1
|
Li F, Guo C, Zhao Q, Wen W, Zhai S, Cao X, Liu C, Cheng D, Guo J, Zi Y, Liu A, Song J, Liu J, Liu J, Li H. Genome-wide linkage mapping of Fusarium crown rot in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1457437. [PMID: 39554517 PMCID: PMC11563792 DOI: 10.3389/fpls.2024.1457437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024]
Abstract
Introduction Powdery mildew (PM) poses an extreme threat to wheat yields and quality.[Methods] In this study, 262 recombinant inbred lines (RILs) of Doumai and Shi 4185 cross were used to map PM resistance genes across four environments. A high-density genetic linkage map of the Doumai/Shi 4185 RIL population was constructed using the wheat Illumina iSelect 90K single-nucleotide polymorphism (SNP) array. Results In total, four stable quantitative trait loci (QTLs) for PM resistance, QPm.caas-2AS, QPm.caas-4AS, QPm.caas-4BL, and QPm.caas-6BS, were detected and explained 5.6%-15.6% of the phenotypic variances. Doumai contributed all the resistance alleles of QPm.caas-2AS, QPm.caas-4AS, QPm.ca as-4BL, and QPm.caas-6BS. Among these, QPm.caas-4AS and QPm.caas-6BS overlapped with the previously reported loci, whereas QPm.caas-2AS and QPm.caas-4BL are potentially novel. Additionally, six high-confidence genes encoding the NBS-LRR-like resistance protein, disease resistance protein family, and calcium/calmodulin-dependent serine/threonine-kinase were selected as the candidate genes for PM resistance. Three kompetitive allele-specific PCR (KASP) markers, Kasp_PMR_2AS for QPm.caas-2AS, Kasp_PMR_4BL for QPm.caas-4BL, and Kasp_PMR_6BS for QPm.caas-6BS, were developed, and their genetic effects were validated in a natural population including 100 cultivars. Discussion These findings will offer valuable QTLs and available KASP markers to enhance wheat marker-assisted breeding for PM resistance.
Collapse
Affiliation(s)
- Faji Li
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Can Guo
- Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu, China
| | - Qi Zhao
- Collage of Life Science, Yantai University, Yantai, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shengnan Zhai
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinyou Cao
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Cheng Liu
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dungong Cheng
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jun Guo
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yan Zi
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aifeng Liu
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianmin Song
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianjun Liu
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Haosheng Li
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
2
|
Trémulot L, Macadré C, Gal J, Garmier M, Launay-Avon A, Paysant-Le Roux C, Ratet P, Noctor G, Dufresne M. Impact of high atmospheric carbon dioxide on the biotic stress response of the model cereal species Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2023; 14:1237054. [PMID: 37662181 PMCID: PMC10469009 DOI: 10.3389/fpls.2023.1237054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
Losses due to disease and climate change are among the most important issues currently facing crop production. It is therefore important to establish the impact of climate change, and particularly of high carbon dioxide (hCO2), on plant immunity in cereals, which provide 60% of human calories. The aim of this study was to determine if hCO2 impacts Brachypodium distachyon immunity, a model plant for temperate cereals. Plants were grown in air (430 ppm CO2) and at two high CO2 conditions, one that is relevant to projections within the coming century (1000 ppm) and a concentration sufficient to saturate photosynthesis (3000 ppm). The following measurements were performed: phenotyping and growth, salicylic acid contents, pathogen resistance tests, and RNAseq analysis of the transcriptome. Improved shoot development was observed at both 1000 and 3000 ppm. A transcriptomic analysis pointed to an increase in primary metabolism capacity under hCO2. Alongside this effect, up-regulation of genes associated with secondary metabolism was also observed. This effect was especially evident for the terpenoid and phenylpropanoid pathways, and was accompanied by enhanced expression of immunity-related genes and accumulation of salicylic acid. Pathogen tests using the fungus Magnaporthe oryzae revealed that hCO2 had a complex effect, with enhanced susceptibility to infection but no increase in fungal development. The study reveals that immunity in B. distachyon is modulated by growth at hCO2 and allows identification of pathways that might play a role in this effect.
