1
|
Pandey V, Srivastava A, Gupta R, Zaki HEM, Shafiq Shahid M, Gaur RK. In silico identification of chilli genome encoded MicroRNAs targeting the 16S rRNA and secA genes of " Candidatus phytoplasma trifolii ". FRONTIERS IN BIOINFORMATICS 2025; 4:1493712. [PMID: 39834655 PMCID: PMC11743513 DOI: 10.3389/fbinf.2024.1493712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Phytoplasma, a potentially hazardous pathogen associated with witches' broom, is an economically harmful disease-producing bacteria that damages chilli cultivation. Phytoplasma-infected plants display various symptoms that indicate significant disruptions in normal plant physiology and behaviour. Diseases caused by phytoplasma are widespread and have a major economic impact on crop quality and yield. This work focuses on identifying and examining chilli microRNAs (miRNAs) as potential targets against the 16S rRNA and secA gene of "Candidatus Phytoplasma trifolii" ("Ca. P. trifolii") through plant miRNA prediction algorithms. Mature chilli miRNAs (CA-miRNAs) were collected and used to hybridise the 16S rRNA and secA genes. A total of four common CA-miRNAs were picked according to genetic consensus. Three algorithms applied in the present study suggested that the physiologically relevant, top-ranked miR169b_2 has a possibly specific site at nucleotide position 1,006 for targeting the 'Ca. P. trifolii' 16S rRNA gene. The circos algorithm was then utilised to create the miRNA-mRNA regulatory network. The free energy between the miRNA:mRNA duplex was also computed, and the best value of -17.46 kcal/mol was obtained for CA-miR166c_2. Currently, there are no suitable commercial 'Ca. P. trifolii'-resistant chilli crops. As a result, the expected biological data provide useful evidence for developing 'Ca. P. trifolii'-resistant chilli plants.
Collapse
Affiliation(s)
- Vineeta Pandey
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Aarshi Srivastava
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Ramwant Gupta
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur, Oman
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al‐khod, Oman
| | - Rajarshi K. Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
2
|
Peng H, Sun F, Jiang Y, Guo Z, Liu X, Zuo A, Lu D. Semaphorin 7a aggravates TGF-β1-induced airway EMT through the FAK/ERK1/2 signaling pathway in asthma. Front Immunol 2023; 14:1167605. [PMID: 38022556 PMCID: PMC10646317 DOI: 10.3389/fimmu.2023.1167605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background TGF-β1 can induce epithelial-mesenchymal transition (EMT) in primary airway epithelial cells (AECs). Semaphorin7A (Sema7a) plays a crucial role in regulating immune responses and initiating and maintaining transforming growth factor β1 TGF-β1-induced fibrosis. Objective To determine the expression of Sema7a, in serum isolated from asthmatics and non-asthmatics, the role of Sema7a in TGF-β1 induced proliferation, migration and airway EMT in human bronchial epithelial cells (HBECs) in vitro. Methods The concentrations of Sema7a in serum of asthmatic patients was detected by enzyme-linked immunosorbent assay (ELISA). The expressions of Sema7a and integrin-β1 were examined using conventional western blotting and real-time quantitative PCR (RT-PCR). Interaction between the Sema7a and Integrin-β1 was detected using the Integrin-β1 blocking antibody (GLPG0187). The changes in EMT indicators were performed by western blotting and immunofluorescence, as well as the expression levels of phosphorylated Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2 (ERK1/2) were analyzed by western blot and their mRNA expression was determined by RT-PCR. Results We described the first differentially expressed protein of sema7a, in patients with diagnosed bronchial asthma were significantly higher than those of healthy persons (P<0.05). Western blotting and RT-PCR showed that Sema7a and Integrin-β1 expression were significantly increased in lung tissue from the ovalbumin (OVA)-induced asthma model. GLPG0187 inhibited TGF-β1-mediated HBECs EMT, proliferation and migration, which was associated with Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2 (ERK1/2) phosphorylation. Conclusion Sema7a may play an important role in asthma airway remodeling by inducing EMT. Therefore, new therapeutic approaches for the treatment of chronic asthma, could be aided by the development of agents that target the Sema7a.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Degan Lu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| |
Collapse
|
3
|
Heeney M, Frank MH. The mRNA mobileome: challenges and opportunities for deciphering signals from the noise. THE PLANT CELL 2023; 35:1817-1833. [PMID: 36881847 DOI: 10.1093/plcell/koad063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/30/2023]
Abstract
Organismal communication entails encoding a message that is sent over space or time to a recipient cell, where that message is decoded to activate a downstream response. Defining what qualifies as a functional signal is essential for understanding intercellular communication. In this review, we delve into what is known and unknown in the field of long-distance messenger RNA (mRNA) movement and draw inspiration from the field of information theory to provide a perspective on what defines a functional signaling molecule. Although numerous studies support the long-distance movement of hundreds to thousands of mRNAs through the plant vascular system, only a small handful of these transcripts have been associated with signaling functions. Deciphering whether mobile mRNAs generally serve a role in plant communication has been challenging, due to our current lack of understanding regarding the factors that influence mRNA mobility. Further insight into unsolved questions regarding the nature of mobile mRNAs could provide an understanding of the signaling potential of these macromolecules.
