TLR4 drives normal intestinal growth. Hyaluronic acid binding to TLR4 in pericryptal macrophages results in cyclooxygenase2- dependent PGE2 production, which transactivates EGFR in LGR5+ crypt epithelial stem cells leading to increased proliferation. The expanded population of LGR5+ stem cells leads to crypt fission and lengthening of the intestine and colon. Blocking this pathway at any point (TLR4 activation, PGE2 production, EGFR transactivation) results in diminished intestinal and colonic growth. A similar pathway leads to epithelial proliferation in wound repair. The repair phase of dextran sodium sulfate colitis is marked by increased epithelial proliferation. In this model, TLR2 and TLR4 in pericryptal macrophages are activated by microbial products or by host hyaluronic acid, resulting in production of CXCL12, a chemokine. CXCL12 induces the migration of cyclooxygenase2-expressing mesenchymal stem cells from the lamina propria of the upper colonic crypts to a site adjacent to LGR5+ epithelial stem cells. PGE2 released by these mesenchymal stem cells transactivates EGFR in LGR5+ epithelial stem cells leading to increased proliferation. Several TLR2 and TLR4 agonists, including hyaluronic acid, are radioprotective in the intestine through the inhibition of radiation-induced apoptosis in LGR5+ epithelial stem cells. Administration of exogenous TLR2 or TLR4 agonists activates TLR2/TLR4 on pericryptal macrophages inducing CXCL12 production with migration of cyclooxygenase2-expressing mesenchymal stem cells from the lamina propria of the villi to a site adjacent to LGR5+ epithelial stem cells. PGE2 produced by these mesenchymal stem cells, blocks radiation-induced apoptosis in LGR5+ epithelial stem cells by an EGFR mediated pathway.
Collapse
Affiliation(s)
- William F. Stenson
- Division of Gastroenterology, Washington University School of Medicine, St Louis, MO, United States
| | | |
Collapse
|
21
|
Yang Y, Han C, Sheng Y, Wang J, Zhou X, Li W, Guo L, Ruan S. The Mechanism of Aureusidin in Suppressing Inflammatory Response in Acute Liver Injury by Regulating MD2. Front Pharmacol 2020; 11:570776. [PMID: 33192512 PMCID: PMC7655772 DOI: 10.3389/fphar.2020.570776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
Objective In this study, we mainly explored the mechanism and target of the anti-inflammatory effects of Aureusidin (Aur) in acute liver injury. Methods Lipopolysaccharide (LPS) was used to induce inflammatory injury in Kupffer cells (KCs) in vitro. After Aur treatment with gradient concentration, flow cytometry, propidium iodide (PI) staining, and Hoechst 33342 staining were used to detect the apoptotic level of KCs, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of inflammatory factors, including Interleukin-1β (IL-1β), Interleukin-18 (IL-18), and tumor necrosis factor alpha (TNF-α). Western blot was used to detect the expression of toll-like receptor 4 (TLR4), myeloid differentiation protein-2 (MD2), MyD88, and p-P65. Aur was labeled with biotin, followed by a pull-down assay to detect its binding with MD2. Moreover, D-GalN/LPS was used to induce acute liver injury in mice in vitro, followed by Aur treatment by gavage. H&E staining was used to detect the pathological changes of liver tissue, an IF assay was used to detect the expression of MD2, Western blot was used to detect the expression of relevant proteins. Results Aur pretreatment could significantly inhibit LPS-induced KC injury, downregulate the apoptotic level, inhibit the expression of inflammatory factors, decrease the level of MDA, and downregulate the expression of MD2 in cells. Aur could inhibit the activation level of TLR4/MD2-NF-κB in a dose-dependent pattern, a high dose of Aur had a superior effect compared to low-dose Aur. In the case of MD2 deletion, the effects of Aur were suppressed. Additionally, pull-down and co-immunoprecipitation assays show that Aur can bind with the MD2 protein to inhibit the activation of TLR4/MD2-NF-κB. Results of mice experiments also showed that Aur could relieve liver injury, decrease the levels of ALT and AST, and simultaneously downregulate the levels of inflammatory factors in tissues and peripheral blood. Conclusion We found that Aur exerted an anti-inflammatory effect by directly targeting the MD2 protein, further inhibiting the expression of TLR4/MD2-NF-κB, thereby relieving acute liver injury. Therefore, Aur might be a potential inhibitor for MD2.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenyang Han
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yongjia Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaohong Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenyan Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Li Guo
