1
|
Wang L, Liu C, Chen J, He X, He H, Qin Q, Yang M. The role of largemouth bass NF-κB/p65: Inhibition of LMBV and activator of IL-18 promoter. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110120. [PMID: 39832538 DOI: 10.1016/j.fsi.2025.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Nuclear factor-κB (NF-κB)/p65, a vital signaling molecule in the NF-κB pathway, participates in diverse physiological functions and host-virus interactions. However, the involvement of NF-κB/p65 in fish virus infection remains poorly understood. In this study, we explored the role of the p65 in virus infection and its impact on IL-18 regulation in largemouth bass (Micropterus salmoides). Bioinformatics analysis showed that the ORF sequence of Msp65 spanned 1941 bp, encoding 646 amino acids with two conserved functional domains, including RHD and IPT domain. Msp65 mRNA was presented in various tissues, with higher levels detected in the liver and gill. After exposure to largemouth bass virus (LMBV), red grouper nervous necrosis virus, lipopolysaccharide and poly (I:C), Msp65 expression was activated in vivo. In addition, the antiviral role of Msp65 were explored. In vitro, Msp65 overexpression hindered LMBV replication and formation of viral assembly site. In vivo, we found that disruption of Msp65 by using maslinic acid (MA) notably promoted the infectivity of LMBV, indicating its antiviral capabilities in largemouth bass. Besides, the downregulation of Msp65 suppressed the expression of inflammatory and interferon signaling molecules. Conversely, Msp65 overexpression boosted the activities of IFN-I, IFN-III and ISRE promoters, suggesting the positive regulation of Msp65 on interferon immune pathway. Furthermore, to unveil the regulatory role of Msp65 on MsIL-18, a promoter investigation was conducted. The luciferase reporter assay demonstrated that Msp65 positively influenced the expression of MsIL-18. Subsequent analysis suggested that the putative binding sites for MsIL-18 could potentially reside within the -228 to -203 bp of the MsIL-18 promoter. These findings illustrated that Msp65 involved in LMBV infection by modulating immune responses, presenting a novel insight into the antiviral mechanisms of p65 in bony fish.
Collapse
Affiliation(s)
- Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; College of Fishery, Guangdong Ocean University, Guangdong Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China
| | - Cuiyu Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jinpeng Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xin He
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hongxi He
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China.
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
2
|
Balint E, Feng E, Giles EC, Ritchie TM, Qian AS, Vahedi F, Montemarano A, Portillo AL, Monteiro JK, Trigatti BL, Ashkar AA. Bystander activated CD8 + T cells mediate neuropathology during viral infection via antigen-independent cytotoxicity. Nat Commun 2024; 15:896. [PMID: 38316762 PMCID: PMC10844499 DOI: 10.1038/s41467-023-44667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Although many viral infections are linked to the development of neurological disorders, the mechanism governing virus-induced neuropathology remains poorly understood, particularly when the virus is not directly neuropathic. Using a mouse model of Zika virus (ZIKV) infection, we found that the severity of neurological disease did not correlate with brain ZIKV titers, but rather with infiltration of bystander activated NKG2D+CD8+ T cells. Antibody depletion of CD8 or blockade of NKG2D prevented ZIKV-associated paralysis, suggesting that CD8+ T cells induce neurological disease independent of TCR signaling. Furthermore, spleen and brain CD8+ T cells exhibited antigen-independent cytotoxicity that correlated with NKG2D expression. Finally, viral infection and inflammation in the brain was necessary but not sufficient to induce neurological damage. We demonstrate that CD8+ T cells mediate virus-induced neuropathology via antigen-independent, NKG2D-mediated cytotoxicity, which may serve as a therapeutic target for treatment of virus-induced neurological disease.
Collapse
Affiliation(s)
- Elizabeth Balint
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily Feng
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elizabeth C Giles
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Tyrah M Ritchie
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander S Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amelia Montemarano
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ana L Portillo
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jonathan K Monteiro
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bernardo L Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Shrivastava G, Valenzuela-Leon PC, Botello K, Calvo E. Aedes aegypti saliva modulates inflammasome activation and facilitates flavivirus infection in vitro. iScience 2024; 27:108620. [PMID: 38188518 PMCID: PMC10770497 DOI: 10.1016/j.isci.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquito borne flaviviruses such as dengue and Zika represent a major public health problem due to globalization and propagation of susceptible vectors worldwide. Vertebrate host responses to dengue and Zika infections include the processing and release of pro-inflammatory cytokines through the activation of inflammasomes, resulting in disease severity and fatality. Mosquito saliva can facilitate pathogen infection by downregulating the host's immune response. However, the role of mosquito saliva in modulating host innate immune responses remains largely unknown. Here, we show that mosquito salivary gland extract (SGE) inhibits dengue and Zika virus-induced inflammasome activation by reducing NLRP3 expression, Caspase-1 activation, and 1L-1β secretion in cultured human and mice macrophages. As a result, we observe that SGE inhibits virus detection in the early phase of infection. This study provides important insights into how mosquito saliva modulates host innate immunity during viral infection.