Collapse
Affiliation(s)
- Lug Trémulot
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Catherine Macadré
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Joséphine Gal
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Graham Noctor
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| | - Marie Dufresne
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| |
Collapse
|
3
|
Haidoulis JF, Nicholson P. Tissue-specific transcriptome responses to Fusarium head blight and Fusarium root rot. FRONTIERS IN PLANT SCIENCE 2022; 13:1025161. [PMID: 36352885 PMCID: PMC9637937 DOI: 10.3389/fpls.2022.1025161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Fusarium head blight (FHB) and Fusarium root rot (FRR) are important diseases of small-grain cereals caused by Fusarium species. While host response to FHB has been subject to extensive study, very little is known about response to FRR and the transcriptome responses of FHB and FRR have not been thoroughly compared. Brachypodium distachyon (Bd) is an effective model for investigating host responses to both FHB and FRR. In this study the transcriptome response of Bd to F. graminearum (Fg) infection of heads and roots was investigated. An RNA-seq analysis was performed on both Bd FHB and FRR during the early infection. Additionally, an RNA-seq analysis was performed on in vitro samples of Fg for comparison with Fg gene expression in planta. Differential gene expression and gene-list enrichment analyses were used to compare FHB and FRR transcriptome responses in both Bd and Fg. Differential expression of selected genes was confirmed using RT-qPCR. Most genes associated with receptor signalling, cell-wall modification, oxidative stress metabolism, and cytokinin and auxin biosynthesis and signalling genes were generally upregulated in FHB or were downregulated in FRR. In contrast, Bd genes involved in jasmonic acid and ethylene biosynthesis and signalling, and antimicrobial production were similarly differentially expressed in both tissues in response to infection. A transcriptome analysis of predicted Fg effectors with the same infected material revealed elevated expression of core tissue-independent genes including cell-wall degradation enzymes and the gene cluster for DON production but also several tissue-dependent genes including those for aurofusarin production and cutin degradation. This evidence suggests that Fg modulates its transcriptome to different tissues of the same host.
Collapse
Affiliation(s)
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, England
| |
Collapse
|
4
|
Piasecka A, Sawikowska A, Jedrzejczak-Rey N, Piślewska-Bednarek M, Bednarek P. Targeted and Untargeted Metabolomic Analyses Reveal Organ Specificity of Specialized Metabolites in the Model Grass Brachypodium distachyon. Molecules 2022; 27:molecules27185956. [PMID: 36144695 PMCID: PMC9506550 DOI: 10.3390/molecules27185956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Brachypodium distachyon, because of its fully sequenced genome, is frequently used as a model grass species. However, its metabolome, which constitutes an indispensable element of complex biological systems, remains poorly characterized. In this study, we conducted comprehensive, liquid chromatography-mass spectrometry (LC-MS)-based metabolomic examination of roots, leaves and spikes of Brachypodium Bd21 and Bd3-1 lines. Our pathway enrichment analysis emphasised the accumulation of specialized metabolites representing the flavonoid biosynthetic pathway in parallel with processes related to nucleotide, sugar and amino acid metabolism. Similarities in metabolite profiles between both lines were relatively high in roots and leaves while spikes showed higher metabolic variance within both accessions. In roots, differences between Bd21 and Bd3-1 lines were manifested primarily in diterpenoid metabolism, while differences within spikes and leaves concerned nucleotide metabolism and nitrogen management. Additionally, sulphate-containing metabolites differentiated Bd21 and Bd3-1 lines in spikes. Structural analysis based on MS fragmentation spectra enabled identification of 93 specialized metabolites. Among them phenylpropanoids and flavonoids derivatives were mainly determined. As compared with closely related barley and wheat species, metabolic profile of Brachypodium is characterized with presence of threonate derivatives of hydroxycinnamic acids.
Collapse
Affiliation(s)
- Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Correspondence: (A.P.); (P.B.); Tel.: +48-61-852-85-03 (A.P. & P.B.); Fax: +48-61-852-05-32 (A.P. & P.B.)
| | - Aneta Sawikowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Nicolas Jedrzejczak-Rey
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Correspondence: (A.P.); (P.B.); Tel.: +48-61-852-85-03 (A.P. & P.B.); Fax: +48-61-852-05-32 (A.P. & P.B.)
| |
Collapse
|
5
|
BdGUCD1 and Cyclic GMP Are Required for Responses of Brachypodium distachyon to Fusarium pseudograminearum in the Mechanism Involving Jasmonate. Int J Mol Sci 2022; 23:ijms23052674. [PMID: 35269814 PMCID: PMC8910563 DOI: 10.3390/ijms23052674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/25/2023] Open
Abstract
Guanosine 3′,5′-cyclic monophosphate (cGMP) is an important signaling molecule in plants. cGMP and guanylyl cyclases (GCs), enzymes that catalyze the synthesis of cGMP from GTP, are involved in several physiological processes and responses to environmental factors, including pathogen infections. Using in vitro analysis, we demonstrated that recombinant BdGUCD1 is a protein with high guanylyl cyclase activity and lower adenylyl cyclase activity. In Brachypodium distachyon, infection by Fusarium pseudograminearum leads to changes in BdGUCD1 mRNA levels, as well as differences in endogenous cGMP levels. These observed changes may be related to alarm reactions induced by pathogen infection. As fluctuations in stress phytohormones after infection have been previously described, we performed experiments to determine the relationship between cyclic nucleotides and phytohormones. The results revealed that inhibition of cellular cGMP changes disrupts stress phytohormone content and responses to pathogen. The observations made here allow us to conclude that cGMP is an important element involved in the processes triggered as a result of infection and changes in its levels affect jasmonic acid. Therefore, stimuli-induced transient elevation of cGMP in plants may play beneficial roles in priming an optimized response, likely by triggering the mechanisms of feedback control.