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shuiliang Ruan
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
22
|
Kim A, Bellar A, McMullen MR, Li X, Nagy LE. Functionally Diverse Inflammatory Responses in Peripheral and Liver Monocytes in Alcohol-Associated Hepatitis. Hepatol Commun 2020; 4:1459-1476. [PMID: 33024916 PMCID: PMC7527760 DOI: 10.1002/hep4.1563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Alcohol-associated hepatitis (AH) is an acute inflammatory disease in which gut-microbial byproducts enter circulation and peripheral immune cells infiltrate the liver, leading to nonresolving inflammation and injury. Single-cell RNA sequencing of peripheral blood mononuclear cells isolated from patients with AH and healthy controls paired with lipopolysaccharide (LPS) challenge revealed how diverse monocyte responses are divided among individual cells and change in disease. After LPS challenge, one monocyte subtype expressed pro-inflammatory genes in both disease and healthy controls, while another monocyte subtype was anti-inflammatory in healthy controls but switched to pro-inflammatory in AH. Numerous immune genes are clustered within genomic cassettes, including chemokines and C-type lectin receptors (CTRs). CTRs sense byproducts of diverse microbial and host origin. Single-cell data revealed correlated expression of genes within cassettes, thus further diversifying different monocyte responses to individual cells. Monocyte up-regulation of CTRs in response to LPS caused hypersensitivity to diverse microbial and host-derived byproducts, indicating a secondary immune surveillance pathway up-regulated in a subset of cells by a closely associated genomic cassette. Finally, expression of CTR genes was higher in livers of patients with severe AH, but not other chronic liver diseases, implicating secondary immune surveillance in nonresolving inflammation in severe AH.
Collapse
Affiliation(s)
- Adam Kim
- Northern Ohio Alcohol CenterCenter for Liver Disease ResearchDepartment of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOH
| | - Annette Bellar
- Northern Ohio Alcohol CenterCenter for Liver Disease ResearchDepartment of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOH
| | - Megan R. McMullen
- Northern Ohio Alcohol CenterCenter for Liver Disease ResearchDepartment of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOH
| | - Xiaoxia Li
- Northern Ohio Alcohol CenterCenter for Liver Disease ResearchDepartment of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOH
| | - Laura E. Nagy
- Northern Ohio Alcohol CenterCenter for Liver Disease ResearchDepartment of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOH
| |
Collapse
|
23
|
Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020; 73:933-951. [PMID: 32371195 PMCID: PMC7502511 DOI: 10.1016/j.jhep.2020.04.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Gunasekaran A, Eckert J, Burge K, Zheng W, Yu Z, Kessler S, de la Motte C, Chaaban H. Hyaluronan 35 kDa enhances epithelial barrier function and protects against the development of murine necrotizing enterocolitis. Pediatr Res 2020; 87:1177-1184. [PMID: 31499514 PMCID: PMC7061074 DOI: 10.1038/s41390-019-0563-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Disruption of tight junctions (TJs) predisposes to bacterial translocation, intestinal inflammation, and necrotizing enterocolitis (NEC). Previously, studies showed that hyaluronan (HA), a glycosaminoglycan in human milk, maintains intestinal permeability, enhances intestinal immunity, and reduces intestinal infections. In this study, we investigated the effects of HA 35 kDa on a NEC-like murine model. METHODS Pups were divided into Sham, NEC, NEC+HA 35, and HA 35. Severity of intestinal injury was compared using a modified macroscopic gut scoring and histologic injury grading. The effect of HA 35 on intestinal permeability was determined by measuring FITC dextran and bacterial translocation. RNA and protein expression of TJ proteins (claudin-2, -3, -4, occludin, and ZO-1) were compared between the groups. RESULTS Pups in the NEC+HA 35 group had increased survival and lower intestinal injury compared to untreated NEC. In addition, HA 35 reduced intestinal permeability, bacterial translocation, and proinflammatory cytokine release. Ileal expression of claudin-2, -3, -4, occludin, and ZO-1 was upregulated in NEC+HA 35 and HA 35 compared to untreated NEC and shams. CONCLUSION These findings suggest that HA 35 protects against NEC partly by upregulating intestinal TJs and enhancing intestinal barrier function.