Collapse
Affiliation(s)
- Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway Room 2W09, Bethesda, MD, USA
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway Room 2W09, Bethesda, MD, USA
| | - Karina Botello
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway Room 2W09, Bethesda, MD, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway Room 2W09, Bethesda, MD, USA
| |
Collapse
|
4
|
Marano JM, Weger-Lucarelli J. Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness. Front Cell Infect Microbiol 2023; 13:1130749. [PMID: 36968111 PMCID: PMC10034770 DOI: 10.3389/fcimb.2023.1130749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Flaviviruses like dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne viruses that cause febrile, hemorrhagic, and neurological diseases in humans, resulting in 400 million infections annually. Due to their co-circulation in many parts of the world, flaviviruses must replicate in the presence of pre-existing adaptive immune responses targeted at serologically closely related pathogens, which can provide protection or enhance disease. However, the impact of pre-existing cross-reactive immunity as a driver of flavivirus evolution, and subsequently the implications on the emergence of immune escape variants, is poorly understood. Therefore, we investigated how replication in the presence of convalescent dengue serum drives ZIKV evolution. Methods We used an in vitro directed evolution system, passaging ZIKV in the presence of serum from humans previously infected with DENV (anti-DENV) or serum from DENV-naïve patients (control serum). Following five passages in the presence of serum, we performed next-generation sequencing to identify mutations that arose during passaging. We studied two non-synonymous mutations found in the anti-DENV passaged population (E-V355I and NS1-T139A) by generating individual ZIKV mutants and assessing fitness in mammalian cells and live mosquitoes, as well as their sensitivity to antibody neutralization. Results and discussion Both viruses had increased fitness in Vero cells with and without the addition of anti-DENV serum and in human lung epithelial and monocyte cells. In Aedes aegypti mosquitoes-using blood meals with and without anti-DENV serum-the mutant viruses had significantly reduced fitness compared to wild-type ZIKV. These results align with the trade-off hypothesis of constrained mosquito-borne virus evolution. Notably, only the NS1-T139A mutation escaped neutralization, while E-V335I demonstrated enhanced neutralization sensitivity to neutralization by anti-DENV serum, indicating that neutralization escape is not necessary for viruses passaged under cross-reactive immune pressures. Future studies are needed to assess cross-reactive immune selection in humans and relevant animal models or with different flaviviruses.
Collapse
Affiliation(s)
- Jeffrey M. Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Hernández-Sarmiento LJ, Valdés-López JF, Urcuqui-Inchima S. American-Asian- and African lineages of Zika virus induce differential pro-inflammatory and Interleukin 27-dependent antiviral responses in human monocytes. Virus Res 2023; 325:199040. [PMID: 36610657 PMCID: PMC10194209 DOI: 10.1016/j.virusres.2023.199040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Zika virus (ZIKV) is an arbovirus that belongs to the Flaviviridae family and inflammatory responses play a critical role in ZIKV pathogenesis. As a first-line defense, monocytes are key components of innate immunity and host response to viruses. Monocytes are considered the earliest blood cell type to be infected by ZIKV and have been shown to be associated with ZIKV pathogenesis. The first ZIKV epidemic was reported in Africa and Asia although, it is less well known whether African- and Asian- lineages of ZIKV have different impacts on host immune response. We studied the pro-inflammatory and antiviral response of ZIKV-infected monocytes using publicly available RNA-seq analysis (GSE103114). We compared the transcriptomic profiles of human monocytes infected with ZIKV Puerto Rico strain (PRVABC59), American-Asian lineage, and ZIKV Nigeria strain (IBH30656), African lineage. We validated RNA-seq results by ELISA or RT-qPCR, in human monocytes infected with a clinical isolate of ZIKV from Colombia (American-Asian lineage), or with ZIKV from Dakar (African lineage). The transcriptomic analysis showed that ZIKV Puerto Rico strain promotes a higher pro-inflammatory response through TLR2 signaling and NF-kB activation and induces a strong IL27-dependent antiviral activity than ZIKV Nigeria strain. Furthermore, human monocytes are more susceptible to infection with ZIKV from Colombia than ZIKV from Dakar. Likewise, Colombian ZIKV isolate activated IL27 signaling and induced a robust antiviral response in an IFN-independent manner. Moreover, we show that treatment of monocytes with IL27 results in decreased release of ZIKV particles in a dose-dependent manner with an EC50 =2.870 ng/mL for ZIKV from Colombia and EC50 =10.23 ng/mL to ZIKV from Dakar. These findings highlight the differential inflammatory response and antiviral activity of monocytes infected with different lineages of ZIKV and may help better management of ZIKV-infected patients.
Collapse
Affiliation(s)
| | - Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
6
|
Wikan N, Potikanond S, Hankittichai P, Thaklaewphan P, Monkaew S, Smith DR, Nimlamool W. Alpinetin Suppresses Zika Virus-Induced Interleukin-1β Production and Secretion in Human Macrophages. Pharmaceutics 2022; 14:pharmaceutics14122800. [PMID: 36559293 PMCID: PMC9782830 DOI: 10.3390/pharmaceutics14122800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) infection has been recognized to cause adverse sequelae in the developing fetus. Specially, this virus activates the excessive release of IL-1β causing inflammation and altered physiological functions in multiple organs. Although many attempts have been invested to develop vaccine, antiviral, and antibody therapies, development of agents focusing on limiting ZIKV-induced IL-1β release have not gained much attention. We aimed to study the effects of alpinetin (AP) on IL-1β production in human macrophage upon exposure to ZIKV. Our study demonstrated that ZIKV stimulated IL-1β release in the culture supernatant of ZIKV-infected cells, and AP could effectively reduce the level of this cytokine. AP exhibited no virucidal activities against ZIKV nor caused alteration in viral production. Instead, AP greatly inhibited intracellular IL-1β synthesis. Surprisingly, this compound did not inhibit ZIKV-induced activation of NF-κB and its nuclear translocation. However, AP could significantly inhibit ZIKV-induced p38 MAPK activation without affecting the phosphorylation status of ERK1/2 and JNK. These observations suggest the possibility that AP may reduce IL-1β production, in part, through suppressing p38 MAPK signaling. Our current study sheds light on the possibility of using AP as an alternative agent for treating complications caused by ZIKV infection-induced IL-1β secretion.