Collapse
Affiliation(s)
- Michelle Heeney
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 14853 Ithaca, NY, USA
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 14853 Ithaca, NY, USA
| |
Collapse
|
4
|
Contaldo N, Zambon Y, Galbacs ZN, Miloro F, Havelda Z, Bertaccini A, Varallyay E. Small RNA Profiling of Aster Yellows Phytoplasma-Infected Catharanthus roseus Plants Showing Different Symptoms. Genes (Basel) 2023; 14:genes14051114. [PMID: 37239473 DOI: 10.3390/genes14051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Micropropagated Catharantus roseus plants infected with 'Candidatus Phytoplasma asteris' showed virescence symptoms, witches' broom symptoms, or became asymptomatic after their planting in pots. Nine plants were grouped into three categories according to these symptoms, which were then employed for investigation. The phytoplasma concentration, as determined by qPCR, correlated well with the severity of symptoms. To reveal the changes in the small RNA profiles in these plants, small RNA high-throughput sequencing (HTS) was carried out. The bioinformatics comparison of the micro (mi) RNA and small interfering (si) RNA profiles of the symptomatic and asymptomatic plants showed changes, which could be correlated to some of the observed symptoms. These results complement previous studies on phytoplasmas and serve as a starting point for small RNA-omic studies in phytoplasma research.
Collapse
Affiliation(s)
- Nicoletta Contaldo
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Yuri Zambon
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Zsuszanna Nagyne Galbacs
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| | - Fabio Miloro
- Plant Developmental Biology Group, Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| | - Zoltan Havelda
- Plant Developmental Biology Group, Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| | - Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Eva Varallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| |
Collapse
|
5
|
Abstract
Although the phloem is a highly specialized tissue, certain pathogens, including phytoplasmas, spiroplasmas, and viruses, have evolved to access and live in this sequestered and protected environment, causing substantial economic harm. In particular, Candidatus Liberibacter spp. are devastating citrus in many parts of the world. Given that most phloem pathogens are vectored, they are not exposed to applied chemicals and are therefore difficult to control. Furthermore, pathogens use the phloem network to escape mounted defenses. Our review summarizes the current knowledge of phloem anatomy, physiology, and biochemistry relevant to phloem/pathogen interactions. We focus on aspects of anatomy specific to pathogen movement, including sieve plate structure and phloem-specific proteins. Phloem sampling techniques are discussed. Finally, pathogens that cause particular harm to the phloem of crop species are considered in detail.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Plant Gene Expression Center, USDA-ARS, Albany, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Robert Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
6
|
Kehr J, Morris RJ, Kragler F. Long-Distance Transported RNAs: From Identity to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:457-474. [PMID: 34910585 DOI: 10.1146/annurev-arplant-070121-033601] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is now a wealth of data, from different plants and labs and spanning more than two decades, which unequivocally demonstrates that RNAs can be transported over long distances, from the cell where they are transcribed to distal cells in other tissues. Different types of RNA molecules are transported, including micro- and messenger RNAs. Whether these RNAs are selected for transport and, if so, how they are selected and transported remain, in general, open questions. This aspect is likely not independent of the biological function and relevance of the transported RNAs, which are in most cases still unclear. In this review, we summarize the experimental data supporting selectivity or nonselectivity of RNA translocation and review the evidence for biological functions. After discussing potential issues regarding the comparability between experiments, we propose criteria that need to be critically evaluated to identify important signaling RNAs.