Collapse
Affiliation(s)
- Aarthi Gunasekaran
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jeffrey Eckert
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kathryn Burge
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wei Zheng
- Department of GI/Liver Pathology, UCLA, Los Angeles, California
| | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sean Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Carol de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland, Ohio
| | - Hala Chaaban
- Department of Neonatal and Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
25
|
Kim Y, de la Motte CA. The Role of Hyaluronan Treatment in Intestinal Innate Host Defense. Front Immunol 2020; 11:569. [PMID: 32411124 PMCID: PMC7201044 DOI: 10.3389/fimmu.2020.00569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Hyaluronan (HA) is best known as an abundantly present extracellular matrix component found throughout the body of all vertebrates, including humans. Recent evidence, however, has demonstrated benefits of providing HA exogenously as a therapeutic modality for several medical conditions. Here we discuss the effects of providing HA treatment to increase innate host defense of the intestine, elucidate the size specific effects of HA, and discuss the role of various HA receptors as potential mediators of the HA effects in the intestine. This review especially focuses on HA interaction with the epithelium because it is the primary cellular barrier of the intestine and these cells play a critical balancing role between allowing water and nutrient absorption while excluding microbes and harmful dietary metabolites that are constantly in that organ's environment.
Collapse
Affiliation(s)
- Yeojung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Carol A de la Motte
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
26
|
Neuman MG, Seitz HK, French SW, Malnick S, Tsukamoto H, Cohen LB, Hoffman P, Tabakoff B, Fasullo M, Nagy LE, Tuma PL, Schnabl B, Mueller S, Groebner JL, Barbara FA, Yue J, Nikko A, Alejandro M, Brittany T, Edward V, Harrall K, Saba L, Mihai O. Alcoholic-Hepatitis, Links to Brain and Microbiome: Mechanisms, Clinical and Experimental Research. Biomedicines 2020; 8:E63. [PMID: 32197424 PMCID: PMC7148515 DOI: 10.3390/biomedicines8030063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) leading to fibrosis and cirrhosis, and hepatocellular cancer (HCC). ALD is fully attributable to alcohol consumption. However, only 10-20% of heavy drinkers (persons consuming more than 40 g of ethanol/day) develop clinical ALD. Moreover, there is a link between behaviour and environmental factors that determine the amount of alcohol misuse and their liver disease. The range of clinical presentation varies from reversible alcoholic hepatic steatosis to cirrhosis, hepatic failure, and hepatocellular carcinoma. We aimed to (1) describe the clinico-pathology of ALD, (2) examine the role of immune responses in the development of alcoholic hepatitis (ASH), (3) propose diagnostic markers of ASH, (4) analyze the experimental models of ALD, (5) study the role of alcohol in changing the microbiota, and (6) articulate how findings in the liver and/or intestine influence the brain (and/or vice versa) on ASH; (7) identify pathways in alcohol-induced organ damage and (8) to target new innovative experimental concepts modeling the experimental approaches. The present review includes evidence recognizing the key toxic role of alcohol in ALD severity. Cytochrome p450 CYP2E1 activation may change the severity of ASH. The microbiota is a key element in immune responses, being an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. Alcohol consumption changes the intestinal microbiota and influences liver steatosis and liver inflammation. Knowing how to exploit the microbiome to modulate the immune system might lead to a new form of personalized medicine in ALF and ASH.