Collapse
|
6
|
Ding Y, Gardiner DM, Kazan K. Transcriptome analysis reveals infection strategies employed by Fusarium graminearum as a root pathogen. Microbiol Res 2021; 256:126951. [PMID: 34972022 DOI: 10.1016/j.micres.2021.126951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
The fungal pathogen Fusarium graminearum (Fg) infects both heads and roots of cereal crops causing several economically important diseases such as head blight, seedling blight, crown rot and root rot. Trichothecene mycotoxins such as deoxynivalenol (DON), a well-known virulence factor, produced by Fg during disease development is also an important health concern. Although how Fg infects above-ground tissues is relatively well studied, very little is known about molecular processes employed by the pathogen during below-ground infection. Also unknown is the role of DON during root infection. In the present study, we analyzed the transcriptome of Fg during root infection of the model cereal Brachypodium distachyon (Bd). We also compared our Fg transcriptome data obtained during Bd root infection with those reported during wheat head infection. These analyses suggested that both shared and unique infection strategies were employed by the pathogen during colonization of different host tissues. Several metabolite biosynthesis genes induced in Fg during root infection could be linked to phytohormone production, implying that the pathogen likely interferes with root specific defenses. In addition, to understand the role of DON in Fg root infection, we analyzed the transcriptome of the DON deficient Tri5 mutant. These analyses showed that the absence of DON had a significant effect on fungal transcriptional responses. Although DON was produced in infected roots, this mycotoxin did not act as a Fg virulence factor during root infection. Our results reveal new mechanistic insights into the below-ground strategies employed by Fg that may benefit the development of new genetic tools to combat this important cereal pathogen.
Collapse
Affiliation(s)
- Yi Ding
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, 2570, New South Wales, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia.
| | - Donald M Gardiner
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, St Lucia, 4067, Queensland, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia
| | - Kemal Kazan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, St Lucia, 4067, Queensland, Australia; Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, 4067, Queensland, Australia.
| |
Collapse
|
7
|
Ding Y, Gardiner DM, Powell JJ, Colgrave ML, Park RF, Kazan K. Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. PLANT, CELL & ENVIRONMENT 2021; 44:3526-3544. [PMID: 34591319 DOI: 10.1111/pce.14195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Plant root-produced constitutive and inducible defences inhibit pathogenic microorganisms within roots and in the rhizosphere. However, regulatory mechanisms underlying host responses during root-pathogen interactions are largely unexplored. Using the model species Brachypodium distachyon (Bd), we studied transcriptional and metabolic responses altered in Bd roots following challenge with Fusarium graminearum (Fg), a fungal pathogen that causes diseases in diverse organs of cereal crops. Shared gene expression patterns were found between Bd roots and spikes during Fg infection associated with the mycotoxin deoxynivalenol (DON). Overexpression of BdMYB78, an up-regulated transcription factor, significantly increased root resistance during Fg infection. We show that Bd roots recognize encroaching Fg prior to physical contact by altering transcription of genes associated with multiple cellular processes such as reactive oxygen species and cell development. These changes coincide with altered levels of secreted host metabolites detected by an untargeted metabolomic approach. The secretion of Bd metabolites was suppressed by Fg as enhanced levels of defence-associated metabolites were found in roots during pre-contact with a Fg mutant defective in host perception and the ability to cause disease. Our results help to understand root defence strategies employed by plants, with potential implications for improving the resistance of cereal crops to soil pathogens.
Collapse
Affiliation(s)
- Yi Ding
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Donald M Gardiner
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Jonathan J Powell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Michelle L Colgrave
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Australian Research Council, Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Robert F Park
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Kemal Kazan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
8
|
Yang X, Hill KA, Austin RS, Tian L. Differential Gene Expression of Brachypodium distachyon Roots Colonized by Gluconacetobacter diazotrophicus and the Role of BdCESA8 in the Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1143-1156. [PMID: 34709058 DOI: 10.1094/mpmi-06-20-0170-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternatives to synthetic nitrogen fertilizer are needed to reduce the costs of crop production and offset environmental damage. Nitrogen-fixing bacterium Gluconacetobacter diazotrophicus has been proposed as a possible biofertilizer for monocot crop production. However, the colonization of G. diazotrophicus in most monocot crops is limited and deep understanding of the response of host plants to G. diazotrophicus colonization is still lacking. In this study, the molecular response of the monocot plant model Brachypodium distachyon was studied during G. diazotrophicus root colonization. The gene expression profiles of B. distachyon root tissues colonized by G. diazotrophicus were generated via next-generation RNA sequencing, and investigated through gene ontology and metabolic pathway analysis. The RNA sequencing results indicated that Brachypodium is actively involved in G. diazotrophicus colonization via cell wall synthesis. Jasmonic acid, ethylene, gibberellin biosynthesis. nitrogen assimilation, and primary and secondary metabolite pathways are also modulated to accommodate and control the extent of G. diazotrophicus colonization. Cellulose synthesis is significantly downregulated during colonization. The loss of function mutant for Brachypodium cellulose synthase 8 (BdCESA8) showed decreased cellulose content in xylem and increased resistance to G. diazotrophicus colonization. This result suggested that the cellulose synthesis of the secondary cell wall is involved in G. diazotrophicus colonization. The results of this study provide insights for future research in regard to gene manipulation for efficient colonization of nitrogen-fixing bacteria in Brachypodium and monocot crops.