Collapse
Affiliation(s)
- Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sathit Monkaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: (D.R.S.); (W.N.); Tel.: +66-53-934597 (W.N.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (D.R.S.); (W.N.); Tel.: +66-53-934597 (W.N.)
| |
Collapse
|
7
|
Comparative Analysis of In Vitro Models to Study Antibody-Dependent Enhancement of Zika Virus Infection. Viruses 2022; 14:v14122776. [PMID: 36560779 PMCID: PMC9781448 DOI: 10.3390/v14122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
During the 2015-2016 outbreak of Zika virus (ZIKV) in the Americas, a previously unknown severe complication of ZIKV infection during pregnancy resulting in birth defects was reported. Since the ZIKV outbreak occurred in regions that were highly endemic for the related dengue virus (DENV), it was speculated that antibody-dependent enhancement (ADE) of a ZIKV infection, caused by the presence of cross-reactive DENV antibodies, could contribute to ZIKV disease severity. Emerging evidence indicates that, while in vitro models can show ADE of ZIKV infection, ADE does not seem to contribute to congenital ZIKV disease severity in humans. However, the role of ADE of ZIKV infection during pregnancy and in vertical ZIKV transmission is not well studied. In this study, we hypothesized that pregnancy may affect the ability of myeloid cells to become infected with ZIKV, potentially through ADE. We first systematically assessed which cell lines and primary cells can be used to study ZIKV ADE in vitro, and we compared the difference in outcomes of (ADE) infection experiments between these cells. Subsequently, we tested the hypothesis that pregnancy may affect the ability of myeloid cells to become infected through ADE, by performing ZIKV ADE assays with primary cells isolated from blood of pregnant women from different trimesters and from age-matched non-pregnant women. We found that ADE of ZIKV infection can be induced in myeloid cell lines U937, THP-1, and K562 as well as in monocyte-derived macrophages from healthy donors. There was no difference in permissiveness for ZIKV infection or ADE potential of ZIKV infection in primary cells of pregnant women compared to non-pregnant women. In conclusion, no increased permissiveness for ZIKV infection and ADE of ZIKV infection was found using in vitro models of primary myeloid cells from pregnant women compared to age-matched non-pregnant women.
Collapse
|
8
|
Hanrath AT, Hatton CF, Gothe F, Browne C, Vowles J, Leary P, Cockell SJ, Cowley SA, James WS, Hambleton S, Duncan CJA. Type I interferon receptor ( IFNAR2) deficiency reveals Zika virus cytopathicity in human macrophages and microglia. Front Immunol 2022; 13:1035532. [PMID: 36439115 PMCID: PMC9691778 DOI: 10.3389/fimmu.2022.1035532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages are key target cells of Zika virus (ZIKV) infection, implicated as a viral reservoir seeding sanctuary sites such as the central nervous system and testes. This rests on the apparent ability of macrophages to sustain ZIKV replication without experiencing cytopathic effects. ZIKV infection of macrophages triggers an innate immune response involving type I interferons (IFN-I), key antiviral cytokines that play a complex role in ZIKV pathogenesis in animal models. To investigate the functional role of the IFN-I response we generated human induced pluripotent stem cell (iPSC)-derived macrophages from a patient with complete deficiency of IFNAR2, the high affinity IFN-I receptor subunit. Accompanying the profound defect of IFN-I signalling in IFNAR2 deficient iPS-macrophages we observed significantly enhanced ZIKV replication and cell death, revealing the inherent cytopathicity of ZIKV towards macrophages. These observations were recapitulated by genetic and pharmacological ablation of IFN-I signalling in control iPS-macrophages and extended to a model of iPS-microglia. Thus, the capacity of macrophages to support noncytolytic ZIKV replication depends on an equilibrium set by IFN-I, suggesting that innate antiviral responses might counterintuitively promote ZIKV persistence via the maintenance of tissue viral reservoirs relevant to pathogenesis.
Collapse
Affiliation(s)
- Aidan T. Hanrath
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Catherine F. Hatton
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Florian Gothe
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Cathy Browne
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jane Vowles
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Peter Leary
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
| | - Simon J. Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
- School of Biomedical, Nutritional and Sports Sciences, Newcastle University, Newcastle, United Kingdom
| | - Sally A. Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - William S. James
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sophie Hambleton
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Christopher J. A. Duncan
- Immunology and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Bioinformatics Support Unit, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
9
|
Zika Virus Replication in a Mast Cell Model is Augmented by Dengue Virus Antibody-Dependent Enhancement and Features a Selective Immune Mediator Secretory Profile. Microbiol Spectr 2022; 10:e0177222. [PMID: 35862953 PMCID: PMC9431662 DOI: 10.1128/spectrum.01772-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies generated against one dengue serotype can enhance infection of another by a phenomenon called antibody-dependent enhancement (ADE). Additionally, antigenic similarities between Zika and dengue viruses can promote Zika virus infection by way of ADE
in vitro
using these very same anti-dengue antibodies.