Collapse
Affiliation(s)
- Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Helmut Karl Seitz
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Stephen Malnick
- Department Internal Medicine C, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Heidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-5311, USA;
- Department of Veterans; Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Lawrence B. Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - Paula Hoffman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Michael Fasullo
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12205, USA;
| | - Laura E. Nagy
- Departments of Pathobiology and Gastroenterology, Center for Liver Disease Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Pamela L. Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Sebastian Mueller
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Jennifer L. Groebner
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - French A. Barbara
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Jia Yue
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Afifiyan Nikko
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Mendoza Alejandro
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Tillman Brittany
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Vitocruz Edward
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Kylie Harrall
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Laura Saba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Opris Mihai
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department Family Medicine Clinic CAR, 010164 Bucharest, Romania
| |
Collapse
|
27
|
Chen D, Le TH, Shahidipour H, Read SA, Ahlenstiel G. The Role of Gut-Derived Microbial Antigens on Liver Fibrosis Initiation and Progression. Cells 2019; 8:E1324. [PMID: 31717860 PMCID: PMC6912265 DOI: 10.3390/cells8111324] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal dysbiosis has recently become known as an important driver of gastrointestinal and liver disease. It remains poorly understood, however, how gastrointestinal microbes bypass the intestinal mucosa and enter systemic circulation to enact an inflammatory immune response. In the context of chronic liver disease (CLD), insults that drive hepatic inflammation and fibrogenesis (alcohol, fat) can drastically increase intestinal permeability, hence flooding the liver with gut-derived microbiota. Consequently, this may result in exacerbated liver inflammation and fibrosis through activation of liver-resident Kupffer and stellate cells by bacterial, viral, and fungal antigens transported to the liver via the portal vein. This review summarizes the current understanding of microbial translocation in CLD, the cell-specific hepatic response to intestinal antigens, and how this drives the development and progression of hepatic inflammation and fibrosis. Further, we reviewed current and future therapies targeting intestinal permeability and the associated, potentially harmful anti-microbial immune response with respect to their potential in terms of limiting the development and progression of liver fibrosis and end-stage cirrhosis.
Collapse
Affiliation(s)
- Dishen Chen
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
| | - Thanh H. Le
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- School of Medicine, Western Sydney University, Campbelltown 2560, NSW, Australia
| | - Haleh Shahidipour
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
| | - Scott A. Read
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
- Blacktown Hospital, Blacktown 2148, NSW, Australia
| |
Collapse
|
28
|
Klieser E, Mayr C, Kiesslich T, Wissniowski T, Fazio PD, Neureiter D, Ocker M. The Crosstalk of miRNA and Oxidative Stress in the Liver: From Physiology to Pathology and Clinical Implications. Int J Mol Sci 2019; 20:5266. [PMID: 31652839 PMCID: PMC6862076 DOI: 10.3390/ijms20215266] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is the central metabolic organ of mammals. In humans, most diseases of the liver are primarily caused by an unhealthy lifestyle-high fat diet, drug and alcohol consumption- or due to infections and exposure to toxic substances like aflatoxin or other environmental factors. All these noxae cause changes in the metabolism of functional cells in the liver. In this literature review we focus on the changes at the miRNA level, the formation and impact of reactive oxygen species and the crosstalk between those factors. Both, miRNAs and oxidative stress are involved in the multifactorial development and progression of acute and chronic liver diseases, as well as in viral hepatitis and carcinogenesis, by influencing numerous signaling and metabolic pathways. Furthermore, expression patterns of miRNAs and antioxidants can be used for biomonitoring the course of disease and show potential to serve as possible therapeutic targets.
Collapse
Affiliation(s)
- Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Christian Mayr
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Till Wissniowski
- Department of Gastroenterology and Endocrinology, Philipps University Marburg, 35043 Marburg, Germany.
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany.
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Matthias Ocker
- Translational Medicine Oncology, Bayer AG, 13353 Berlin, Germany.
