1
|
Chen Q, Mi S, Xing Y, An S, Chen S, Tang Y, Wang Y, Yu Y. Transcriptome analysis identifies the NR4A subfamily involved in the alleviating effect of folic acid on mastitis induced by high concentration of Staphylococcus aureus lipoteichoic acid. BMC Genomics 2024; 25:1051. [PMID: 39506684 PMCID: PMC11542246 DOI: 10.1186/s12864-024-10895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) mastitis results in economic losses during dairy production. Understanding the biological progression of bovine S. aureus mastitis is vital for its prevention. Lipoteichoic acid is a key virulence factor of S. aureus (aLTA), but the main biological pathways involved in its effect on bovine mammary epithetionallial cells (Mac-T) apoptosis and necrosis have not been fully explored. Folic acid (FA) has anti-inflammatory and anti-apoptotic effects. However, the role of FA in mediating the effects of aLTA on apoptosis and necrosis remains unknown. RESULTS We found that low concentration of aLTA inhibited apoptosis and necrosis and that high concentration promoted the apoptosis and necrosis of Mac-T. FA pretreatment alleviated high concentration of aLTA induced apoptosis. Through transcriptomic analysis, we found that nuclear receptor subfamily 4 group A (NR4A), which alters the expression of downstream genes involved in apoptosis, proliferation, and inflammation, decreased under stimulation with a low concentration of aLTA and increased under stimulation with a high concentration of aLTA. Under stimulation with a high concentration of aLTA, the expression of the NR4A subfamily could be inhibited by FA. The results showed that aLTA may affect apoptosis and necrosis through the NR4A subfamily by targeting genes involved in bacterial invasion of epithelial cells, the IL-17 signaling pathway, DNA replication, longevity regulation, the cell cycle, and tight junction pathways. We further found that the expression trends of NR4A1 and the target genes of the NR4A subfamily (PTGS2, ESPL1, MCM5, and BUB1B) in the blood of healthy cows (Healthy), subclinical mastitis cows (SCM), and SCM supplemented with FA (SCM_FA) were consistent with those observed at the cellular level in this study. CONCLUSIONS Our study revealed that low and high concentrations of aLTA have opposite effects on apoptosis and necrosis of Mac-T and that FA can alleviate the apoptosis induced by high concentration of aLTA. Transcriptome analysis revealed that the NR4A subfamily play a role in the ability of FA to alleviate the apoptosis and necrosis induced by high concentration of aLTA.
Collapse
Affiliation(s)
- Quanzhen Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yue Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Songyan An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Dzhalilova DS, Kosyreva AM, Makarova OV. Spontaneous and Stimulated Production of Cytokines by Blood Cells Ex Vivo as a Biomarker of Initially High or Low Hypoxia Resistance in Rats. Bull Exp Biol Med 2024:10.1007/s10517-024-06200-1. [PMID: 39259469 DOI: 10.1007/s10517-024-06200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 09/13/2024]
Abstract
Spontaneous and stimulated production of cytokines by peripheral blood cells obtained from the caudal vein of male Wistar rats was assessed before testing their resistance to oxygen deficiency in a decompression chamber. To study the spontaneous production of cytokines, heparinized blood cells were incubated in a culture medium (24 h, 5% CO2, 37°C) and the content of proinflammatory cytokines IL-6 and TNFα and anti-inflammatory IL-10 in the culture medium was assessed by ELISA. To stimulate cytokine production, blood cells were incubated for 24 h with LPS, phytohemagglutinin, and concanavalin A at final concentrations of 2, 4, and 4 μg, respectively. Two weeks after blood sampling, individual resistance of the animals to hypoxia in a decompression chamber was determined. In animals with low resistance to hypoxia, the levels of spontaneous production of all three cytokines were significantly higher, while after stimulation, the level of IL-1β increased by more than 2 times. The animals with spontaneous production of IL-10>50 pg/ml, IL-6>10 pg/ml, and TNFα>10 pg/ml, as well as with the increase in IL-1β production by more than 2 times upon stimulation were classified as low-resistant. At IL-10<15 pg/ml, IL-6<9 pg/ml, and TNFα<7 pg/ml, as well as the absence of the increase in IL-1β production upon stimulation, they were classified as high-resistant. The identified features of spontaneous and stimulated production of cytokines can be used as non-invasive biomarkers to determine the resistance to hypoxia without exposure to sublethal hypoxia in a decompression chamber.
