1
|
Wulandari S, Nuryastuti T, Oktoviani FN, Daniwijaya MEW, Supriyati E, Arguni E, Hartono, Wibawa T. The association between high mobility group box 1 (HMGB1) and Interleukin-18 (IL-18) serum concentrations in COVID-19 inpatients. Heliyon 2024; 10:e26619. [PMID: 38434314 PMCID: PMC10907672 DOI: 10.1016/j.heliyon.2024.e26619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Background High mobility group box 1 (HMGB1) and interleukin-18 (IL-18) are involved in various non-coronavirus disease pathogenesis and are reported as potential biomarkers for coronavirus disease (COVID-19). However, their association with COVID-19 pathogenesis has not yet been explored. Aim This study aimed to investigate the association between HMGB1 and IL-18 concentrations in the sera of COVID-19 patients versus non-COVID-19 patients. Material and methods We used stored serum samples obtained from 30 COVID-19 patients and 30 non-COVID-19 patients. We collected data on age, gender, treatment status, principal diagnosis, and comorbidity from patient medical records. HMGB1 and IL-18 concentrations were analyzed in the serum by enzyme-linked immunosorbent assay (ELISA). The swab samples' RT-PCR cycle threshold (CT) values were obtained from the laboratory database. Results HMGB1 concentrations were increased in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 151.33 (90.27-192.38) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0316; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 152.66 (104.04-288.51) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0199). IL-18 concentrations were also higher in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 620.00 (461.50-849.6) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0376; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 835.70 (558.30-1602.00) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0026). Moreover, HMGB1 was associated with IL-18 concentrations in the sera of COVID-19 inpatients (p = 0.0337; r = 0.5500). Conclusion The association of HMGB1 and IL-18 in COVID-19 might indicate the potential for a dangerous cycle leading to a cytokine storm to occur.
Collapse
Affiliation(s)
- Sri Wulandari
- Doctorate Program of Medicine and Health Science, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Farida Nur Oktoviani
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hartono
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
3
|
Chaudhary N, Srivastava S, Gupta S, Menon MB, Patel AK. Dengue virus induced autophagy is mediated by HMGB1 and promotes viral propagation. Int J Biol Macromol 2023; 229:624-635. [PMID: 36587643 DOI: 10.1016/j.ijbiomac.2022.12.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) exploits various cellular pathways including autophagy to assure enhanced virus propagation. The mechanisms of DENV mediated control of autophagy pathway are largely unknown. Our investigations have revealed a novel role for high-mobility group box1 protein (HMGB1) in regulation of cellular autophagy process in DENV-2 infected A549 cell line. While induction of autophagy by rapamycin treatment resulted in enhanced DENV-2 propagation, the blockade of autophagy flux with bafilomycin A1 suppressed viral replication. Furthermore, siRNA-mediated silencing of HMGB1 significantly abrogated dengue induced autophagy, while LPS induced HMGB1 expression counteracted these effects. Interestingly, silencing of HMGB1 showed reduction of BECN1 and stabilization of BCL-2 protein. On the contrary, LPS induction of HMGB1 resulted in enhanced BECN1 and reduction in BCL-2 levels. This study shows that the modulation of autophagy by DENV-2 is HMGB1/BECN1 dependent. In addition, glycyrrhizic acid (GA), a potent HMGB1 inhibitor suppressed autophagy as well as DENV-2 replication. Altogether, our data suggests that HMGB1 induces BECN1 dependent autophagy to promote DENV-2 replication.
Collapse
Affiliation(s)
- Nidhi Chaudhary
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Shikha Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Sunny Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India.