- Department of Gastroenterology CBF, Charité University Medicine Berlin, 12200 Berlin, Germany.
| |
Collapse
|
29
|
Seino S, Matsuoka R, Masuda Y, Kunou M, Okada Y, Saika S. Topical hyaluronan alone promotes corneal epithelial cell migration whereas combination with benzalkonium chloride impairs epithelial wound healing. Cutan Ocul Toxicol 2019; 39:13-20. [PMID: 31588814 DOI: 10.1080/15569527.2019.1673402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To evaluate the effects of topical hyaluronan (HA) on corneal epithelial wound healing when administered with or without benzalkonium chloride (BAC).Methods: A cultured human corneal epithelial cell line (HCE-T) was subjected to in vitro scratch assays and in situ epithelial migration was evaluated in organ-cultured rabbit corneas. The corneal epithelium of C57BL/6J mice was also evaluated to determine in vivo wound healing. An in vivo imaging system was also used to evaluate the effects of HA on eye drop retention on the ocular surface.Results: The findings revealed the promotion of HCE-T migration, in situ rabbit corneal epithelial migration, and in vivo wound healing in mouse corneal epithelium by HA. Pre-treatment with HA also protected against delayed epithelial wound healing in BAC in vitro. However, pre-treatment with 3 mg/mL HA did not show a protective effect against BAC in vivo, but instead delayed epithelial wound healing and increased detection of cleaved caspase-3. This suggested that HA promotes the retention of BAC on the ocular surface. The instilled HA was retained after 15 min, at a significantly higher rate than for phosphate-buffered saline.Conclusions: The combination of HA and BAC impaired wound healing in the corneal epithelium.
Collapse
Affiliation(s)
- Satoshi Seino
- R&D Division, Kewpie Corporation, Tokyo, Japan.,Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | | | | | | | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
30
|
Bellos DA, Sharma D, McMullen MR, Wat J, Saikia P, de la Motte CA, Nagy LE. Specifically Sized Hyaluronan (35 kDa) Prevents Ethanol-Induced Disruption of Epithelial Tight Junctions Through a layilin-Dependent Mechanism in Caco-2 Cells. Alcohol Clin Exp Res 2019; 43:1848-1858. [PMID: 31237689 DOI: 10.1111/acer.14140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Specific-sized species of the carbohydrate hyaluronan elicit a variety of cellular responses mediating tissue integrity and repair, as well as regulating inflammatory responses. Orally provided hyaluronan with an average molecular weight of 35 kDa (HA35) protects mice from short-term ethanol (EtOH)-induced liver injury. This protection was associated with maintenance of the colocalization of zonula occludens-1 (ZO-1) and occludin at tight junctions in the proximal colon. However, it is not known whether HA35 also protects other regions of the intestine or whether protection is due to a direct and/or indirect interaction of HA35 with the intestinal epithelium. METHODS Female C57BL/6J mice were fed an EtOH containing diet or pair-fed control diet (4 days) and treated with or without HA35 via daily gavage during the last 3 days of EtOH feeding. Intestinal morphology and tight junction integrity were assessed. Differentiated Caco-2 cells were transfected or not with scrambled siRNA or siRNA targeting layilin, a hyaluronan receptor. Caco-2 cells were treated with or without HA35 prior to challenge with EtOH. Localization of tight junction proteins, fluorescein isothiocyanate (FITC)-dextran permeability, and transepithelial electrical resistance (TEER) were evaluated. RESULTS While short-term EtOH did not result in any apparent changes in the gross morphology of the intestine, colocalization of ZO-1 and occludin at tight junctions was decreased in the proximal and distal colon. HA35 prevented these effects of EtOH. In differentiated Caco-2 cells, EtOH decreased the localization of ZO-1 and occludin at tight junctions and increased permeability of FITC-dextran. At higher concentrations, EtOH also decreased TEER. Pretreatment with HA35 prevented these changes. When the hyaluronan receptor layilin was knocked down in Caco-2 cells, HA35 no longer protected cells from EtOH-induced loss of tight junctions. CONCLUSIONS Taken together, these data indicate that HA35 interacts with layilin on intestinal epithelial cells and maintains intestinal tight junction integrity during short-term EtOH exposure.