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Kathleen A Hill
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Ryan S Austin
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| |
Collapse
|
9
|
Zhu G, Gao C, Wu C, Li M, Xu JR, Liu H, Wang Q. Comparative transcriptome analysis reveals distinct gene expression profiles in Brachypodium distachyon infected by two fungal pathogens. BMC PLANT BIOLOGY 2021; 21:304. [PMID: 34193039 PMCID: PMC8243454 DOI: 10.1186/s12870-021-03019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/06/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND The production of cereal crops is frequently affected by diseases caused by Fusarium graminearum and Magnaporthe oryzae, two devastating fungal pathogens. To improve crop resistance, many studies have focused on understanding the mechanisms of host defense against these two fungi individually. However, our knowledge of the common and different host defenses against these pathogens is very limited. RESULTS In this study, we employed Brachypodium distachyon as a model for cereal crops and performed comparative transcriptomics to study the dynamics of host gene expression at different infection stages. We found that infection with either F. graminearum or M. oryzae triggered massive transcriptomic reprogramming in the diseased tissues. Numerous defense-related genes were induced with dynamic changes during the time course of infection, including genes that function in pattern detection, MAPK cascade, phytohormone signaling, transcription, protein degradation, and secondary metabolism. In particular, the expression of jasmonic acid signaling genes and proteasome component genes were likely specifically inhibited or manipulated upon infection by F. graminearum. CONCLUSIONS Our analysis showed that, although the affected host pathways are similar, their expression programs and regulations are distinct during infection by F. graminearum and M. oryzae. The results provide valuable insight into the interactions between B. distachyon and two important cereal pathogens.
Collapse
Affiliation(s)
- Gengrui Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengyu Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenyu Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Su ZY, Powell JJ, Gao S, Zhou M, Liu C. Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance. BMC PLANT BIOLOGY 2021; 21:73. [PMID: 33535991 PMCID: PMC7860180 DOI: 10.1186/s12870-020-02818-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fusarium crown rot (FCR) is a chronic disease in cereal production worldwide. The impact of this disease is highly environmentally dependant and significant yield losses occur mainly in drought-affected crops. RESULTS In the study reported here, we evaluated possible relationships between genes conferring FCR resistance and drought tolerance using two approaches. The first approach studied FCR induced differentially expressed genes (DEGs) targeting two barley and one wheat loci against a panel of genes curated from the literature based on known functions in drought tolerance. Of the 149 curated genes, 61.0% were responsive to FCR infection across the three loci. The second approach was a comparison of the global DEGs induced by FCR infection with the global transcriptomic responses under drought in wheat. This analysis found that approximately 48.0% of the DEGs detected one week following drought treatment and 74.4% of the DEGs detected three weeks following drought treatment were also differentially expressed between the susceptible and resistant isolines under FCR infection at one or more timepoints. As for the results from the first approach, the vast majority of common DEGs were downregulated under drought and expressed more highly in the resistant isoline than the sensitive isoline under FCR infection. CONCLUSIONS Results from this study suggest that the resistant isoline in wheat was experiencing less drought stress, which could contribute to the stronger defence response than the sensitive isoline. However, most of the genes induced by drought stress in barley were more highly expressed in the susceptible isolines than the resistant isolines under infection, indicating that genes conferring drought tolerance and FCR resistance may interact differently between these two crop species. Nevertheless, the strong relationship between FCR resistance and drought responsiveness provides further evidence indicating the possibility to enhance FCR resistance by manipulating genes conferring drought tolerance.
Collapse
Affiliation(s)
- Z Y Su
- CSIRO Agriculture and Food, St Lucia, Queensland, 4067, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, 7250, Australia
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - J J Powell
- CSIRO Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - S Gao
- CSIRO Agriculture and Food, St Lucia, Queensland, 4067, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, 7250, Australia
| | - M Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, 7250, Australia
| | - C Liu
- CSIRO Agriculture and Food, St Lucia, Queensland, 4067, Australia.