Collapse
Affiliation(s)
- Julia Kehr
- Department of Biology, Institute for Plant Sciences and Microbiology, Universität Hamburg, Hamburg, Germany;
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom;
| | - Friedrich Kragler
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany;
| |
Collapse
|
7
|
Ma YH, Deng WJ, Luo ZY, Jing J, Pan PW, Yao YB, Fang YB, Teng JF. Inhibition of microRNA-29b suppresses oxidative stress and reduces apoptosis in ischemic stroke. Neural Regen Res 2022; 17:433-439. [PMID: 34269220 PMCID: PMC8463996 DOI: 10.4103/1673-5374.314319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) regulate protein expression by antagonizing the translation of mRNAs and are effective regulators of normal nervous system development, function, and disease. MicroRNA-29b (miR-29b) plays a broad and critical role in brain homeostasis. In this study, we tested the function of miR-29b in animal and cell models by inhibiting miR-29b expression. Mouse models of middle cerebral artery occlusion were established using the modified Zea-Longa suture method. Prior to modeling, 50 nmol/kg miR-29b antagomir was injected via the tail vein. MiR-29b expression was found to be abnormally increased in ischemic brain tissue. The inhibition of miR-29b expression decreased the neurological function score and reduced the cerebral infarction volume and cell apoptosis. In addition, the inhibition of miR-29b significantly decreased the malondialdehyde level, increased superoxide dismutase activity, and Bcl-2 expression, and inhibited Bax and Caspase3 expression. PC12 cells were treated with glutamate for 12 hours to establish in vitro cell models of ischemic stroke and then treated with the miR-29 antagomir for 48 hours. The results revealed that miR-29b inhibition in PC12 cells increased Bcl-2 expression and inhibited cell apoptosis and oxidative damage. These findings suggest that the inhibition of miR-29b inhibits oxidative stress and cell apoptosis in ischemic stroke, producing therapeutic effects in ischemic stroke. This study was approved by the Laboratory Animal Care and Use Committee of the First Affiliated Hospital of Zhengzhou University (approval No. 201709276S) on September 27, 2017.
Collapse
Affiliation(s)
- Yao-Hua Ma
- Neurological Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wen-Jing Deng
- Neurological Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhi-Yi Luo
- Neurological Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Jing
- Neurological Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Peng-Wei Pan
- Neurological Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yao-Bing Yao
- Neurological Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Bo Fang
- Neurological Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun-Fang Teng
- Neurological Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
8
|
Deng Z, Wu H, Li D, Li L, Wang Z, Yuan W, Xing Y, Li C, Liang D. Root-to-Shoot Long-Distance Mobile miRNAs Identified from Nicotiana Rootstocks. Int J Mol Sci 2021; 22:12821. [PMID: 34884626 PMCID: PMC8657949 DOI: 10.3390/ijms222312821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Root-derived mobile signals play critical roles in coordinating a shoot's response to underground conditions. However, the identification of root-to-shoot long-distance mobile signals has been scant. In this study, we aimed to characterize root-to-shoot endogenous mobile miRNAs by using an Arabidopsis/Nicotiana interfamilial heterograft in which these two taxonomically distant species with clear genetic backgrounds had sufficient diversity in differentiating miRNA sources. Small RNA deep sequencing analysis revealed that 82 miRNAs from the Arabidopsis scion could travel through the graft union to reach the rootstock, whereas only a very small subset of miRNA (6 miRNAs) preferred the root-to-shoot movement. We demonstrated in an ex vivo RNA imaging experiment that the root-to-shoot mobile Nb-miR164, Nb-miR395 and Nb-miR397 were targeted to plasmodesmata using the bacteriophage coat protein MS2 system. Furthermore, the Nb-miR164 was shown to move from the roots to the shoots to induce phenotypic changes when its overexpressing line was used as rootstock, strongly supporting that root-derived Nb-miR164 was able to modify the scion trait via its long-distance movement.
Collapse
Affiliation(s)
- Zhuying Deng
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| | - Huiyan Wu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| | - Dongyi Li
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| | - Luping Li
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| | - Zhipeng Wang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| | - Wenya Yuan
- Hubei Collaborative Innovation Center for Green Transformation of BioResources, State Key Lab of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Yongzhong Xing
- National Center of Plant Gene Research (Wuhan), National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA 6150, Australia;
| | - Dacheng Liang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
9
|
Tuttolomondo A, Pinto A. Key lncRNAs involved in ischemic strokes. Epigenomics 2021; 14:61-64. [PMID: 34775807 DOI: 10.2217/epi-2021-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico P. Giaccone, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Antonio Pinto
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico P. Giaccone, Palermo, Italy.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Dong X, Liu C, Wang Y, Dong Q, Gai Y, Ji X. MicroRNA Profiling During Mulberry ( Morus atropurpurea Roxb) Fruit Development and Regulatory Pathway of miR477 for Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:687364. [PMID: 34567022 PMCID: PMC8455890 DOI: 10.3389/fpls.2021.687364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
To understand the mechanism of small non-coding RNAs (miRNA)-mediated development and ripening of mulberry fruits, three small RNA libraries from mulberry fruits at different development stages were constructed, and 159 conserved miRNAs as well as 86 novel miRNAs were successfully identified. Among the miRNAs identified, there were 90 miRNAs which showed differential expression patterns at different stages of fruit development and ripening. The target genes of these differential expressed (DE) miRNAs were involved in growth and development, transcription and regulation of transcription, metabolic processes, and etc. Interestingly, it was found that the expression level of mul-miR477 was increased with fruit ripening, and it can target the antisense lncRNA (Mul-ABCB19AS) of the ATP binding cassette (ABC) transporter B 19 gene (Mul-ABCB19). Our results showed that mul-miR477 can repress the expression of Mul-ABCB19AS and increase the expression of Mul-ABCB19, and it acted as a positive regulator participating anthocyanin accumulation through the regulatory network of mul-miR477-Mul-ABCB19AS-Mul-ABCB19.