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India.
| |
Collapse
|
4
|
Endothelial Dysfunction, HMGB1, and Dengue: An Enigma to Solve. Viruses 2022; 14:v14081765. [PMID: 36016387 PMCID: PMC9414358 DOI: 10.3390/v14081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue is a viral infection caused by dengue virus (DENV), which has a significant impact on public health worldwide. Although most infections are asymptomatic, a series of severe clinical manifestations such as hemorrhage and plasma leakage can occur during the severe presentation of the disease. This suggests that the virus or host immune response may affect the protective function of endothelial barriers, ultimately being considered the most relevant event in severe and fatal dengue pathogenesis. The mechanisms that induce these alterations are diverse. It has been suggested that the high mobility group box 1 protein (HMGB1) may be involved in endothelial dysfunction. This non-histone nuclear protein has different immunomodulatory activities and belongs to the alarmin group. High concentrations of HMGB1 have been detected in patients with several infectious diseases, including dengue, and it could be considered as a biomarker for the early diagnosis of dengue and a predictor of complications of the disease. This review summarizes the main features of dengue infection and describes the known causes associated with endothelial dysfunction, highlighting the involvement and possible relationship between HMGB1 and DENV.
Collapse
|
5
|
Yong YK, Wong WF, Vignesh R, Chattopadhyay I, Velu V, Tan HY, Zhang Y, Larsson M, Shankar EM. Dengue Infection - Recent Advances in Disease Pathogenesis in the Era of COVID-19. Front Immunol 2022; 13:889196. [PMID: 35874775 PMCID: PMC9299105 DOI: 10.3389/fimmu.2022.889196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The dynamics of host-virus interactions, and impairment of the host’s immune surveillance by dengue virus (DENV) serotypes largely remain ambiguous. Several experimental and preclinical studies have demonstrated how the virus brings about severe disease by activating immune cells and other key elements of the inflammatory cascade. Plasmablasts are activated during primary and secondary infections, and play a determinative role in severe dengue. The cross-reactivity of DENV immune responses with other flaviviruses can have implications both for cross-protection and severity of disease. The consequences of a cross-reactivity between DENV and anti-SARS-CoV-2 responses are highly relevant in endemic areas. Here, we review the latest progress in the understanding of dengue immunopathogenesis and provide suggestions to the development of target strategies against dengue.
Collapse
Affiliation(s)
- Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
- *Correspondence: Esaki M. Shankar, ; Yean Kong Yong,
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ramachandran Vignesh
- Preclinical Department, Royal College of Medicine Perak (UniKL RCMP), Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Indranil Chattopadhyay
- Cancer and Microbiome Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory National Primate Research Center, Emory University, Atlanta GA, United States
| | - Hong Yien Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Ying Zhang
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
- *Correspondence: Esaki M. Shankar, ; Yean Kong Yong,
| |
Collapse
|
6
|
Taraphdar D, Singh B, Pattanayak S, Kiran A, Kokavalla P, Alam MF, Syed GH. Comodulation of Dengue and Chikungunya Virus Infection During a Coinfection Scenario in Human Cell Lines. Front Cell Infect Microbiol 2022; 12:821061. [PMID: 35573775 PMCID: PMC9097606 DOI: 10.3389/fcimb.2022.821061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Dengue virus (DENV) and Chikungunya virus (CHIKV) are the arboviruses that pose a threat to global public health. Coinfection and antibody-dependent enhancement are major areas of concern during DENV and CHIKV infections, which can alter the clinical severity. Acute hepatic illness is a common manifestation and major sign of disease severity upon infection with either dengue or chikungunya. Hence, in this study, we characterized the coexistence and interaction between both the viruses in human hepatic (Huh7) cells during the coinfection/superinfection scenario. We observed that prior presence of or subsequent superinfection with DENV enhanced CHIKV replication. However, prior CHIKV infection negatively affected DENV. In comparison to monoinfection, coinfection with both DENV and CHIKV resulted in lower infectivity as compared to monoinfections with modest suppression of CHIKV but dramatic suppression of DENV replication. Subsequent investigations revealed that subneutralizing levels of DENV or CHIKV anti-sera can respectively promote the ADE of CHIKV or DENV infection in FcγRII bearing human myelogenous leukemia cell line K562. Our observations suggest that CHIKV has a fitness advantage over DENV in hepatic cells and prior DENV infection may enhance CHIKV disease severity if the patient subsequently contracts CHIKV. This study highlights the natural possibility of dengue-chikungunya coinfection and their subsequent modulation in human hepatic cells. These observations have important implications in regions where both viruses are prevalent and calls for proper management of DENV-CHIKV coinfected patients.