| |
Collapse
|
11
|
Comparative Analysis of Transcriptome and sRNAs Expression Patterns in the Brachypodium distachyon- Magnaporthe oryzae Pathosystems. Int J Mol Sci 2021; 22:ijms22020650. [PMID: 33440747 PMCID: PMC7826919 DOI: 10.3390/ijms22020650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023] Open
Abstract
The hemibiotrophic fungus Magnaporthe oryzae (Mo) is the causative agent of rice blast and can infect aerial and root tissues of a variety of Poaceae, including the model Brachypodium distachyon (Bd). To gain insight in gene regulation processes occurring at early disease stages, we comparatively analyzed fungal and plant mRNA and sRNA expression in leaves and roots. A total of 310 Mo genes were detected consistently and differentially expressed in both leaves and roots. Contrary to Mo, only minor overlaps were observed in plant differentially expressed genes (DEGs), with 233 Bd-DEGs in infected leaves at 2 days post inoculation (DPI), compared to 4978 at 4 DPI, and 138 in infected roots. sRNA sequencing revealed a broad spectrum of Mo-sRNAs that accumulated in infected tissues, including candidates predicted to target Bd mRNAs. Conversely, we identified a subset of potential Bd-sRNAs directed against fungal cell wall components, virulence genes and transcription factors. We also show a requirement of operable RNAi genes from the DICER-like (DCL) and ARGONAUTE (AGO) families for fungal virulence. Overall, our work elucidates the extensive reprogramming of transcriptomes and sRNAs in both plant host (Bd) and fungal pathogen (Mo), further corroborating the critical role played by sRNA species in the establishment of the interaction and its outcome.
Collapse
|
12
|
Map-based cloning identifies velvet A as a critical component of virulence in Fusarium pseudograminearum during infection of wheat heads. Fungal Biol 2020; 125:191-200. [PMID: 33622535 DOI: 10.1016/j.funbio.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022]
Abstract
Although better known as a pathogen of wheat stem bases, Fusarium pseudograminearum also causes Fusarium head blight. A natural isolate of F. pseudograminearum was identified that showed severely reduced virulence towards wheat heads and a map-based cloning approach was undertaken to identify the genetic basis of this phenotype. Using a population of 95 individuals, a single locus on chromosome 1 was shown to be responsible for the low virulence. Fine mapping narrowed the region to just five possible SNPs of which one was in the F. pseudograminearum homologue of velvet A. Knockout mutants of velvet A, which were non-pathogenic towards wheat, confirmed that velvet A regulates virulence in this pathogen. The mutation in velvet A was only found in a single field isolate and the origin of the mutation is unknown.
Collapse
|
13
|
Abdelrahman M, Nakabayashi R, Mori T, Ikeuchi T, Mori M, Murakami K, Ozaki Y, Matsumoto M, Uragami A, Tsujimoto H, Tran LSP, Kanno A. Comparative Metabolome and Transcriptome Analyses of Susceptible Asparagus officinalis and Resistant Wild A. kiusianus Reveal Insights into Stem Blight Disease Resistance. PLANT & CELL PHYSIOLOGY 2020; 61:1464-1476. [PMID: 32374863 DOI: 10.1093/pcp/pcaa054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/18/2020] [Indexed: 05/23/2023]
Abstract
Phomopsis asparagi is one of the most serious fungal pathogens, which causes stem blight disease in Asparagus officinalis (AO), adversely affecting its production worldwide. Recently, the development of novel asparagus varieties using wild Asparagus genetic resources with natural P. asparagi resistance has become a priority in Japan due to the lack of resistant commercial AO cultivars. In this study, comparative metabolome and transcriptome analyses of susceptible AO and resistant wild Asparagus kiusianus (AK) 24 and 48 h postinoculated (AOI_24 hpi, AOI_48 hpi, AKI_24 hpi and AKI_48 hpi, respectively) with P. asparagi were conducted to gain insights into metabolic and expression changes associated with AK species. Following infection, the resistant wild AK showed rapid metabolic changes with increased levels of flavonoids and steroidal saponins and decreased asparagusic acid glucose ester content, compared with the susceptible AO plants. Transcriptome data revealed a total of 21 differentially expressed genes (DEGs) as the core gene set that displayed upregulation in the resistant AK versus susceptible AO after infection with P. asparagi. Kyoto Encyclopedia of Genes and Genomes pathway analysis of these DEGs identified 11 significantly enriched pathways, including flavonoid biosynthesis and primary metabolite metabolism, in addition to plant signaling and defense-related pathways. In addition, comparative single-nucleotide polymorphism and Indel distributions in susceptible AO and resistant AK plants were evaluated using the latest AO reference genome Aspof.V1. The data generated in this study are important resources for advancing Asparagus breeding programs and for investigations of genetic linkage mapping, phylogenetic diversity and plant defense-related genes.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Botany Department, Faculty of Sciences, Aswan University, Aswan 81528, Egypt
- Arid Land Research Center, Tottori University, Tottori, 680-0001 Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Ryo Nakabayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Tetsuya Mori
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Takao Ikeuchi
- Kagawa Prefectural Agricultural Experiment Station, 1534-1 Ayagawa, Ayauta, Kagawa, 761-2306 Japan
| | - Mitsutaka Mori
- Kagawa Prefectural Agricultural Experiment Station, 1534-1 Ayagawa, Ayauta, Kagawa, 761-2306 Japan
| | - Kyoko Murakami
- Kagawa Prefectural Agricultural Experiment Station, 1534-1 Ayagawa, Ayauta, Kagawa, 761-2306 Japan
| | - Yukio Ozaki
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Masaru Matsumoto
- Institute of Tropical Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Atsuko Uragami
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Ibaraki, 305-8519 Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001 Japan
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045 Japan
| | - Akira Kanno
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| |