Collapse
Affiliation(s)
- Xiaonan Dong
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Chaorui Liu
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yuqi Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Qing Dong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Yingping Gai
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
11
|
Fang L, Wang Y. MicroRNAs in Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:686831. [PMID: 34531880 PMCID: PMC8438446 DOI: 10.3389/fpls.2021.686831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21-nucleotides) non-coding RNAs found in plant and animals. MiRNAs function as critical post-transcriptional regulators of gene expression by binding to complementary sequences in their target mRNAs, leading to mRNA destabilization and translational inhibition. Plant miRNAs have some distinct characteristics compared to their animal counterparts, including greater evolutionary conservation and unique miRNA processing methods. The lifecycle of a plant begins with embryogenesis and progresses through seed germination, vegetative growth, reproductive growth, flowering and fruiting, and finally senescence and death. MiRNAs participate in the transformation of plant growth and development and directly monitor progression of these processes and the expression of certain morphological characteristics by regulating transcription factor genes involved in cell growth and differentiation. In woody plants, a large and rapidly increasing number of miRNAs have been identified, but their biological functions are largely unknown. In this review, we summarize the progress of miRNA research in woody plants to date. In particular, we discuss the potential roles of these miRNAs in growth, development, and biotic and abiotic stresses responses in woody plants.
Collapse
Affiliation(s)
- Lisha Fang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
12
|
Huang G, Zhang J, Qing G, Liu D, Wang X, Chen Y, Wu Y, Li Y, Guo S. Downregulation of miR‑483‑5p inhibits TGF‑β1‑induced EMT by targeting RhoGDI1 in pulmonary fibrosis. Mol Med Rep 2021; 24:538. [PMID: 34080651 PMCID: PMC8170182 DOI: 10.3892/mmr.2021.12177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) serves a significant role in pulmonary fibrosis (PF). Increasing evidence indicates that microRNAs (miRNAs or miRs) contribute to PF pathogenesis via EMT regulation. However, the role of miR-483-5p in PF remains unclear. Therefore, the present study investigated the potential effect of miR-483-5p on TGF-β1-induced EMT in PF. It was found that the expression of miR-483-5p was upregulated in both PF tissue and A549 cells treated with TGF-β1, whereas expression of Rho GDP dissociation inhibitor 1 (RhoGDI1) was downregulated. miR-483-5p mimic transfection promoted TGF-β1-induced EMT; by contrast, miR-483-5p inhibitor inhibited TGF-β1-induced EMT. Also, miR-483-5p mimic decreased RhoGDI1 expression, whereas miR-483-5p inhibitor increased RhoGDI1 expression. Furthermore, dual-luciferase reporter gene assay indicated that miR-483-5p directly regulated RhoGDI1. Moreover, RhoGDI1 knockdown eliminated the inhibitory effect of the miR-483-5p inhibitor on TGF-β1-induced EMT via the Rac family small GTPase (Rac)1/PI3K/AKT pathway. In conclusion, these data indicated that miR-483-5p inhibition ameliorated TGF-β1-induced EMT by targeting RhoGDI1 via the Rac1/PI3K/Akt signaling pathway in PF, suggesting a potential role of miR-483-5p in the prevention and treatment of PF.
Collapse
Affiliation(s)
- Guichuan Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Gang Qing
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Daishun Liu
- Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xin Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yongchang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yishi Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
13
|
Kondhare KR, Patil NS, Banerjee AK. A historical overview of long-distance signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4218-4236. [PMID: 33682884 DOI: 10.1093/jxb/erab048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Be it a small herb or a large tree, intra- and intercellular communication and long-distance signalling between distant organs are crucial for every aspect of plant development. The vascular system, comprising xylem and phloem, acts as a major conduit for the transmission of long-distance signals in plants. In addition to expanding our knowledge of vascular development, numerous reports in the past two decades revealed that selective populations of RNAs, proteins, and phytohormones function as mobile signals. Many of these signals were shown to regulate diverse physiological processes, such as flowering, leaf and root development, nutrient acquisition, crop yield, and biotic/abiotic stress responses. In this review, we summarize the significant discoveries made in the past 25 years, with emphasis on key mobile signalling molecules (mRNAs, proteins including RNA-binding proteins, and small RNAs) that have revolutionized our understanding of how plants integrate various intrinsic and external cues in orchestrating growth and development. Additionally, we provide detailed insights on the emerging molecular mechanisms that might control the selective trafficking and delivery of phloem-mobile RNAs to target tissues. We also highlight the cross-kingdom movement of mobile signals during plant-parasite relationships. Considering the dynamic functions of these signals, their implications in crop improvement are also discussed.