Collapse
Affiliation(s)
- Debjani Taraphdar
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Bharati Singh
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Sabyasachi Pattanayak
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Avula Kiran
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Poornima Kokavalla
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd. Faraz Alam
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Gulam Hussain Syed
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
7
|
miR-573 rescues endothelial dysfunction during dengue infection under PPARγ regulation. J Virol 2022; 96:e0199621. [PMID: 35108097 DOI: 10.1128/jvi.01996-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early prognosis of abnormal vasculopathy is essential for effective clinical management of severe dengue patients. An exaggerated interferon (IFN) response and release of vasoactive factors from endothelial cells cause vasculopathy. This study shows that dengue 2 (DENV2) infection of human umbilical vein endothelial cells (HUVEC) results in differentially regulated miRNAs important for endothelial function. miR-573 was significantly down-regulated in DENV2-infected HUVEC due to decreased Peroxisome Proliferator Activator Receptor Gamma (PPARγ) activity. Restoring miR-573 expression decreased endothelial permeability by suppressing the expression of vasoactive angiopoietin 2 (ANGPT2). We also found that miR-573 suppressed the proinflammatory IFN response through direct downregulation of toll like receptor 2 (TLR2) expression. Our study provides a novel insight into miR-573 mediated regulation of endothelial function during DENV2 infection which can be further translated into a potential therapeutic and prognostic agent for severe dengue patients. IMPORTANCE: We need to identify molecular factors which can predict the onset of endothelial dysfunction in dengue patients. Increase in endothelial permeability during severe dengue infections is poorly understood. In this study we focus on factors which regulate endothelial function and are dysregulated during DENV2 infection. We show that miR-573 rescues endothelial permeability and is downregulated during DENV2 infection in endothelial cells. This finding can have diagnostic as well as therapeutic applications.
Collapse
|
8
|
Evaluating Dengue Virus Pathogenesis in Mice and Humans by Histological and Immunohistochemistry Approaches. Methods Mol Biol 2022; 2409:259-269. [PMID: 34709648 DOI: 10.1007/978-1-0716-1879-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The analysis of dengue virus (DENV) infected tissues in mice experimental model and in human biopsies/autopsies may support the pathogenesis studies. Through such models, it is possible to investigate possible histopathological changes caused by the infection and detections of different targets of interest, such as viral antigens, immune cells, and cytokines. In this chapter, we showed a brief review of how histological and immunohistochemistry approaches may improve the knowledge in this field.
Collapse
|
9
|
Rocha DCP, Souza TMA, Nunes PCG, Mohana-Borges R, Paes MV, Guimarães GMC, Arcila JCS, Paiva IA, Azeredo ELD, Damasco PV, de Souza LJ, Dos Santos FB, Allonso D. Increased circulating levels of High Mobility Group Box 1 (HMGB1) in acute-phase Chikungunya virus infection: Potential disease biomarker. J Clin Virol 2021; 146:105054. [PMID: 34920373 DOI: 10.1016/j.jcv.2021.105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/01/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Chikungunya virus (CHIKV) causes a febrile syndrome with intense and debilitating arthralgia that can persist for several months or years after complete virus clearance. As there is no specific antiviral treatment or vaccine against CHIKV, identification of serological markers that help clinical management of CHIKV patients is urgent. The High Mobility Group Box 1 (HMGB1) protein is secreted to extracellular milieu and triggers an intense inflammatory process by inducing the overexpression of pro-inflammatory cytokines. HMGB1 plays an important role in several virus diseases as well as in rheumatoid arthritis. OBJECTIVES This study focus on the investigation of HMGB1 serum levels in a sera panel from CHIKV-infected patients in an attempt to assess its potential as a biomarker for chikungunya clinical management. STUDY DESIGN Eighty CHIKV-positive samples and 32 samples from healthy donors were subjected to a quantitative HMGB1 ELISA assay to assess the HMGB1 circulating levels. RESULTS HMGB1 levels were significantly higher in CHIKV-positive samples (516.12 ng/mL, SEM ± 48.83 ng/mL) compared to negative control (31.20 ng/mL, SEM ± 3.24 ng/mL, p < 0.0001). Circulating levels of HMGB1 persisted elevated during the whole acute-phase of disease and correlated with virus titer (p < 0.05). CONCLUSIONS The present study is the first to describe increased serum levels of HMGB1 in CHIKV infection and its positive correlation with virus titer, suggesting its potential use as a biomarker for diagnosis and treatment of chikungunya fever.