Collapse
|
10
|
Concomitant pyroptotic and apoptotic cell death triggered in macrophages infected by Zika virus. PLoS One 2022; 17:e0257408. [PMID: 35446851 PMCID: PMC9022797 DOI: 10.1371/journal.pone.0257408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) is a positive-sense RNA flavivirus and can cause serious neurological disorders including microcephaly in infected fetuses. As a mosquito-borne arbovirus, it enters the bloodstream and replicates in various organs. During pregnancy, it can be transmitted from the blood of the viremic mother to the fetus by crossing the placental barrier. Monocytes and macrophages are considered the earliest blood cell types to be infected by ZIKV. As a first line defense, these cells are crucial components in innate immunity and host responses and may impact viral pathogenesis in humans. Previous studies have shown that ZIKV infection can activate inflammasomes and induce proinflammatory cytokines in monocytes. In this report, we showed that ZIKV could infect and induce cell death in human and murine macrophages. In addition to the presence of cleaved caspase-3, indicating that apoptosis was involved, we identified the cleaved caspase-1 and gasdermin D (GSDMD) as well as increased secretion of IL-1β and IL-18. This suggests that the inflammasome was activated and that may lead to pyroptosis in infected macrophages. The pyroptosis was NLRP3-dependent and could be suppressed in the macrophages treated with shRNA to target and knockdown caspase-1. It was also be inhibited by an inhibitor for caspase-1, indicating that the pyroptosis was triggered via a canonical approach. Our findings in this study demonstrate a concomitant occurrence of apoptosis and pyroptosis in ZIKV-infected macrophages, with two mechanisms involved in the cell death, which may have potentially significant impacts on viral pathogenesis in humans.
Collapse
|
11
|
Bhardwaj U, Singh SK. Zika Virus NS1 Suppresses VE-Cadherin and Claudin-5 via hsa-miR-101-3p in Human Brain Microvascular Endothelial Cells. Mol Neurobiol 2021; 58:6290-6303. [PMID: 34487317 DOI: 10.1007/s12035-021-02548-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Zika virus (ZIKV) is a neurotropic virus that causes microcephaly in newborns and Guillain-Barré syndrome (GBS) in adults. ZIKV is known to transmigrate through the blood-brain barrier (BBB) by utilizing different strategies. NS1 is a conserved flavivirus protein, which is secreted extracellularly. ZIKV-NS1 has been shown to target adherens junctions (AJs) and tight junctions (TJs) to disrupt the endothelial barrier integrity. The microRNAs are short non-coding RNAs, which post-transcriptionally regulate the gene expression by binding to 3' UTR of the target gene. In the present study, we studied the ZIKV-NS1-mediated effect through hsa-miR-101-3p on the junctional barrier integrity in human brain microvascular endothelial cells. We exposed hBMVECs and hCMEC/D3 cells with ZIKV-NS1 at different time points (12 h and 24 h) with the doses 500 ng/mL and 1000 ng/mL. The change in the expression of VE-cadherin and claudin-5 was quantified using immunoblotting. The expression of the hsa-miR-101-3p was quantified using qRT-PCR. To prove the targeting of hsa-miR-101-3p to VE-cadherin, we transfected hsa-miR-101-3p mimic, scramble, hsa-miR-101-3p inhibitor, and Cy3 in the ZIKV-NS1-exposed hCMEC/D3 cells. The distribution and expression of the VE-cadherin and claudin-5 were observed using immunofluorescence and immunoblotting. The ZIKV-NS1 compromises the endothelial barrier integrity by disrupting the VE-cadherin and claudin-5 protein expression via hsa-miR-101-3p. The findings of this study suggest that ZIKV-NS1 dysregulates the adherens junction and tight junction proteins through hsa-miR-101-3p, which compromises the barrier integrity of human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Utkarsh Bhardwaj
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
IL-18: The Forgotten Cytokine in Dengue Immunopathogenesis. J Immunol Res 2021; 2021:8214656. [PMID: 34840991 PMCID: PMC8626198 DOI: 10.1155/2021/8214656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022] Open
Abstract
Dengue fever is an infection by the dengue virus (DENV) transmitted by vector mosquitoes. It causes many infections in tropical and subtropical countries every year, thus posing a severe disease threat. Cytokine storms, one condition where many proinflammatory cytokines are mass-produced, might lead to cellular dysfunction in tissue/organ failures and often facilitate severe dengue disease in patients. Interleukin- (IL-) 18, similar to IL-1β, is a proinflammatory cytokine produced during inflammation following inflammasome activation. Inflammatory stimuli, including microbial infections, damage signals, and cytokines, all induce the production of IL-18. High serum IL-18 is remarkably correlated with severely ill dengue patients; however, its possible roles have been less explored. Based on the clinical and basic findings, this review discusses the potential immunopathogenic role of IL-18 when it participates in DENV infection and dengue disease progression based on existing findings and related past studies.
Collapse
|
13
|
Decidual NK cells kill Zika virus-infected trophoblasts. Proc Natl Acad Sci U S A 2021; 118:2115410118. [PMID: 34785597 DOI: 10.1073/pnas.2115410118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) during pregnancy infects fetal trophoblasts and causes placental damage and birth defects including microcephaly. Little is known about the anti-ZIKV cellular immune response at the maternal-fetal interface. Decidual natural killer cells (dNK), which directly contact fetal trophoblasts, are the dominant maternal immune cells in the first-trimester placenta, when ZIKV infection is most hazardous. Although dNK express all the cytolytic molecules needed to kill, they usually do not kill infected fetal cells but promote placentation. Here, we show that dNK degranulate and kill ZIKV-infected placental trophoblasts. ZIKV infection of trophoblasts causes endoplasmic reticulum (ER) stress, which makes them dNK targets by down-regulating HLA-C/G, natural killer (NK) inhibitory receptor ligands that help maintain tolerance of the semiallogeneic fetus. ER stress also activates the NK activating receptor NKp46. ZIKV infection of Ifnar1 -/- pregnant mice results in high viral titers and severe intrauterine growth restriction, which are exacerbated by depletion of NK or CD8 T cells, indicating that killer lymphocytes, on balance, protect the fetus from ZIKV by eliminating infected cells and reducing the spread of infection.