Collapse
Affiliation(s)
- Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL) Pune, Maharashtra, India
| | - Nikita S Patil
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
14
|
Wang S, Li J, He Y, Ran Y, Lu B, Gao J, Shu C, Li J, Zhao Y, Zhang X, Hao Y. Protective effect of melatonin entrapped PLGA nanoparticles on radiation-induced lung injury through the miR-21/TGF-β1/Smad3 pathway. Int J Pharm 2021; 602:120584. [PMID: 33887395 DOI: 10.1016/j.ijpharm.2021.120584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 04/04/2021] [Indexed: 01/04/2023]
Abstract
Radiation-induced lung injury (RILI) is a complication commonly found in victims suffering from nuclear accidents and patients treated with chest tumor radiotherapy, and drugs are limited for effective prevention and treatment. Melatonin (MET) has an anti-radiation effect, but its metabolic period in the body is short. In order to prolong the metabolism period of MET, we prepared MET entrapped poly (lactic-co-glycolic acid) nanoparticles (MET/PLGANPS) for the treatment of RILI. As a result, the release rate of MET/PLGANPS in vitro was lower than MET, with stable physical properties, and it caused no changes in histopathology and biochemical indicators. After 2 weeks and 16 weeks of irradiation with the dose of 15 Gy, MET and MET/PLGANPS could reduce the expression of caspase-3 proteins, inflammatory factors, TGF-β1 and Smad3 to alleviate radiation-induced lung injury. MET/PLGANPS showed better therapeutic effect on RILI than MET. In addition, we also found that high expression of miR-21 could increase the expression levels of TGF-β1, and inhibit the protective effect of MET/PLGANPS. In conclusion, MET/PLGANPS may alleviate RILI by inhibiting the miR-21/TGF-β1/Smad3 pathway, which would provide a new target for the treatment of radiation-induced lung injury.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Yingjuan He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Binghui Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jining Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Chang Shu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jie Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xin Zhang
- Chongqing Normal University, No.37, Middle University Road, Shapingba District, Chongqing 401331, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
15
|
The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep 2021; 40:226464. [PMID: 32955092 PMCID: PMC7538631 DOI: 10.1042/bsr20193329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023] Open
Abstract
Plants integrate a variety of biotic and abiotic factors for optimal growth in their given environment. While some of these responses are local, others occur distally. Hence, communication of signals perceived in one organ to a second, distal part of the plant and the coordinated developmental response require an intricate signaling system. To do so, plants developed a bipartite vascular system that mediates the uptake of water, minerals, and nutrients from the soil; transports high-energy compounds and building blocks; and traffics essential developmental and stress signals. One component of the plant vasculature is the phloem. The development of highly sensitive mass spectrometry and molecular methods in the last decades has enabled us to explore the full complexity of the phloem content. As a result, our view of the phloem has evolved from a simple transport path of photoassimilates to a major highway for pathogens, hormones and developmental signals. Understanding phloem transport is essential to comprehend the coordination of environmental inputs with plant development and, thus, ensure food security. This review discusses recent developments in its role in long-distance signaling and highlights the role of some of the signaling molecules. What emerges is an image of signaling paths that do not just involve single molecules but rather, quite frequently an interplay of several distinct molecular classes, many of which appear to be transported and acting in concert.