Collapse
Affiliation(s)
- Damien A Bellos
- Department of Inflammation and Immunity, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Dhara Sharma
- Department of Inflammation and Immunity, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Megan R McMullen
- Department of Inflammation and Immunity, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Jeanette Wat
- Department of Inflammation and Immunity, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Paramananda Saikia
- Department of Inflammation and Immunity, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Carol A de la Motte
- Department of Inflammation and Immunity, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Laura E Nagy
- Department of Inflammation and Immunity, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Gastroenterology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
31
|
Kim A, Saikia P, Nagy LE. miRNAs Involved in M1/M2 Hyperpolarization Are Clustered and Coordinately Expressed in Alcoholic Hepatitis. Front Immunol 2019; 10:1295. [PMID: 31231396 PMCID: PMC6568035 DOI: 10.3389/fimmu.2019.01295] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
The innate immune system, including monocytes/macrophages, is critical to the progression of alcoholic liver disease (ALD). In response to chronic ethanol, Kupffer cells, the resident macrophage of livers, and peripheral monocytes become sensitized to bacterial lipopolysaccharides (LPS), express more pro-inflammatory cytokines and exhibit macrophage M1/M2 hyperpolarization. Since miRNAs play an important role in the regulation of M1/M2 polarization, we hypothesized that miRNAs regulating macrophage polarization would be dysregulated after chronic ethanol consumption. miRNA sequencing data from Kupffer cells isolated from rats fed an ethanol diet vs. control diet and qPCR data from PBMCs isolated from alcoholic hepatitis (AH) patients and healthy controls were used to assess the role of miRNAs in macrophage hyperpolarization in ALD. Differential expression analyses revealed 40 misregulated miRNAs in Kupffer cells from the chronic ethanol-fed rats compared to pair-fed controls. Nine of these miRNAs are known to be associated with macrophage polarization and consist of a mixture of M1- and M2-associated miRNAs, indicative of hyperpolarization. Twenty-three of the 40 differentially expressed miRNAs were localized to miRNA clusters throughout the genome. Correlation analyses revealed that miRNAs in three of these clusters were co-regulated and located within antisense non-coding RNAs. Similar to Kupffer cells from ethanol-fed rats, M1 and M2 polarization markers, as well as sensitivity to LPS, were elevated in PBMCs from AH patients compared to healthy controls. These increases were associated with an up-regulation of polarization-associated miRNAs, including miR-125a-5p, a miRNA associated with hyperpolarization. miR-125a-5p is clustered in the genome with other miRNAs inside a host gene, Spaca6, which was also upregulated in PBMCs, as well as isolated monocytes, from AH patients. Finally, correlation analyses revealed co-regulation of human polarization-associated miRNA clusters. While expression of polarization-associated miRNAs in clusters was upregulated in AH compared to healthy controls, co-regulation of the miRNAs within a cluster was independent of disease state. Together, these results reveal that global changes in miRNA regulation are associated with polarization phenotypes in Kupffer cells from rat after chronic ethanol as well as in PBMCs from patients with AH. Importantly, polarization-associated miRNAs were localized to coordinately regulated clusters.
Collapse
Affiliation(s)
- Adam Kim
- Department of Inflammation and Immunity, Northern Ohio Alcohol Center, Center for Liver Disease Research, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Paramananda Saikia
- Department of Inflammation and Immunity, Northern Ohio Alcohol Center, Center for Liver Disease Research, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Laura E Nagy
- Department of Inflammation and Immunity, Northern Ohio Alcohol Center, Center for Liver Disease Research, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
32
|
Safety of Hyaluronan 35 in Healthy Human Subjects: A Pilot Study. Nutrients 2019; 11:nu11051135. [PMID: 31121841 PMCID: PMC6566413 DOI: 10.3390/nu11051135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background. Hyaluronan (HA) is a naturally occurring glycosaminoglycan polymer produced in all vertebrates, and usually present at the high molecular weight (>106 Da). Low molecular weight HA has signaling properties, and fragments ~35 kDa size (HA35) have biological activity in eliciting epithelial β-defensins and tight junction proteins, notably ZO1, important components of innate host defense arsenal of the gut barrier in preclinical models. Safety, tolerability, impact on metabolism, gut permeability, and microbiome composition in healthy human subjects were all evaluated prospectively. Methods. Pharmaceutical grade HA35 (140 mg in water once daily for seven days), was administered orally to 20 healthy subjects (30.7 ± 5.6 years). Demographical, clinical, biochemical laboratory tests, metabolic function and stool microbiome composition were measured on Day 0, 8 and 28. Results. HA35 was tolerated well in all subjects with no serious adverse events in any subjects. No statistical differences in any of the measurements were seen among the study group over the course of the trial. In aggregate there were no changes in demographical, clinical, biochemical laboratory tests, and metabolic function or microbiome composition during the 28-day study. Conclusion. Oral HA35 administration (140 mg/day) is a safe treatment in healthy individuals and does not affect metabolic, inflammatory or microbiome parameters.