Collapse
|
14
|
Westrich JA, McNulty EE, Edmonds MJ, Nalls AV, Miller MR, Foy BD, Rovnak J, Perera R, Mathiason CK. Characterization of subclinical ZIKV infection in immune-competent guinea pigs and mice. J Gen Virol 2021; 102. [PMID: 34410903 PMCID: PMC8513637 DOI: 10.1099/jgv.0.001641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An infectious agent’s pathogenic and transmission potential is heavily influenced by early events during the asymptomatic or subclinical phase of disease. During this phase, the presence of infectious agent may be relatively low. An important example of this is Zika virus (ZIKV), which can cross the placenta and infect the foetus, even in mothers with subclinical infections. These subclinical infections represent roughly 80 % of all human infections. Initial ZIKV pathogenesis studies were performed in type I interferon receptor (IFNAR) knockout mice. Blunting the interferon response resulted in robust infectivity, and increased the utility of mice to model ZIKV infections. However, due to the removal of the interferon response, the use of these models impedes full characterization of immune responses to ZIKV-related pathologies. Moreover, IFNAR-deficient models represent severe disease whereas less is known regarding subclinical infections. Investigation of the anti-viral immune response elicited at the maternal-foetal interface is critical to fully understand mechanisms involved in foetal infection, foetal development, and disease processes recognized to occur during subclinical maternal infections. Thus, immunocompetent experimental models that recapitulate natural infections are needed. We have established subclinical intravaginal ZIKV infections in mice and guinea pigs. We found that these infections resulted in: the presence of both ZIKV RNA transcripts and infectious virus in maternal and placental tissues, establishment of foetal infections and ZIKV-mediated CXCL10 expression. These models will aid in discerning the mechanisms of subclinical ZIKV mother-to-offspring transmission, and by extension can be used to investigate other maternal infections that impact foetal development.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Erin E McNulty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Marisa J Edmonds
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Amy V Nalls
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Megan R Miller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Joel Rovnak
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Rushika Perera
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
15
|
Gist of Zika Virus pathogenesis. Virology 2021; 560:86-95. [PMID: 34051478 DOI: 10.1016/j.virol.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne neurotropic flavivirus. ZIKV infection may lead to microcephaly in developing fetus and Guillain-Barré Syndrome (GBS) like symptoms in adults. ZIKV was first reported in humans in 1952 from Uganda and the United Republic of Tanzania. Later, ZIKV outbreak was reported in 2007 from the Yap Island. ZIKV re-emerged as major outbreak in the year 2013 from French Polynesia followed by second outbreak in the year 2015 from Brazil. ZIKV crosses the blood-tissue barriers to enter immune-privileged organs. Clinical manifestations in ZIKV disease includes rash, fever, conjunctivitis, muscle and joint pain, headache, transverse myelitis, meningoencephalitis, Acute Disseminated Encephalomyelitis (ADEM). The understanding of the molecular mechanism of ZIKV pathogenesis is very important to develop potential diagnostic and therapeutic interventions for ZIKV infected patients.
Collapse
|
16
|
Lee JK, Kim JA, Oh SJ, Lee EW, Shin OS. Zika Virus Induces Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL)-Mediated Apoptosis in Human Neural Progenitor Cells. Cells 2020; 9:cells9112487. [PMID: 33207682 PMCID: PMC7697661 DOI: 10.3390/cells9112487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) remains as a public health threat due to the congenital birth defects the virus causes following infection of pregnant women. Congenital microcephaly is among the neurodevelopmental disorders the virus can cause in newborns, and this defect has been associated with ZIKV-mediated cytopathic effects in human neural progenitor cells (hNPCs). In this study, we investigated the cellular changes that occur in hNPCs in response to ZIKV (African and Asian lineages)-induced cytopathic effects. Transmission electron microscopy showed the progress of cell death as well as the formation of numerous vacuoles in the cytoplasm of ZIKV-infected hNPCs. Infection with both African and Asian lineages of ZIKV induced apoptosis, as demonstrated by the increased activation of caspase 3/7, 8, and 9. Increased levels of proinflammatory cytokines and chemokines (IL-6, IL-8, IL-1β) were also detected in ZIKV-infected hNPCs, while z-VAD-fmk-induced inhibition of cell death suppressed ZIKV-mediated cytokine production in a dose-dependent manner. ZIKV-infected hNPCs also displayed significantly elevated gene expression levels of the pro-apoptotic Bcl2-mediated family, in particular, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Furthermore, TRAIL signaling led to augmented ZIKV-mediated cell death and the knockdown of TRAIL-mediated signaling adaptor, FADD, resulted in enhanced ZIKV replication. In conclusion, our findings provide cellular insights into the cytopathic effects induced by ZIKV infection of hNPCs.
Collapse
Affiliation(s)
- Jae Kyung Lee
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
| | - Ji-Ae Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
| | - Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Correspondence: (E.-W.L.); (O.S.S.); Tel.: +82-42-860-4294 (E.-W.L.); +82-2-2626-3280 (O.S.S.)
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Korea; (J.K.L.); (J.-A.K.); (S.-J.O.)
- Correspondence: (E.-W.L.); (O.S.S.); Tel.: +82-42-860-4294 (E.-W.L.); +82-2-2626-3280 (O.S.S.)
| |
Collapse
|
17
|
Immune-profiling of ZIKV-infected patients identifies a distinct function of plasmacytoid dendritic cells for immune cross-regulation. Nat Commun 2020; 11:2421. [PMID: 32415086 PMCID: PMC7229207 DOI: 10.1038/s41467-020-16217-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen with increasing public health significance. To characterize immune responses to ZIKV, here we examine transcriptional signatures of CD4 T, CD8 T, B, and NK cells, monocytes, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) from three individuals with ZIKV infection. While gene expression patterns from most cell subsets display signs of impaired antiviral immune activity, pDCs from infected host have distinct transcriptional response associated with activation of innate immune recognition and type I interferon signaling pathways, but downregulation of key host factors known to support ZIKV replication steps; meanwhile, pDCs exhibit a unique expression pattern of gene modules that are correlated with alternative cell populations, suggesting collaborative interactions between pDCs and other immune cells, particularly B cells. Together, these results point towards a discrete but integrative function of pDCs in the human immune responses to ZIKV infection.