Collapse
|
16
|
Dermastia M, Škrlj B, Strah R, Anžič B, Tomaž Š, Križnik M, Schönhuber C, Riedle-Bauer M, Ramšak Ž, Petek M, Kladnik A, Lavrač N, Gruden K, Roitsch T, Brader G, Pompe-Novak M. Differential Response of Grapevine to Infection with ' Candidatus Phytoplasma solani' in Early and Late Growing Season through Complex Regulation of mRNA and Small RNA Transcriptomes. Int J Mol Sci 2021; 22:3531. [PMID: 33805429 PMCID: PMC8037961 DOI: 10.3390/ijms22073531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with 'Candidatus Phytoplasma solani', but molecular interactions between the causal pathogen and its host plant are not well understood. In this work, we combined the analysis of high-throughput RNA-Seq and sRNA-Seq data with interaction network analysis for finding new cross-talks among pathways involved in infection of grapevine cv. Zweigelt with 'Ca. P. solani' in early and late growing seasons. While the early growing season was very dynamic at the transcriptional level in asymptomatic grapevines, the regulation at the level of small RNAs was more pronounced later in the season when symptoms developed in infected grapevines. Most differentially expressed small RNAs were associated with biotic stress. Our study also exposes the less-studied role of hormones in disease development and shows that hormonal balance was already perturbed before symptoms development in infected grapevines. Analysis at the level of communities of genes and mRNA-microRNA interaction networks revealed several new genes (e.g., expansins and cryptdin) that have not been associated with phytoplasma pathogenicity previously. These novel actors may present a new reference framework for research and diagnostics of phytoplasma diseases of grapevine.
Collapse
Affiliation(s)
- Marina Dermastia
- National Institute of Biology, 1000 Ljubljana, Slovenia; (R.S.); (B.A.); (Š.T.); (M.K.); (Ž.R.); (M.P.); (K.G.); (M.P.-N.)
| | - Blaž Škrlj
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (B.Š.); (N.L.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Rebeka Strah
- National Institute of Biology, 1000 Ljubljana, Slovenia; (R.S.); (B.A.); (Š.T.); (M.K.); (Ž.R.); (M.P.); (K.G.); (M.P.-N.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Barbara Anžič
- National Institute of Biology, 1000 Ljubljana, Slovenia; (R.S.); (B.A.); (Š.T.); (M.K.); (Ž.R.); (M.P.); (K.G.); (M.P.-N.)
| | - Špela Tomaž
- National Institute of Biology, 1000 Ljubljana, Slovenia; (R.S.); (B.A.); (Š.T.); (M.K.); (Ž.R.); (M.P.); (K.G.); (M.P.-N.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Maja Križnik
- National Institute of Biology, 1000 Ljubljana, Slovenia; (R.S.); (B.A.); (Š.T.); (M.K.); (Ž.R.); (M.P.); (K.G.); (M.P.-N.)
| | - Christina Schönhuber
- Bioresources Unit, Austrian Institute of Technology, 3430 Tulln, Austria; (C.S.); (G.B.)
| | - Monika Riedle-Bauer
- Federal College and Research Institute for Viticulture and Pomology, 3400 Klosterneuburg, Austria;
| | - Živa Ramšak
- National Institute of Biology, 1000 Ljubljana, Slovenia; (R.S.); (B.A.); (Š.T.); (M.K.); (Ž.R.); (M.P.); (K.G.); (M.P.-N.)
| | - Marko Petek
- National Institute of Biology, 1000 Ljubljana, Slovenia; (R.S.); (B.A.); (Š.T.); (M.K.); (Ž.R.); (M.P.); (K.G.); (M.P.-N.)
| | - Aleš Kladnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Nada Lavrač
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (B.Š.); (N.L.)
| | - Kristina Gruden
- National Institute of Biology, 1000 Ljubljana, Slovenia; (R.S.); (B.A.); (Š.T.); (M.K.); (Ž.R.); (M.P.); (K.G.); (M.P.-N.)
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, 2630 Taastrup, Denmark;
| | - Günter Brader
- Bioresources Unit, Austrian Institute of Technology, 3430 Tulln, Austria; (C.S.); (G.B.)
| | - Maruša Pompe-Novak
- National Institute of Biology, 1000 Ljubljana, Slovenia; (R.S.); (B.A.); (Š.T.); (M.K.); (Ž.R.); (M.P.); (K.G.); (M.P.-N.)