Collapse
|
14
|
Sucher J, Mbengue M, Dresen A, Barascud M, Didelon M, Barbacci A, Raffaele S. Phylotranscriptomics of the Pentapetalae Reveals Frequent Regulatory Variation in Plant Local Responses to the Fungal Pathogen Sclerotinia sclerotiorum. THE PLANT CELL 2020; 32:1820-1844. [PMID: 32265317 PMCID: PMC7268813 DOI: 10.1105/tpc.19.00806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Quantitative disease resistance (QDR) is a conserved form of plant immunity that limits infections caused by a broad range of pathogens. QDR has a complex genetic determinism. The extent to which molecular components of the QDR response vary across plant species remains elusive. The fungal pathogen Sclerotinia sclerotiorum, causal agent of white mold diseases on hundreds of plant species, triggers QDR in host populations. To document the diversity of local responses to S. sclerotiorum at the molecular level, we analyzed the complete transcriptomes of six species spanning the Pentapetalae (Phaseolus vulgaris, Ricinus communis, Arabidopsis [Arabidopsis thaliana], Helianthus annuus, Solanum lycopersicum, and Beta vulgaris) inoculated with the same strain of S. sclerotiorum About one-third of plant transcriptomes responded locally to S. sclerotiorum, including a high proportion of broadly conserved genes showing frequent regulatory divergence at the interspecific level. Evolutionary inferences suggested a trend toward the acquisition of gene induction relatively recently in several lineages. Focusing on a group of ABCG transporters, we propose that exaptation by regulatory divergence contributed to the evolution of QDR. This evolutionary scenario has implications for understanding the QDR spectrum and durability. Our work provides resources for functional studies of gene regulation and QDR molecular mechanisms across the Pentapetalae.
Collapse
Affiliation(s)
- Justine Sucher
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Malick Mbengue
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Axel Dresen
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marielle Barascud
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marie Didelon
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Adelin Barbacci
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| |
Collapse
|
15
|
Gao S, Zheng Z, Powell J, Habib A, Stiller J, Zhou M, Liu C. Validation and delineation of a locus conferring Fusarium crown rot resistance on 1HL in barley by analysing transcriptomes from multiple pairs of near isogenic lines. BMC Genomics 2019; 20:650. [PMID: 31412765 PMCID: PMC6694680 DOI: 10.1186/s12864-019-6011-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/31/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Fusarium crown rot (FCR) is a chronic and severe disease in cereal production in semi-arid regions worldwide. A putative quantitative trait locus conferring FCR resistance, Qcrs.cpi-1H, had previously been mapped on the long arm of chromosome 1H in barley. RESULTS In this study, five pairs of near-isogenic lines (NILs) targeting the 1HL locus were developed. Analysing the NILs found that the resistant allele at Qcrs.cpi-1H significantly reduced FCR severity. Transcriptomic analysis was then conducted against three of the NIL pairs, which placed the Qcrs.cpi-1H locus in an interval spanning about 11 Mbp. A total of 56 expressed genes bearing single nucleotide polymorphisms (SNPs) were detected in this interval. Five of them contain non-synonymous SNPs. These results would facilitate detailed mapping as well as cloning gene(s) underlying the resistance locus. CONCLUSION NILs developed in this study and the transcriptomic sequences obtained from them did not only allow the validation of the resistance locus Qcrs.cpi-1H and the identification of candidate genes underlying its resistance, they also allowed the delineation of the resistance locus and the development of SNPs markers which formed a solid base for detailed mapping as well as cloning gene(s) underlying the locus.
Collapse
Affiliation(s)
- Shang Gao
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Zhi Zheng
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
| | - Jonathan Powell
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
| | - Ahsan Habib
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208 Bangladesh
| | - Jiri Stiller
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
| | - Meixue Zhou
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
| |
Collapse
|
16
|
Kundu A, Singh PK, Dey A, Ganguli S, Pal A. Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profiling. Sci Rep 2019; 9:8858. [PMID: 31221982 PMCID: PMC6586629 DOI: 10.1038/s41598-019-45383-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Mungbean Yellow Mosaic India Virus (MYMIV)-infection creates major hindrance in V. mungo cultivation and poses significant threat to other grain legume production. Symptoms associated include severe patho-physiological alterations characterized by chlorotic foliar lesion accompanied by reduced growth. However, dissection of the host's defense machinery remains a tough challenge due to limited of host's genomic resources. A comparative RNA-Seq transcriptomes of resistant (VM84) and susceptible (T9) plants was carried out to identify genes potentially involved in V. mungo resistance against MYMIV. Distinct gene expression landscapes were observed in VM84 and T9 with 2158 and 1679 differentially expressed genes (DEGs), respectively. Transcriptomic responses in VM84 reflect a prompt and intense immune reaction demonstrating an efficient pathogen surveillance leading to activation of basal and induced immune responses. Functional analysis of the altered DEGs identified multiple regulatory pathways to be activated or repressed over time. Up-regulation of DEGs including NB-LRR, WRKY33, ankyrin, argonaute and NAC transcription factor revealed an insight on their potential roles in MYMIV-resistance; and qPCR validation shows a propensity of their accumulation in VM84. Analyses of the current RNA-Seq dataset contribute immensely to decipher molecular responses that underlie MYMIV-resistance and will aid in the improvement strategy of V. mungo and other legumes through comparative functional genomics.