Collapse
Affiliation(s)
- Daniele C P Rocha
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Thiara Manuelle Alves Souza
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Priscila Conrado Guerra Nunes
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, RJ 20231-092, Brazil; Superintendência de Informações Estratégicas de Vigilância em Saúde (SIEVS/RJ), Secretaria de Saúde, Governo do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20031-142, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil
| | - Gabriel M C Guimarães
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Juan C S Arcila
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Iury Amâncio Paiva
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Elzinandes Leal de Azeredo
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Paulo Vieira Damasco
- Hospital Universitário Gaffrée Guinle, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil; Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ 20551-030, Brazil
| | - Luiz José de Souza
- Hospital dos Plantadores de Cana, Campos dos Goytacazes, RJ 28025-496, Brazil
| | - Flavia B Dos Santos
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
10
|
Jácome FC, Caldas GC, Rasinhas ADC, de Almeida ALT, de Souza DDC, Paulino AC, da Silva MAN, Bandeira DM, Barth OM, dos Santos FB, Barreto-Vieira DF. Immunocompetent Mice Infected by Two Lineages of Dengue Virus Type 2: Observations on the Pathology of the Lung, Heart and Skeletal Muscle. Microorganisms 2021; 9:microorganisms9122536. [PMID: 34946137 PMCID: PMC8704795 DOI: 10.3390/microorganisms9122536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) infection by one of the four serotypes (DENV-1 to 4) may result in a wide spectrum of clinical manifestations, with unpredictable evolution and organ involvement. Due to its association with severe epidemics and clinical manifestations, DENV-2 has been substantially investigated. In fact, the first emergence of a new lineage of the DENV-2 Asian/American genotype in Brazil (Lineage II) in 2008 was associated with severe cases and increased mortality related to organ involvement. A major challenge for dengue pathogenesis studies has been a suitable animal model, but the use of immune-competent mice, although sometimes controversial, has proven to be useful, as histological observations in infected animals reveal tissue alterations consistent to those observed in dengue human cases. Here, we aimed to investigate the outcomes caused by two distinct lineages of the DENV-2 Asian/American genotype in the lung, heart and skeletal muscle tissues of infected BALB/c mice. Tissues were submitted to histopathology, immunohistochemistry, histomorphometry and transmission electron microscopy (TEM) analysis. The viral genome was detected in heart and skeletal muscle samples. The viral antigen was detected in cardiomyocytes and endothelial cells of heart tissue. Heart and lung tissue samples presented morphological alterations comparable to those seen in dengue human cases. Creatine kinase serum levels were higher in mice infected with both lineages of DENV-2. Additionally, statistically significant differences, concerning alveolar septa thickening and heart weight, were observed between BALB/c mice infected with both DENV-2 lineages, which was demonstrated to be an appropriate experimental model for dengue pathogenesis studies on lung, heart and skeletal muscle tissues.
Collapse
Affiliation(s)
- Fernanda Cunha Jácome
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
- Correspondence:
| | - Gabriela Cardoso Caldas
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Arthur da Costa Rasinhas
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Ana Luisa Teixeira de Almeida
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Daniel Dias Coutinho de Souza
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Amanda Carlos Paulino
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Marcos Alexandre Nunes da Silva
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Derick Mendes Bandeira
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Ortrud Monika Barth
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| | - Flavia Barreto dos Santos
- Laboratory of Viral Immunology, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil;
| | - Debora Ferreira Barreto-Vieira
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro 21040-900, Brazil; (G.C.C.); (A.d.C.R.); (A.L.T.d.A.); (D.D.C.d.S.); (A.C.P.); (M.A.N.d.S.); (D.M.B.); (O.M.B.); (D.F.B.-V.)