- School of Viticulture and Enology, University of Nova Gorica, 5271 Vipava, Slovenia
| |
Collapse
|
17
|
Wang X, Wang J, Huang G, Li Y, Guo S. miR‑320a‑3P alleviates the epithelial‑mesenchymal transition of A549 cells by activation of STAT3/SMAD3 signaling in a pulmonary fibrosis model. Mol Med Rep 2021; 23:357. [PMID: 33760151 PMCID: PMC7974326 DOI: 10.3892/mmr.2021.11996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/18/2021] [Indexed: 12/02/2022] Open
Abstract
Pulmonary fibrosis (PF) is a common, chronic and incurable lung disease, in which the lungs become scarred over time. MicroRNAs (miRNAs/miRs) serve key roles in various biological processes, including cell proliferation, differentiation, apoptosis and the regulation of epithelial-mesenchymal transition (EMT) process. The aim of the present study was to investigate the underlying mechanism of miR-320a-3p as a potential therapeutic target for PF. Clinical samples and microarray datasets collected from various databases were used to evaluate the expression of miR-320a-3p in PF. A549 cells were used to construct an EMT model of PF. A dual-luciferase reporter assay system was used to identify target genes of miR-320a-3p. Western blot analysis and immunofluorescence staining were used to determine the roles of miR-320a-3p and its target genes in the EMT process in PF. The present study found that, compared with lung tissue of healthy control subjects, the expression of miR-320a-3p in lung tissue of PF patients was significantly reduced. The expression levels of miR-320a-3p decreased in TGF-β1-stimulated A549 cells in a time- and concentration-dependent manner. The overexpression of miR-320a-3p suppressed EMT markers induced by TGF-β1 in A549 cells and STAT3 was identified as a potential target gene of miR-320a-3p. Furthermore, the expression changes of miR-320a-3p and STAT3 were found to significantly affect the expression of phosphorylated SMAD3 in TGF-β1-stimulated A549 cells. Briefly, overexpression of miR-320a-3p could inhibit the EMT process in PF by downregulating STAT3 expression. The mechanism mediating these effects may partly involve crosstalk between the SMAD3 and STAT3.
Collapse
Affiliation(s)
- Xin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Wang
- Department of Pharmacy, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Guichuan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yishi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shuliang Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
18
|
Ma J, Zhao P, Liu S, Yang Q, Guo H. The Control of Developmental Phase Transitions by microRNAs and Their Targets in Seed Plants. Int J Mol Sci 2020; 21:E1971. [PMID: 32183075 PMCID: PMC7139601 DOI: 10.3390/ijms21061971] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Seed plants usually undergo various developmental phase transitions throughout their lifespan, mainly including juvenile-to-adult and vegetative-to-reproductive transitions, as well as developmental transitions within organ/tissue formation. MicroRNAs (miRNAs), as a class of small endogenous non-coding RNAs, are involved in the developmental phase transitions in plants by negatively regulating the expression of their target genes at the post-transcriptional level. In recent years, cumulative evidence has revealed that five miRNAs, miR156, miR159, miR166, miR172, and miR396, are key regulators of developmental phase transitions in plants. In this review, the advanced progress of the five miRNAs and their targets in regulating plant developmental transitions, especially in storage organ formation, are summarized and discussed, combining our own findings with the literature. In general, the functions of the five miRNAs and their targets are relatively conserved, but their functional divergences also emerge to some extent. In addition, potential research directions of miRNAs in regulating plant developmental phase transitions are prospected.
Collapse
Affiliation(s)
- Jingyi Ma
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Pan Zhao
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Shibiao Liu
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Qi Yang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Huihong Guo
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| |
Collapse
|
19
|
The green peach aphid gut contains host plant microRNAs identified by comprehensive annotation of Brassica oleracea small RNA data. Sci Rep 2019; 9:18904. [PMID: 31827121 PMCID: PMC6906386 DOI: 10.1038/s41598-019-54488-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
Like all organisms, aphids, plant sap-sucking insects that house a bacterial endosymbiont called Buchnera, are members of a species interaction network. Ecological interactions across such networks can result in phenotypic change in network members mediated by molecular signals, like microRNAs. Here, we interrogated small RNA data from the aphid, Myzus persicae, to determine the source of reads that did not map to the aphid or Buchnera genomes. Our analysis revealed that the pattern was largely explained by reads that mapped to the host plant, Brassica oleracea, and a facultative symbiont, Regiella. To start elucidating the function of plant small RNA in aphid gut, we annotated 213 unique B. oleracea miRNAs; 32/213 were present in aphid gut as mature and star miRNAs. Next, we predicted targets in the B. oleracea and M. persicae genomes for these 32 plant miRNAs. We found that plant targets were enriched for genes associated with transcription, while the distribution of targets in the aphid genome was similar to the functional distribution of all genes in the aphid genome. We discuss the potential of plant miRNAs to regulate aphid gene expression and the mechanisms involved in processing, export and uptake of plant miRNAs by aphids.
Collapse
|
20
|
Dermastia M. Plant Hormones in Phytoplasma Infected Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:477. [PMID: 31057582 PMCID: PMC6478762 DOI: 10.3389/fpls.2019.00477] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Phytoplasmas are bacterial plant pathogens that need a plant host and an insect vector for their spread and survival. In plants, the physiological responses that phytoplasmas trigger result in symptom development through effects on hormonal, nutritional, and stress signaling pathways, and the interactions between these. In this review, recent advances on the involvement of plant hormones together with their known and deduced roles in plants infected with phytoplasmas are discussed. Several studies have directly, or in many cases indirectly, addressed plant hormone systems in phytoplasma-infected plants. These have provided accumulating evidence that phytoplasmas extensively affect plant hormone pathways. Phytoplasmas thus, with disturbing complex plant hormone networks, suppress plant immunity and modify plant structure, while optimizing their nutrient acquisition and facilitating their colonization of the plants, and their dissemination among plants by their insect vectors.