Collapse
|
33
|
Petrey AC, de la Motte CA. Hyaluronan in inflammatory bowel disease: Cross-linking inflammation and coagulation. Matrix Biol 2019; 78-79:314-323. [PMID: 29574062 PMCID: PMC6150849 DOI: 10.1016/j.matbio.2018.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Abstract
Hyaluronan, a major extracellular matrix component, is an active participant in many disease states, including inflammatory bowel disease (IBD). The synthesis of this dynamic polymer is increased at sites of inflammation. Hyaluronan together with the enzymes responsible for its synthesis, degradation, and its binding proteins, directly modulates the promotion and resolution of disease by controlling recruitment of immune cells, by release of inflammatory cytokines, and by balancing hemostasis. This review discusses the functional significance of hyaluronan in the cells and tissues involved in inflammatory bowel disease pathobiology.
Collapse
Affiliation(s)
- Aaron C Petrey
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Carol A de la Motte
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.
| |
Collapse
|
34
|
Gao B, Ahmad MF, Nagy LE, Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 2019; 70:249-259. [PMID: 30658726 PMCID: PMC6361545 DOI: 10.1016/j.jhep.2018.10.023] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Inflammatory processes are primary contributors to the development and progression of alcoholic steatohepatitis (ASH), with severe alcoholic hepatitis characterised by non-resolving inflammation. Inflammation in the progression of ASH is a complex response to microbial dysbiosis, loss of barrier integrity in the intestine, hepatocellular stress and death, as well as inter-organ crosstalk. Herein, we review the roles of multiple cell types that are involved in inflammation in ASH, including resident macrophages and infiltrating monocytes, as well as other cell types in the innate and adaptive immune system. In response to chronic, heavy alcohol exposure, hepatocytes themselves also contribute to the inflammatory process; hepatocytes express a large number of chemokines and inflammatory mediators and can also release damage-associated molecular patterns during injury and death. These cellular responses are mediated and accompanied by changes in the expression of pro- and anti-inflammatory cytokines and chemokines, as well as by signals which orchestrate the recruitment of immune cells and activation of the inflammatory process. Additional mechanisms for cell-cell and inter-organ communication in ASH are also reviewed, including the roles of extracellular vesicles and microRNAs, as well as inter-organ crosstalk. We highlight the concept that inflammation also plays an important role in promoting liver repair and controlling bacterial infection. Understanding the complex regulatory processes that are disrupted during the progression of ASH will likely lead to better targeted strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States.
| | - Maleeha F Ahmad
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Laura E Nagy
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States; Northern Ohio Alcohol Center, Departments of Molecular Medicine, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States.