| |
Collapse
|
11
|
Sayce AC, Martinez FO, Tyrrell BE, Perera N, Hill ML, Dwek RA, Miller JL, Zitzmann N. Pathogen-induced inflammation is attenuated by the iminosugar MON-DNJ via modulation of the unfolded protein response. Immunology 2021; 164:587-601. [PMID: 34287854 PMCID: PMC8517592 DOI: 10.1111/imm.13393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Sepsis is a life-threatening condition involving a dysregulated immune response to infectious agents that cause injury to host tissues and organs. Current treatments are limited to early administration of antibiotics and supportive care. While appealing, the strategy of targeted inhibition of individual molecules in the inflammatory cascade has not proved beneficial. Non-targeted, systemic immunosuppression with steroids has shown limited efficacy and raises concern for secondary infection. Iminosugars are a class of small molecule glycomimetics with distinct inhibition profiles for glycan processing enzymes based on stereochemistry. Inhibition of host endoplasmic reticulum resident glycoprotein processing enzymes has demonstrated efficacy as a broad-spectrum antiviral strategy, but limited consideration has been given to the effects on host glycoprotein production and consequent disruption of signalling cascades. This work demonstrates that iminosugars inhibit dengue virus, bacterial lipopolysaccharide and fungal antigen-stimulated cytokine responses in human macrophages. In spite of decreased inflammatory mediator production, viral replication is suppressed in the presence of iminosugar. Transcriptome analysis reveals the key interaction of pathogen-induced endoplasmic reticulum stress, the resulting unfolded protein response and inflammation. Our work shows that iminosugars modulate these interactions. Based on these findings, we propose a new therapeutic role for iminosugars as treatment for sepsis-related inflammatory disorders associated with excess cytokine secretion.
Collapse
Affiliation(s)
- Andrew C. Sayce
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
- Vanderbilt University School of MedicineVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Beatrice E. Tyrrell
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Nilanka Perera
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
- Faculty of Medical SciencesUniversity of Sri JayewardenepuraGangodawilaNugegodaSri Lanka
| | - Michelle L. Hill
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Raymond A. Dwek
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Joanna L. Miller
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Nicole Zitzmann
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| |
Collapse
|
12
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
13
|
Rox K, Heyner M, Krull J, Harmrolfs K, Rinne V, Hokkanen J, Perez Vilaro G, Díez J, Müller R, Kröger A, Sugiyama Y, Brönstrup M. Physiologically Based Pharmacokinetic/Pharmacodynamic Model for the Treatment of Dengue Infections Applied to the Broad Spectrum Antiviral Soraphen A. ACS Pharmacol Transl Sci 2021; 4:1499-1513. [PMID: 34661071 DOI: 10.1021/acsptsci.1c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 12/22/2022]
Abstract
While a drug treatment is unavailable, the global incidence of Dengue virus (DENV) infections and its associated severe manifestations continues to rise. We report the construction of the first physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that predicts viremia levels in relevant target organs based on preclinical data with the broad spectrum antiviral soraphen A (SorA), an inhibitor of the host cell target acetyl-CoA-carboxylase. SorA was highly effective against DENV in vitro (EC50 = 4.7 nM) and showed in vivo efficacy by inducing a significant reduction of viral load in the spleen and liver of IFNAR-/- mice infected with DENV-2. PBPK/PD predictions for SorA matched well with the experimental infection data. Transfer to a human PBPK/PD model for DENV to mimic a clinical scenario predicted a reduction in viremia by more than one log10 unit for an intravenous infusion regimen of SorA. The PBPK/PD model is applicable to any DENV drug lead and, thus, represents a valuable tool to accelerate and facilitate DENV drug discovery and development.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Sugiyama Laboratory, RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maxi Heyner
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Institute for Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jana Krull
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | | | | | - Gemma Perez Vilaro
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Juana Díez
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Rolf Müller
- German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Andrea Kröger
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Institute for Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
14
|
Ding X, Li S, Zhu L. Potential effects of HMGB1 on viral replication and virus infection-induced inflammatory responses: A promising therapeutic target for virus infection-induced inflammatory diseases. Cytokine Growth Factor Rev 2021; 62:54-61. [PMID: 34503914 DOI: 10.1016/j.cytogfr.2021.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Inflammatory responses, characterized by the overproduction of numerous proinflammatory mediators by immune cells, is essential to protect the host against invading pathogens. Excessive production of proinflammatory cytokines is a key pathogenic factor accounting for severe tissue injury and disease progression during the infection of multiple viruses, which are therefore termed as "cytokine storm". High mobility group box 1 (HMGB1), a ubiquitous DNA-binding protein released either over virus-infected cells or activated immune cells, may act as a proinflammatory cytokine with a robust capacity to potentiate inflammatory response and disease severity. Moreover, HMGB1 is a host factor that potentially participates in the regulation of viral replication cycles with complicated mechanisms. Currently, HMGB1 is regarded as a promising therapeutic target against virus infection. Here, we provide an overview of the updated studies on how HMGB1 is differentially manipulated by distinct viruses to regulate viral diseases.