Collapse
Affiliation(s)
- Anirban Kundu
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India
- Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 7000118, India
| | | | - Avishek Dey
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India
| | - Sayak Ganguli
- Theoretical and Computational Biology, AIIST, Palta, Kolkata, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
17
|
Daba SD, Horsley R, Brueggeman R, Chao S, Mohammadi M. Genome-wide Association Studies and Candidate Gene Identification for Leaf Scald and Net Blotch in Barley ( Hordeum vulgare L.). PLANT DISEASE 2019; 103:880-889. [PMID: 30806577 DOI: 10.1094/pdis-07-18-1190-re] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report genomic regions that significantly control resistance to scald, net form (NFNB) and spot form net blotch (SFNB) in barley. Barley genotypes from Ethiopia, ICARDA, and the United States were evaluated in Ethiopia and North Dakota State University (NDSU). Genome-wide association studies (GWAS) were conducted using 23,549 single nucleotide polymorphism (SNP) markers for disease resistance in five environments in Ethiopia. For NFNB and SFNB, we assessed seedling resistance in a glasshouse at NDSU. A large proportion of the Ethiopian landraces and breeding genotypes were resistant to scald and NFNB. Most of genotypes resistant to SFNB were from NDSU. We identified 17, 26, 7, and 1 marker-trait associations (MTAs) for field-scored scald, field-scored net blotch, greenhouse-scored NFNB, and greenhouse-scored SFNB diseases, respectively. Using the genome sequence and the existing literature, we compared the MTAs with previously reported loci and genes for these diseases. For leaf scald, only a few of our MTAs overlap with previous reports. However, the MTAs found for field-scored net blotch as well as NFNB and SFNB mostly overlap with previous reports. We scanned the barley genome for identification of candidate genes within 250 kb of the MTAs, resulting in the identification of 307 barley genes for the 51 MTAs. Some of these genes are related to plant defense responses such as subtilisin-like protease, chalcone synthase, lipoxygenase, and defensin-like proteins.
Collapse
Affiliation(s)
- Sintayehu D Daba
- 1 Purdue University, Department of Agronomy, West Lafayette, IN 47907-2053
| | - Richard Horsley
- 2 North Dakota State University, Department of Plant Sciences, Fargo, ND 58108-6050
| | - Robert Brueggeman
- 3 North Dakota State University, Department of Plant Pathology, Fargo, ND 58102-2765; and
| | | | - Mohsen Mohammadi
- 1 Purdue University, Department of Agronomy, West Lafayette, IN 47907-2053
| |
Collapse
|
18
|
Swaminathan S, Das A, Assefa T, Knight JM, Da Silva AF, Carvalho JPS, Hartman GL, Huang X, Leandro LF, Cianzio SR, Bhattacharyya MK. Genome wide association study identifies novel single nucleotide polymorphic loci and candidate genes involved in soybean sudden death syndrome resistance. PLoS One 2019; 14:e0212071. [PMID: 30807585 PMCID: PMC6391044 DOI: 10.1371/journal.pone.0212071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/25/2019] [Indexed: 01/17/2023] Open
Abstract
Fusarium virguliforme is a soil borne root pathogen that causes sudden death syndrome (SDS) in soybean [Glycine max (L.) Merrill]. Once the fungus invades the root xylem tissues, the pathogen secretes toxins that cause chlorosis and necrosis in foliar tissues leading to defoliation, flower and pod drop and eventually death of plants. Resistance to F. virguliforme in soybean is partial and governed by over 80 quantitative trait loci (QTL). We have conducted genome-wide association study (GWAS) for a group of 254 plant introductions lines using a panel of approximately 30,000 SNPs and identified 19 single nucleotide polymorphic loci (SNPL) that are associated with 14 genomic regions encoding foliar SDS and eight SNPL associated with seven genomic regions for root rot resistance. Of the identified 27 SNPL, six SNPL for foliar SDS resistance and two SNPL for root rot resistance co-mapped to previously identified QTL for SDS resistance. This study identified 13 SNPL associated with eight novel genomic regions containing foliar SDS resistance genes and six SNPL with five novel regions for root-rot resistance. This study identified five genes carrying nonsynonymous mutations: (i) three of which mapped to previously identified QTL for foliar SDS resistance and (ii) two mapped to two novel regions containing root rot resistance genes. Of the three genes mapped to QTL for foliar SDS resistance genes, two encode LRR-receptors and third one encodes a novel protein with unknown function. Of the two genes governing root rot resistance, Glyma.01g222900.1 encodes a soybean-specific LEA protein and Glyma.10g058700.1 encodes a heparan-alpha-glucosaminide N-acetyltransferase. In the LEA protein, a conserved serine residue was substituted with asparagine; and in the heparan-alpha-glucosaminide N-acetyltransferase, a conserved histidine residue was substituted with an arginine residue. Such changes are expected to alter functions of these two proteins regulated through phosphorylation. The five genes with nonsynonymous mutations could be considered candidate SDS resistance genes and should be suitable molecular markers for breeding SDS resistance in soybean. The study also reports desirable plant introduction lines and novel genomic regions for enhancing SDS resistance in soybean.