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Greater Los Angeles VA Healthcare System, Los Angeles, CA, United States.
| |
Collapse
|
35
|
Herrera J, Forster C, Pengo T, Montero A, Swift J, Schwartz MA, Henke CA, Bitterman PB. Registration of the extracellular matrix components constituting the fibroblastic focus in idiopathic pulmonary fibrosis. JCI Insight 2019; 4:e125185. [PMID: 30626754 PMCID: PMC6485370 DOI: 10.1172/jci.insight.125185] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023] Open
Abstract
The extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF) drives fibrosis progression; however, the ECM composition of the fibroblastic focus (the hallmark lesion in IPF) and adjacent regions remains incompletely defined. Herein, we serially sectioned IPF lung specimens constructed into tissue microarrays and immunostained for ECM components reported to be deregulated in IPF. Immunostained sections were imaged, anatomically aligned, and 3D reconstructed. The myofibroblast core of the fibroblastic focus (defined by collagen I, α-smooth muscle actin, and procollagen I immunoreactivity) was associated with collagens III, IV, V, and VI; fibronectin; hyaluronan; and versican immunoreactivity. Hyaluronan immunoreactivity was also present at the fibroblastic focus perimeter and at sites where early lesions appear to be forming. Fibrinogen immunoreactivity was often observed at regions of damaged epithelium lining the airspace and the perimeter of the myofibroblast core but was absent from the myofibroblast core itself. The ECM components of the fibroblastic focus were distributed in a characteristic and reproducible manner in multiple patients. This information can inform the development of high-fidelity model systems to dissect mechanisms by which the IPF ECM drives fibrosis progression.
Collapse
Affiliation(s)
- Jeremy Herrera
- Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Colleen Forster
- University of Minnesota, Clinical and Translational Science Institute, Minneapolis, Minnesota, USA
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Angeles Montero
- Manchester University Foundation Trust, Department of Histopathology, Manchester, United Kingdom
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Martin A. Schwartz
- Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Craig A. Henke
- University of Minnesota, Department of Medicine, Minneapolis, Minnesota, USA
| | - Peter B. Bitterman
- University of Minnesota, Department of Medicine, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
Torres JL, Novo-Veleiro I, Manzanedo L, Alvela-Suárez L, Macías R, Laso FJ, Marcos M. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol 2018; 24:4104-4118. [PMID: 30271077 PMCID: PMC6158486 DOI: 10.3748/wjg.v24.i36.4104] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate multiple physiological and pathological functions through the modulation of gene expression at the post-transcriptional level. Accumulating evidence has established a role for miRNAs in the development and pathogenesis of liver disease. Specifically, a large number of studies have assessed the role of miRNAs in alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), two diseases that share common underlying mechanisms and pathological characteristics. The purpose of the current review is to summarize and update the body of literature investigating the role of miRNAs in liver disease. In addition, the potential use of miRNAs as biomarkers and/or therapeutic targets is discussed. Among all miRNAs analyzed, miR-34a, miR-122 and miR-155 are most involved in the pathogenesis of NAFLD. Of note, these three miRNAs have also been implicated in ALD, reinforcing a common disease mechanism between these two entities and the pleiotropic effects of specific miRNAs. Currently, no single miRNA or panel of miRNAs has been identified for the detection of, or staging of ALD or NAFLD. While promising results have been shown in murine models, no therapeutic based-miRNA agents have been developed for use in humans with liver disease.
Collapse
Affiliation(s)
- Jorge-Luis Torres
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| | - Ignacio Novo-Veleiro
- Department of Internal Medicine, University Hospital of Santiago de Compostela, A Coruña 15706, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| | - Laura Manzanedo
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
| | - Lucía Alvela-Suárez
- Department of Internal Medicine, HM Rosaleda Hospital, Santiago de Compostela, A Coruña 15701, Spain
| | - Ronald Macías
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
| | - Francisco-Javier Laso
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca 37007, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca 37007, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| |
Collapse
|
37
|
Xu T, Li L, Hu HQ, Meng XM, Huang C, Zhang L, Qin J, Li J. MicroRNAs in alcoholic liver disease: Recent advances and future applications. J Cell Physiol 2018; 234:382-394. [PMID: 30076710 DOI: 10.1002/jcp.26938] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation, and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs (miRNAs) are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that miRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.
Collapse
Affiliation(s)
- Tao Xu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Li Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Qing Hu
- Health Management Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jian Qin
- Anhui Joyfar Pharmaceutical Institute Co., Ltd., Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|