Collapse
Affiliation(s)
- Xiuyan Ding
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China; College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70118, USA
| | - Liqian Zhu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China; College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
15
|
Correlation of host inflammatory cytokines and immune-related metabolites, but not viral NS1 protein, with disease severity of dengue virus infection. PLoS One 2020; 15:e0237141. [PMID: 32764789 PMCID: PMC7413495 DOI: 10.1371/journal.pone.0237141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
Collapse
|
16
|
Salomão N, Rabelo K, Basílio-de-Oliveira C, Basílio-de-Oliveira R, Geraldo L, Lima F, dos Santos F, Nuovo G, Oliveira ERA, Paes M. Fatal Dengue Cases Reveal Brain Injury and Viral Replication in Brain-Resident Cells Associated with the Local Production of Pro-Inflammatory Mediators. Viruses 2020; 12:E603. [PMID: 32486462 PMCID: PMC7354550 DOI: 10.3390/v12060603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue is an arboviral disease caused by dengue virus (DENV), which is transmitted to humans by Aedes aegypti mosquitoes. Infection by DENV most commonly results in a mild flu-like illness; however, the disease has been increasingly associated with neurological symptomatology. This association draws attention to further investigations on the impact of DENV infection in the host's central nervous system. Here, we analyzed brain samples of three fatal dengue cases that occurred in 2002 during an outbreak in Rio de Janeiro, Brazil. Brain tissues of these cases were marked by histopathological alterations, such as degenerated neurons, demyelination, hemorrhage, edema, and increased numbers of astrocytes and microglial cells. Samples were also characterized by lymphocytic infiltrates mainly composed of CD8 T cells. DENV replication was evidenced in neurons, microglia and endothelial cells through immunohistochemistry and in situ hybridization techniques. Pro-inflammatory cytokines, such as TNF-α and IFN-γ were detected in microglia, while endothelial cells were marked by the expression of RANTES/CCL5. Cytoplasmic HMGB1 and the production of nitric oxide were also found in neurons and microglial cells. This work highlights the possible participation of several local pro-inflammatory mediators in the establishment of dengue neuropathogenesis.
Collapse
Affiliation(s)
- Natália Salomão
- Interdisciplinary Medical Research Laboratory Rio de Janeiro, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, Brazil;
| | - Kíssila Rabelo
- Ultrastructure and Tissue Biology Laboratory Rio de Janeiro, Rio de Janeiro State University, 20551-030 Rio de Janeiro, Brazil;
| | - Carlos Basílio-de-Oliveira
- Pathological Anatomy, Gaffrée Guinle University Hospital Rio de Janeiro, Federal University of the State of Rio de Janeiro, 20270-004 Rio de Janeiro, Brazil; (C.B.-d.-O.); (R.B.-d.-O.)
| | - Rodrigo Basílio-de-Oliveira
- Pathological Anatomy, Gaffrée Guinle University Hospital Rio de Janeiro, Federal University of the State of Rio de Janeiro, 20270-004 Rio de Janeiro, Brazil; (C.B.-d.-O.); (R.B.-d.-O.)
| | - Luiz Geraldo
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences Rio de Janeiro, Federal University of Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil; (L.G.); (F.L.)
| | - Flávia Lima
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences Rio de Janeiro, Federal University of Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil; (L.G.); (F.L.)