Collapse
Affiliation(s)
| | - Anindya Das
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
| | - Teshale Assefa
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Joshua M. Knight
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | | | - João P. S. Carvalho
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Glen L. Hartman
- USDA and Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
| | - Leonor F. Leandro
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Silvia R. Cianzio
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | | |
Collapse
|
19
|
Sjokvist E, Lemcke R, Kamble M, Turner F, Blaxter M, Havis NHD, Lyngkjær MF, Radutoiu S. Dissection of Ramularia Leaf Spot Disease by Integrated Analysis of Barley and Ramularia collo-cygni Transcriptome Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:176-193. [PMID: 30681911 DOI: 10.1094/mpmi-05-18-0113-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ramularia leaf spot disease (RLS), caused by the ascomycete fungus Ramularia collo-cygni, has emerged as a major economic disease of barley. No substantial resistance has been identified, so far, among barley genotypes and, based on the epidemiology of the disease, a quantitative genetic determinacy of RLS has been suggested. The relative contributions of barley and R. collo-cygni genetics to disease infection and epidemiology are practically unknown. Here, we present an integrated genome-wide analysis of host and pathogen transcriptome landscapes identified in a sensitive barley cultivar following infection by an aggressive R. collo-cygni isolate. We compared transcriptional responses in the infected and noninfected leaf samples in order to identify which molecular events are associated with RLS symptom development. We found a large proportion of R. collo-cygni genes to be expressed in planta and that many were also closely associated with the infection stage. The transition from surface to apoplastic colonization was associated with downregulation of cell wall-degrading genes and upregulation of nutrient uptake and resistance to oxidative stresses. Interestingly, the production of secondary metabolites was dynamically regulated within the fungus, indicating that R. collo-cygni produces a diverse panel of toxic compounds according to the infection stage. A defense response against R. collo-cygni was identified in barley at the early, asymptomatic infection and colonization stages. We found activation of ethylene signaling, jasmonic acid signaling, and phenylpropanoid and flavonoid pathways to be highly induced, indicative of a classical response to necrotrophic pathogens. Disease development was found to be associated with gene expression patterns similar to those found at the onset of leaf senescence, when nutrients, possibly, are used by the infecting fungus. These analyses, combining both barley and R. collo-cygni transcript profiles, demonstrate the activation of complex transcriptional programs in both organisms.
Collapse
Affiliation(s)
- Elisabet Sjokvist
- 1 Scotlands Rural College, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JG, Scotland, U.K
- 2 Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3JT, U.K
| | - Rene Lemcke
- 3 Department of Plant and Environmental Sciences, Copenhagen University, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Manoj Kamble
- 4 Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, Aarhus, Denmark; and
| | - Frances Turner
- 5 Edinburgh Genomics, School of Biological Sciences, The University of Edinburgh; Scotland, U.K
| | - Mark Blaxter
- 2 Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3JT, U.K
| | - Neil H D Havis
- 1 Scotlands Rural College, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JG, Scotland, U.K
| | - Michael F Lyngkjær
- 3 Department of Plant and Environmental Sciences, Copenhagen University, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Simona Radutoiu
- 4 Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, Aarhus, Denmark; and
| |
Collapse
|
20
|
Scholthof KBG, Irigoyen S, Catalan P, Mandadi KK. Brachypodium: A Monocot Grass Model Genus for Plant Biology. THE PLANT CELL 2018; 30:1673-1694. [PMID: 29997238 PMCID: PMC6139682 DOI: 10.1105/tpc.18.00083] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 07/11/2018] [Indexed: 05/21/2023]
Abstract
The genus Brachypodium represents a model system that is advancing our knowledge of the biology of grasses, including small grains, in the postgenomics era. The most widely used species, Brachypodium distachyon, is a C3 plant that is distributed worldwide. B. distachyon has a small genome, short life cycle, and small stature and is amenable to genetic transformation. Due to the intensive and thoughtful development of this grass as a model organism, it is well-suited for laboratory and field experimentation. The intent of this review is to introduce this model system genus and describe some key outcomes of nearly a decade of research since the first draft genome sequence of the flagship species, B. distachyon, was completed. We discuss characteristics and features of B. distachyon and its congeners that make the genus a valuable model system for studies in ecology, evolution, genetics, and genomics in the grasses, review current hot topics in Brachypodium research, and highlight the potential for future analysis using this system in the coming years.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 78596
| | - Pilar Catalan
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071 Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza E-50059, Spain
- Institute of Biology, Tomsk State University, Tomsk 634050, Russia
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 78596
| |
Collapse
|