Collapse
Affiliation(s)
- D Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, Moscow, Russia.
| | - A M Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, Moscow, Russia
| | - O V Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, Moscow, Russia
| |
Collapse
|
3
|
Brown S, Evans SJ, Burgum MJ, Meldrum K, Herridge J, Akinbola B, Harris LG, Jenkins R, Doak SH, Clift MJD, Wilkinson TS. An In Vitro Model to Assess Early Immune Markers Following Co-Exposure of Epithelial Cells to Carbon Black (Nano)Particles in the Presence of S. aureus: A Role for Stressed Cells in Toxicological Testing. Biomedicines 2024; 12:128. [PMID: 38255233 PMCID: PMC10813740 DOI: 10.3390/biomedicines12010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The exposure of human lung and skin to carbon black (CB) is continuous due to its widespread applications. Current toxicological testing uses 'healthy' cellular systems; however, questions remain whether this mimics the everyday stresses that human cells are exposed to, including infection. Staphylococcus aureus lung and skin infections remain prevalent in society, and include pneumonia and atopic dermatitis, respectively, but current in vitro toxicological testing does not consider infection stress. Therefore, investigating the effects of CB co-exposure in 'stressed' infected epithelial cells in vitro may better approximate true toxicity. This work aims to study the impact of CB exposure during Staphylococcus aureus infection stress in A549 (lung) and HaCaT (skin) epithelial cells. Physicochemical characterisation of CB confirmed its dramatic polydispersity and potential to aggregate. CB significantly inhibited S. aureus growth in cell culture media. CB did not induce cytokines or antimicrobial peptides from lung and skin epithelial cells, when given alone, but did reduce HaCaT and A549 cell viability to 55% and 77%, respectively. In contrast, S. aureus induced a robust interleukin (IL)-8 response in both lung and skin epithelial cells. IL-6 and human beta defensin (hβD)-2 could only be detected when cells were stimulated with S. aureus with no decreases in cell viability. However, co-exposure to CB (100 µg/mL) and S. aureus resulted in significant inhibition of IL-8 (compared to S. aureus alone) without further reduction in cell viability. Furthermore, the same co-exposure induced significantly more hβD-2 (compared to S. aureus alone). This work confirms that toxicological testing in healthy versus stressed cells gives significantly different responses. This has significant implications for toxicological testing and suggests that cell stresses (including infection) should be included in current models to better represent the diversity of cell viabilities found in lung and skin within a general population. This model will have significant application when estimating CB exposure in at-risk groups, such as factory workers, the elderly, and the immunocompromised.
Collapse
Affiliation(s)
- Scott Brown
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Stephen J. Evans
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Michael J. Burgum
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Kirsty Meldrum
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Jack Herridge
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Blessing Akinbola
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Llinos G. Harris
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Rowena Jenkins
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Shareen H. Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Martin J. D. Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Thomas S. Wilkinson
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| |
Collapse
|
4
|
Chen Y, Liu Z, Lin Z, Lu M, Fu Y, Liu G, Yu B. The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis. Front Immunol 2023; 14:1219895. [PMID: 37744377 PMCID: PMC10517662 DOI: 10.3389/fimmu.2023.1219895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Osteomyelitis is a chronic inflammatory bone disease caused by infection of open fractures or post-operative implants. Particularly in patients with open fractures, the risk of osteomyelitis is greatly increased as the soft tissue damage and bacterial infection are often more severe. Staphylococcus aureus, one of the most common pathogens of osteomyelitis, disrupts the immune response through multiple mechanisms, such as biofilm formation, virulence factor secretion, and metabolic pattern alteration, which attenuates the effectiveness of antibiotics and surgical debridement toward osteomyelitis. In osteomyelitis, immune cells such as neutrophils, macrophages and T cells are activated in response to pathogenic bacteria invasion with excessive inflammatory factor secretion, immune checkpoint overexpression, and downregulation of immune pathway transcription factors, which enhances osteoclastogenesis and results in bone destruction. Therefore, the study of the mechanisms of abnormal immunity will be a new breakthrough in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Yingqi Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Zixian Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Zexin Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Mincheng Lu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Yong Fu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
- Trauma Center, Department of Orthopaedic Trauma, The Second Affiliated Hospital of Hengyang Medical College, South China University, Hengyang, China
| | - Guanqiao Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| |
Collapse
|
5
|