| | - Flávia dos Santos
- Viral Immunology Laboratory, Oswaldo Cruz Institute Rio de Janeiro, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, Brazil;
| | - Gerard Nuovo
- Ohio State University Comprehensive Cancer Center, Ohio State University Foundation, Columbus, OH 43210, USA;
- Phylogeny Medical Laboratory Columbus, Ohio State University Foundation, Columbus, OH 43214, USA
| | - Edson R. A. Oliveira
- Department of Microbiology and Immunology Chicago, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Marciano Paes
- Interdisciplinary Medical Research Laboratory Rio de Janeiro, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, Brazil;
| |
Collapse
|
17
|
Shi X, Yu L, Zhang Y, Liu Z, Zhang H, Zhang Y, Liu P, Du P. Glycyrrhetinic acid alleviates hepatic inflammation injury in viral hepatitis disease via a HMGB1-TLR4 signaling pathway. Int Immunopharmacol 2020; 84:106578. [PMID: 32416454 PMCID: PMC7205693 DOI: 10.1016/j.intimp.2020.106578] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022]
Abstract
Licorice defect in TCM recipes leads to the hepatotoxicity in administrated mice. GA inhibits viral hepatitis by suppressing HMGB1 release and cytokine activity. GA treatment effect on infected mice is similar with HMGB1 neutralizing antibody. HMGB1-TLR4 axis is involved in murine hepatic injury during MHV infection.
Various human disorders are cured by the use of licorice, a key ingredient of herbal remedies. Glycyrrhizic acid (GL), a triterpenoid glycoside, is the aqueous extract from licorice root. Glycyrrhetinic acid (GA) has been reported to be a major bioactive hydrolysis product of GL and has been regarded as an anti-inflammatory agent for the treatment of a variety of inflammatory diseases, including hepatitis. However, the mechanism by which GA inhibits viral hepatic inflammatory injury is not completely understood. In this study, we found that, by consecutively treating mice with a traditional herbal recipe, licorice plays an important role in the detoxification of mice. We also employed a murine hepatitis virus (MHV) infection model to illustrate that GA treatment inhibited activation of hepatic inflammatory responses by blocking high-mobility group box 1 (HMGB1) cytokine activity. Furthermore, decreased HMGB1 levels and downstream signaling triggered by injection of a neutralizing HMGB1 antibody or TLR4 gene deficiency, also significantly protected against MHV-induced severe hepatic injury. Thus, our findings characterize GA as a hepatoprotective therapy agent in hepatic infectious disease not only by suppressing HMGB1 release and blocking HMGB1 cytokine activity, but also via an underlying viral-induced HMGB1-TLR4 immunological regulation axis that occurs during the cytokine storm. The present study provides a new therapy strategy for the treatment of acute viral hepatitis in the clinical setting.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cell Line
- Cytokines/genetics
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Glycyrrhetinic Acid/pharmacology
- Glycyrrhetinic Acid/therapeutic use
- Glycyrrhiza
- HMGB1 Protein/immunology
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/immunology
- Liver/drug effects
- Liver/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Murine hepatitis virus
- Signal Transduction/drug effects
- Toll-Like Receptor 4/genetics
Collapse
Affiliation(s)
- Xiaodong Shi
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China.