Collapse
|
18
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
19
|
Österlund P, Jiang M, Westenius V, Kuivanen S, Järvi R, Kakkola L, Lundberg R, Melén K, Korva M, Avšič-Županc T, Vapalahti O, Julkunen I. Asian and African lineage Zika viruses show differential replication and innate immune responses in human dendritic cells and macrophages. Sci Rep 2019; 9:15710. [PMID: 31673117 PMCID: PMC6823455 DOI: 10.1038/s41598-019-52307-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) infections in humans are considered to be mild or subclinical. However, during the recent epidemics in the Pacific Islands and the Americas, the infection was associated with Quillain-Barré syndrome and congenital infections with fetal brain abnormalities, including microcephaly. Thus, more detailed understanding of ZIKV-host cell interactions and regulation of innate immune responses by strains of differential evolutionary origin is required. Here, we characterized the infection and immune responses triggered by two epidemic Asian/American lineage viruses, including an isolate from fetal brains, and a historical, low passage 1947 African lineage virus in human monocyte-derived dendritic cells (DCs) and macrophages. The epidemic Asian/American ZIKV replicated well and induced relatively good antiviral responses in human DCs whereas the African strain replicated less efficiently and induced weaker immune responses. In macrophages both the African and Asian strains showed limited replication and relatively weak cytokine gene expression. Interestingly, in macrophages we observed host protein degradation, especially IRF3 and STAT2, at early phases of infection with both lineage viruses, suggesting an early proteasomal activation in phagocytic cells. Our data indicates that ZIKV evolution has led to significant phenotypic differences in the replication characteristics leading to differential regulation of host innate immune responses.
Collapse
Affiliation(s)
- Pamela Österlund
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 00300, Helsinki, Finland.
| | - Miao Jiang
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 00300, Helsinki, Finland
| | - Veera Westenius
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 00300, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, University of Helsinki, 00290, Helsinki, Finland
| | - Riia Järvi
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 00300, Helsinki, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku and Turku University Hospital, 20520, Turku, Finland
| | - Rickard Lundberg
- Institute of Biomedicine, University of Turku and Turku University Hospital, 20520, Turku, Finland
| | - Krister Melén
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 00300, Helsinki, Finland.,Institute of Biomedicine, University of Turku and Turku University Hospital, 20520, Turku, Finland
| | - Miša Korva
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, 00290, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku and Turku University Hospital, 20520, Turku, Finland
| |
Collapse
|
20
|
de Castro-Jorge LA, de Carvalho RVH, Klein TM, Hiroki CH, Lopes AH, Guimarães RM, Fumagalli MJ, Floriano VG, Agostinho MR, Slhessarenko RD, Ramalho FS, Cunha TM, Cunha FQ, da Fonseca BAL, Zamboni DS. The NLRP3 inflammasome is involved with the pathogenesis of Mayaro virus. PLoS Pathog 2019; 15:e1007934. [PMID: 31479495 PMCID: PMC6743794 DOI: 10.1371/journal.ppat.1007934] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/13/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Mayaro virus (MAYV) is an arbovirus that circulates in Latin America and is emerging as a potential threat to public health. Infected individuals develop Mayaro fever, a severe inflammatory disease characterized by high fever, rash, arthralgia, myalgia and headache. The disease is often associated with a prolonged arthralgia mediated by a chronic inflammation that can last months. Although the immune response against other arboviruses, such as chikungunya virus (CHIKV), dengue virus (DENV) and Zika virus (ZIKV), has been extensively studied, little is known about the pathogenesis of MAYV infection. In this study, we established models of MAYV infection in macrophages and in mice and found that MAYV can replicate in bone marrow-derived macrophages and robustly induce expression of inflammasome proteins, such as NLRP3, ASC, AIM2, and Caspase-1 (CASP1). Infection performed in macrophages derived from Nlrp3-/-, Aim2-/-, Asc-/-and Casp1/11-/-mice indicate that the NLRP3, but not AIM2 inflammasome is essential for production of inflammatory cytokines, such as IL-1β. We also determined that MAYV triggers NLRP3 inflammasome activation by inducing reactive oxygen species (ROS) and potassium efflux. In vivo infections performed in inflammasome-deficient mice indicate that NLRP3 is involved with footpad swelling, inflammation and pain, establishing a role of the NLRP3 inflammasome in the MAYV pathogenesis. Accordingly, we detected higher levels of caspase1-p20, IL-1β and IL-18 in the serum of MAYV-infected patients as compared to healthy individuals, supporting the participation of the NLRP3-inflammasome during MAYV infection in humans.