Collapse
Affiliation(s)
- Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
21
|
Hua Y, Zhang C, Shi W, Chen H. High-throughput sequencing reveals microRNAs and their targets in response to drought stress in wheat (Triticum aestivum L.). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1586586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ye Hua
- Department of Longdong Winter Wheat Engineering and Technology Research, College of Agriculture and Forestry, Longdong University, Qingyang, PR China
| | - Cheng Zhang
- Department of Longdong Winter Wheat Engineering and Technology Research, College of Agriculture and Forestry, Longdong University, Qingyang, PR China
| | - Wanxi Shi
- Department of Longdong Winter Wheat Engineering and Technology Research, College of Agriculture and Forestry, Longdong University, Qingyang, PR China
| | - Hong Chen
- Department of Longdong Winter Wheat Engineering and Technology Research, College of Agriculture and Forestry, Longdong University, Qingyang, PR China
| |
Collapse
|
22
|
Yang ZC, Qu ZH, Yi MJ, Shan YC, Ran N, Xu L, Liu XJ. MiR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma. J Cell Physiol 2018; 234:8804-8814. [PMID: 30362537 DOI: 10.1002/jcp.27540] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) are small yet versatile gene tuners that regulate a variety of cellular processes, including cell growth and proliferation. The aim of this study was to explore how miR-448-5p affects airway remodeling and transforming growth factor-β1 (TGF-β1)-stimulated epithelial-mesenchymal transition (EMT) by targeting Sine oculis homeobox homolog 1 (Six1) in asthma. Asthmatic mice models with airway remodeling were induced with ovalbumin solution. MiRNA expression was evaluated using quantitative real-time polymerase chain reaction. Transfection studies of bronchial epithelial cells were performed to determine the target genes. A luciferase reporter assay system was applied to identify whether Six1 is a target gene of miR-448-5p. In the current study, we found that miR-448-5p was dramatically decreased in lung tissues of asthmatic mice and TGF-β1-stimulated bronchial epithelial cells. In addition, the decreased level of miR-448-5p was closely associated with the increased expression of Six1. Overexpression of miR-448-5p decreased Six1 expression and, in turn, suppressed TGF-β1-mediated EMT and fibrosis. Next, we predicted that Six1 was a potential target gene of miR-448-5p and demonstrated that miR-448-5p could directly target Six1. An SiRNA targeting Six1 was sufficient to suppress TGF-β1-induced EMT and fibrosis in 16HBE cells. Furthermore, the overexpression of Six1 partially reversed the protective effect of miR-448-5p on TGF-β1-mediated EMT and fibrosis in bronchial epithelial cells. Taken together, the miR-448-5p/TGF-β1/Six1 link may play roles in the progression of EMT and pulmonary fibrosis in asthma.
Collapse
Affiliation(s)
- Zhao-Chuan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng-Hai Qu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming-Ji Yi
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Chun Shan
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ni Ran
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Xu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin-Jie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
23
|
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1034. [PMID: 30065744 PMCID: PMC6057443 DOI: 10.3389/fpls.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Viticultural and Enology Research Centre, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giancarlo Birello
- Research Institute on Sustainable Economic Growth, National Research Council of Italy, Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
24
|
Comparative Analysis of MicroRNA Expression in Three Paulownia Species with Phytoplasma Infection. FORESTS 2018. [DOI: 10.3390/f9060302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Brant EJ, Budak H. Plant Small Non-coding RNAs and Their Roles in Biotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:1038. [PMID: 30079074 PMCID: PMC6062887 DOI: 10.3389/fpls.2018.01038] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/04/2023]
Abstract
Non-coding RNAs (ncRNAs) have emerged as critical components of gene regulatory networks across a plethora of plant species. In particular, the 20-30 nucleotide small ncRNAs (sRNAs) play important roles in mediating both developmental processes and responses to biotic stresses. Based on variation in their biogenesis pathways, a number of different sRNA classes have been identified, and their specific functions have begun to be characterized. Here, we review the current knowledge of the biogenesis of the primary sRNA classes, microRNA (miRNA) and small nuclear RNA (snRNA), and their respective secondary classes, and discuss the roles of sRNAs in plant-pathogen interactions. sRNA mobility between species is also discussed along with potential applications of sRNA-plant-pathogen interactions in crop improvement technologies.
Collapse
|