| | - Lijia Yu
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Yinglin Zhang
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Zequan Liu
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Huawei Zhang
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Yansong Zhang
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing 102308, China
| | - Ping Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peishuang Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Phuong NTN, Manh DH, Dumre SP, Mizukami S, Weiss LN, Van Thuong N, Ha TTN, Phuc LH, Van An T, Tieu TM, Kamel MG, Morra ME, Huong VTQ, Huy NT, Hirayama K. Plasma cell-free DNA: a potential biomarker for early prediction of severe dengue. Ann Clin Microbiol Antimicrob 2019; 18:10. [PMID: 30871553 PMCID: PMC6419393 DOI: 10.1186/s12941-019-0309-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
Background Considerable progress has been made in dengue management, however the lack of appropriate predictors of severity has led to huge number of unwanted admissions mostly decided on the grounds of warning signs. Apoptosis related mediators, among others, are known to correlate with severe dengue (SD) although no predictive validity is established. The objective of this study was to investigate the association of plasma cell-free DNA (cfDNA) with SD, and evaluate its prognostic value in SD prediction at acute phase. Methods This was a hospital-based prospective cohort study conducted in Vietnam. All the recruited patients were required to be admitted to the hospital and were strictly monitored for various laboratory and clinical parameters (including progression to SD) until discharged. Plasma samples collected during acute phase (6–48 h before defervescence) were used to estimate the level of cfDNA. Results Of the 61 dengue patients, SD patients (n = 8) developed shock syndrome in 4.8 days (95% CI 3.7–5.4) after the fever onset. Plasma cfDNA levels before the defervescence of SD patients were significantly higher than the non-SD group (p = 0.0493). From the receiver operating characteristic (ROC) curve analysis, a cut-off of > 36.9 ng/mL was able to predict SD with a good sensitivity (87.5%), specificity (54.7%), and area under the curve (AUC) (0.72, 95% CI 0.55–0.88; p = 0.0493). Conclusions Taken together, these findings suggest that cfDNA could serve as a potential prognostic biomarker of SD. Studies with cfDNA kinetics and its combination with other biomarkers and clinical parameters would further improve the diagnostic ability for SD. Electronic supplementary material The online version of this article (10.1186/s12941-019-0309-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyen Thi Ngoc Phuong
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Health Innovation Course, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Dao Huy Manh
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Global Leader Nurturing Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shyam Prakash Dumre
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Lan Nguyen Weiss
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Van Thuong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Tran Thi Ngoc Ha
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Le Hong Phuc
- Nguyen Dinh Chieu Hospital, Ben Tre Province, Vietnam
| | - Tran Van An
- Nguyen Dinh Chieu Hospital, Ben Tre Province, Vietnam
| | - Thuan Minh Tieu
- Online research Club (www.onlineresearchclub.org/), Nagasaki, Japan.,Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Mohamed Gomaa Kamel
- Online research Club (www.onlineresearchclub.org/), Nagasaki, Japan.,Faculty of Medicine, Minia University, Minia, Egypt
| | - Mostafa Ebraheem Morra
- Online research Club (www.onlineresearchclub.org/), Nagasaki, Japan.,Faculty of Medicine, Alazhar University, Cairo, 11884, Egypt
| | - Vu Thi Que Huong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Tien Huy
- Evidence Based Medicine Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 70000, Vietnam. .,Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan. .,Global Leader Nurturing Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
19
|
Subverting the mechanisms of cell death: flavivirus manipulation of host cell responses to infection. Biochem Soc Trans 2018; 46:609-617. [DOI: 10.1042/bst20170399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Viruses exploit host metabolic and defence machinery for their own replication. The flaviviruses, which include Dengue (DENV), Yellow Fever (YFV), Japanese Encephalitis (JEV), West Nile (WNV) and Zika (ZIKV) viruses, infect a broad range of hosts, cells and tissues. Flaviviruses are largely transmitted by mosquito bites and humans are usually incidental, dead-end hosts, with the notable exceptions of YFV, DENV and ZIKV. Infection by flaviviruses elicits cellular responses including cell death via necrosis, pyroptosis (involving inflammation) or apoptosis (which avoids inflammation). Flaviviruses exploit these mechanisms and subvert them to prolong viral replication. The different effects induced by DENV, WNV, JEV and ZIKV are reviewed. Host cell surface proteoglycans (PGs) bearing glycosaminoglycan (GAG) polysaccharides — heparan/chondroitin sulfate (HS/CS) — are involved in initial flavivirus attachment and during the expression of non-structural viral proteins play a role in disease aetiology. Recent work has shown that ZIKV-infected cells are protected from cell death by exogenous heparin (a GAG structurally similar to host cell surface HS), raising the possibility of further subtle involvement of HS PGs in flavivirus disease processes. The aim of this review is to synthesize information regarding DENV, WNV, JEV and ZIKV from two areas that are usually treated separately: the response of host cells to infection by flaviviruses and the involvement of cell surface GAGs in response to those infections.
Collapse
|