Collapse
Affiliation(s)
- Luiza A. de Castro-Jorge
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Renan V. H. de Carvalho
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Taline M. Klein
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Carlos H. Hiroki
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Alexandre H. Lopes
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Rafaela M. Guimarães
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Marcílio Jorge Fumagalli
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Vitor G. Floriano
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Mayara R. Agostinho
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | | | - Fernando Silva Ramalho
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Fernando Q. Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Benedito A. L. da Fonseca
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo. Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
21
|
Yakass MB, Franco D, Quaye O. Suppressors of Cytokine Signaling and Protein Inhibitors of Activated Signal Transducer and Activator of Transcriptions As Therapeutic Targets in Flavivirus Infections. J Interferon Cytokine Res 2019; 40:1-18. [PMID: 31436502 DOI: 10.1089/jir.2019.0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Flaviviruses cause significant human diseases putting more than 400 million people at risk annually worldwide. Because of migration and improved transportation, these viruses can be found on all continents (except Antarctica). Although a majority of the viruses are endemic in the tropics, a few [West Nile virus (WNV) and tick-borne encephalitis virus (TBEV)] have shown endemicity in Europe and North America. Currently, there are vaccines for the Yellow fever virus, Japanese encephalitis virus, and TBEV, but there is no effective vaccine and/or therapy against all other flaviviruses. Although there are intensive efforts to develop vaccines for Zika viruses, dengue viruses, and WNVs, there is the need for alternative or parallel antiviral therapeutic approaches. Suppressors of cytokine signaling (SOCS) and protein inhibitors of activated signal transducer and activator of transcription (STATs; PIAS), both regulatory proteins of the Janus kinase/STAT signaling pathway, have been explored as therapeutic targets in herpes simplex and vaccinia viruses, as well as in cancer therapy. In this review, we briefly describe the function of SOCS and PIAS and their therapeutic potential in flaviviral infections. [Figure: see text].
Collapse
Affiliation(s)
- Michael Bright Yakass
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | | | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
22
|
Khaiboullina SF, Ribeiro FM, Uppal T, Martynova EV, Rizvanov AA, Verma SC. Zika Virus Transmission Through Blood Tissue Barriers. Front Microbiol 2019; 10:1465. [PMID: 31333605 PMCID: PMC6621930 DOI: 10.3389/fmicb.2019.01465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/11/2019] [Indexed: 01/12/2023] Open
Abstract
The recent Zika virus (ZIKV) epidemic in the Americas and the Caribbean revealed a new deadly strain of the mosquito-borne virus, which has never been associated with previous outbreaks in Asia. For the first time, widespread ZIKV infection was shown to cause microcephaly and death of newborns, which was most likely due to the mutation acquired during the large outbreak recorded in French Polynesia in 2013–2014. Productive ZIKV replication and persistence has been demonstrated in placenta and fetal brains. Possible association between ZIKV and microcephaly and fetal death has been confirmed using immunocompetent mouse models in vitro and in vivo. Having crossed the placenta, ZIKV directly targets neural progenitor cells (NPCs) in developing human fetus and triggers apoptosis. The embryonic endothelial cells are exceptionally susceptible to ZIKV infection, which causes cell death and tissue necrosis. On the contrary, ZIKV infection does not affect the adult brain microvascular cell morphology and blood–brain barrier function. ZIKV is transmitted primarily by Aedes mosquito bite and is introduced into the placenta/blood through replication at the site of the entry. Also, virus can be transmitted through unprotected sex. Although, multiple possible routes of virus infection have been identified, the exact mechanism(s) utilized by ZIKV to cross the placenta still remain largely unknown. In this review, the current understanding of ZIKV infection and transmission through the placental and brain barriers is summarized.
Collapse
Affiliation(s)
- Svetlana F Khaiboullina
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Reno, NV, United States.,Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Fabiola M Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Timsy Uppal
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | - Ekaterina V Martynova
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Subhash C Verma
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
23
|
Host Immune Response to ZIKV in an Immunocompetent Embryonic Mouse Model of Intravaginal Infection. Viruses 2019; 11:v11060558. [PMID: 31212905 PMCID: PMC6631669 DOI: 10.3390/v11060558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Zika virus (ZIKV) only induces mild symptoms in adults; however, it can cause congenital Zika syndrome (CZS), including microcephaly. Most of the knowledge on ZIKV pathogenesis was gained using immunocompromised mouse models, which do not fully recapitulate human pathology. Moreover, the study of the host immune response to ZIKV becomes challenging in these animals. Thus, the main goal of this study was to develop an immunocompetent mouse model to study the ZIKV spread and teratogeny. FVB/NJ immune competent dams were infected intravaginally with ZIKV during the early stage of pregnancy. We found that the placentae of most fetuses were positive for ZIKV, while the virus was detected in the brain of only about 42% of the embryos. To investigate the host immune response, we measured the expression of several inflammatory factors. Embryos from ZIKV-infected dams had an increased level of inflammatory factors, as compared to Mock. Next, we compared the gene expression levels in embryos from ZIKV-infected dams that were either negative or positive for ZIKV in the brain. The mRNA levels of viral response genes and cytokines were increased in both ZIKV-positive and negative brains. Interestingly, the levels of chemokines associated with microcephaly in humans, including CCL2 and CXCL10, specifically increased in embryos harboring ZIKV in the embryo brains.
Collapse
|
24
|
Xu D, Li C, Qin CF, Xu Z. Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annu Rev Virol 2019; 6:459-479. [PMID: 31206355 DOI: 10.1146/annurev-virology-092818-015740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The circulation of Zika virus (ZIKV) in nearly 80 countries and territories poses a significant global threat to public health. ZIKV is causally linked to severe developmental defects in the brain, recognized as congenital Zika syndrome (CZS), which includes microcephaly and other serious congenital neurological complications. Since the World Health Organization declared the ZIKV outbreak a public health emergency of international concern, remarkable progress has been made in the generation of different ZIKV infection animal models to gain insight into cellular targets and pathogenesis and to explore the associated underlying mechanisms. Here we focus on summarizing our current understanding of the effects of ZIKV on mammalian brain development in different developmental stages and discuss the potential underlying mechanisms of ZIKV-induced CZS, as well as future perspectives.
Collapse
Affiliation(s)
- Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China;
| | - Cui Li
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; .,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
25
|
Khaiboullina S, Uppal T, Kletenkov K, St Jeor SC, Garanina E, Rizvanov A, Verma SC. Transcriptome Profiling Reveals Pro-Inflammatory Cytokines and Matrix Metalloproteinase Activation in Zika Virus Infected Human Umbilical Vein Endothelial Cells. Front Pharmacol 2019; 10:642. [PMID: 31249527 PMCID: PMC6582368 DOI: 10.3389/fphar.2019.00642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
The deformities in the newborns infected with Zika virus (ZIKV) present a new potential public health threat to the worldwide community. Although ZIKV infection is mainly asymptomatic in healthy adults, infection during pregnancy can cause microcephaly and other severe brain defects and potentially death of the fetus. The detailed mechanism of ZIKV-associated damage is still largely unknown; however, it is apparent that the virus crosses the placental barrier to reach the fetus. Endothelial cells are the key structural component of the placental barrier. Endothelium integrity as semi-permeable barrier is essential to control the molecules and leukocytes trafficking across the placenta. Damaged endothelium or disruption of adherens junctions could compromise endothelial barrier integrity causing leakage and inflammation. Endothelial cells are often targeted by viruses, including the members of the Flaviviridae family such as dengue virus (DENV) and West Nile virus (WNV); however, little is known about the effects of ZIKV infection of endothelial cell functions. Our transcriptomic data have demonstrated that the large number of cytokines is affected in ZIKV-infected endothelial cells, where significant changes in 13 and 11 cytokines were identified in cells infected with PRVABC59 and IBH30656 ZIKV strains, respectively. Importantly, these cytokines include chemokines attracting mononuclear leukocytes (monocytes and lymphocytes) as well as neutrophils. Additionally, changes in matrix metalloproteinase (MMPs) were detected in ZIKV-infected cells. Furthermore, we for the first time showed that ZIKV infection of human umbilical vein endothelial cells (HUVECs) increases endothelial permeability. We reason that increased endothelial permeability was due to apoptosis of endothelial cells caused by caspase-8 activation in ZIKV-infected cells.
Collapse
Affiliation(s)
- Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| | - Konstatin Kletenkov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Stephen Charles St Jeor
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States.,Genequest LLC, Reno, NV, United States
| | - Ekaterina Garanina
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
26
|
Lei J, Vermillion MS, Jia B, Xie H, Xie L, McLane MW, Sheffield JS, Pekosz A, Brown A, Klein SL, Burd I. IL-1 receptor antagonist therapy mitigates placental dysfunction and perinatal injury following Zika virus infection. JCI Insight 2019; 4:122678. [PMID: 30944243 DOI: 10.1172/jci.insight.122678] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/14/2019] [Indexed: 12/25/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy causes significant adverse sequelae in the developing fetus, and results in long-term structural and neurologic defects. Most preventive and therapeutic efforts have focused on the development of vaccines, antivirals, and antibodies. The placental immunologic response to ZIKV, however, has been largely overlooked as a target for therapeutic intervention. The placental inflammatory response, specifically IL-1β secretion and signaling, is induced by ZIKV infection and represents an environmental factor that is known to increase the risk of perinatal developmental abnormalities. We show in a mouse model that maternally administrated IL-1 receptor antagonist (IRA; Kineret, or anakinra), following ZIKV exposure, can preserve placental function (by improving trophoblast invasion and placental vasculature), increase fetal viability, and reduce neurobehavioral deficits in the offspring. We further demonstrate that while ZIKV RNA is highly detectable in placentas, it is not correlated with fetal viability. Beyond its effects in the placenta, we show that IL-1 blockade may also directly decrease fetal neuroinflammation by mitigating fetal microglial activation in a dose-dependent manner. Our studies distinguish the role of placental inflammation during ZIKV-infected pregnancies, and demonstrate that maternal IRA may attenuate fetal neuroinflammation and improve perinatal outcomes.
Collapse
Affiliation(s)
- Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Meghan S Vermillion
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Molecular and Comparative Pathobiology
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Han Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Li Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeanne S Sheffield
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Brown
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiol Mol Biol Rev 2018; 82:82/4/e00015-18. [PMID: 30209070 DOI: 10.1128/mmbr.00015-18] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.
Collapse
|
28
|
Zheng Y, Liu Q, Wu Y, Ma L, Zhang Z, Liu T, Jin S, She Y, Li YP, Cui J. Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis. EMBO J 2018; 37:embj.201899347. [PMID: 30065070 DOI: 10.15252/embj.201899347] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023] Open
Abstract
Viral infection triggers host innate immune responses, which primarily include the activation of type I interferon (IFN) signaling and inflammasomes. Here, we report that Zika virus (ZIKV) infection triggers NLRP3 inflammasome activation, which is further enhanced by viral non-structural protein NS1 to benefit its replication. NS1 recruits the host deubiquitinase USP8 to cleave K11-linked poly-ubiquitin chains from caspase-1 at Lys134, thus inhibiting the proteasomal degradation of caspase-1. The enhanced stabilization of caspase-1 by NS1 promotes the cleavage of cGAS, which recognizes mitochondrial DNA release and initiates type I IFN signaling during ZIKV infection. NLRP3 deficiency increases type I IFN production and strengthens host resistance to ZIKVin vitro and in vivo Taken together, our work unravels a novel antagonistic mechanism employed by ZIKV to suppress host immune response by manipulating the interplay between inflammasome and type I IFN signaling, which might guide the rational design of therapeutics in the future.
Collapse
Affiliation(s)
- Yanyan Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qingxiang Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Ma
- Institute of Human Virology, Key Laboratory of Tropical Diseases Control Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Diseases Control Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanchu She
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Ping Li
- Institute of Human Virology, Key Laboratory of Tropical Diseases Control Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China .,Department of Infectious Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|