Kim SK, Im J, Ko EB, Lee D, Seo HS, Yun CH, Han SH. Lipoteichoic acid of Streptococcus gordonii as a negative regulator of human dendritic cell activation. Front Immunol 2023; 14:1056949. [PMID: 37056772 PMCID: PMC10086370 DOI: 10.3389/fimmu.2023.1056949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Streptococcus gordonii, an opportunistic Gram-positive bacterium, causes an infective endocarditis that could be fatal to human health. Dendritic cells (DCs) are known to be involved in disease progression and immune responses in S. gordonii infection. Since lipoteichoic acid (LTA) is a representative virulence factor of S. gordonii, we here investigated its role in the activation of human DCs stimulated with LTA-deficient (ΔltaS) S. gordonii or S. gordonii LTA. DCs were differentiated from human blood-derived monocytes in the presence of GM-CSF and IL-4 for 6 days. DCs treated with heat-killed ΔltaS S. gordonii (ΔltaS HKSG) showed relatively higher binding and phagocytic activities than those treated with heat-killed wild-type S. gordonii (wild-type HKSG). Furthermore, ΔltaS HKSG was superior to wild-type HKSG in inducing phenotypic maturation markers including CD80, CD83, CD86, PD-L1, and PD-L2, antigen-presenting molecule MHC class II, and proinflammatory cytokines such as TNF-α and IL-6. Concomitantly, DCs treated with the ΔltaS HKSG induced better T cell activities, including proliferation and activation marker (CD25) expression, than those treated with the wild-type. LTA, but not lipoproteins, isolated from S. gordonii weakly activated TLR2 and barely affected the expression of phenotypic maturation markers or cytokines in DCs. Collectively, these results demonstrated that LTA is not a major immuno-stimulating agent of S. gordonii but rather it interferes with bacteria-induced DC maturation, suggesting its potential role in immune evasion.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Eun Byeol Ko
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, Republic of Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- *Correspondence: Seung Hyun Han,
| |
Collapse
|
6
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
7
|
Yılmaz D, Muslu T, Parlar A, Kurt H, Yüce M. SELEX against whole-cell bacteria resulted in lipopolysaccharide binding aptamers. J Biotechnol 2022; 354:10-20. [PMID: 35700936 DOI: 10.1016/j.jbiotec.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Nucleic acid aptamers are target-specific oligonucleotides selected from combinatorial libraries through an iterative in vitro screening process known as Systemic Evolution of Ligands by Exponential Enrichment (SELEX). In this report, the selection of bacteria differentiating ssDNA aptamer candidates from a combinatorial library through the whole-cell SELEX method was performed. The enriched SELEX pool was sequenced using Illumina Next-Generation Sequencing (NGS) technology and analyzed for the most abundant sequences using CLC Genomics Workbench. The sequencing data resulted in several oligonucleotide families from which three individual sequences were chosen per SELEX based on the copy numbers. The binding performance of the selected aptamers was assessed by flow cytometry and fluorescence spectroscopy, and the binding constants were estimated using binding saturation curves. Varying results were obtained from two independent SELEX procedures where the SELEX against the model gram-negative bacterium Escherichia coli provided more selective sequences while the SELEX library used against gram-positive bacterium Listeria monocytogenes did not evolve as expected. The sequences that emerged from E. coli SELEX were shown to bind Lipopolysaccharide residues (LPS) and inhibit LPS-induced macrophage polarization. Thus, it can be said that, performed whole-cell SELEX could be resulted as the selection of aptamers which can bind LPS and inhibit LPS induced inflammation response and thus can be candidates for the inhibition of bacterial infections. In future studies, the selected aptamer sequences could be structurally and chemically modified and exploited as potential diagnostic tools and therapeutic agents as LPS antagonists.
Collapse
Affiliation(s)
- Deniz Yılmaz
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Tuzla 34956, Istanbul, Turkey
| | - Tuğdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Ayhan Parlar
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Hasan Kurt
- School of Engineering and Natural Sciences, Istanbul Medipol University, Beykoz, 34810 Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, 34810 Istanbul, Turkey; Nanosolar Plasmonics Ltd., Gebze, 41400 Kocaeli, Turkey
| | - Meral Yüce
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
8
|
Lipoteichoic Acid from Staphylococcus aureus Activates the Complement System via C3 Induction and CD55 Inhibition. Microorganisms 2021; 9:microorganisms9061135. [PMID: 34074052 PMCID: PMC8225101 DOI: 10.3390/microorganisms9061135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus inhibits complement activity by secreting a variety of toxins. However, the underlying mechanism of complement component regulation by lipoteichoic acid (LTA), a cell wall component of S. aureus, has not been elucidated. In this study, we observed that aLTA (LTA of S. aureus) increased C3 expression in THP-1 cells. The mechanism of aLTA-mediated C3 induction includes an aLTA-toll-like receptor (TLR) 2 interaction, interleukin 1 receptor associated kinase (IRAK) 2 recruitment, and nuclear factor kappa B (NF-kB) activation. In HepG2 cells, C3 protein production begins to increase from 3 h and increases steadily until 48 h. On the other hand, CD55 levels increased up to 6 h after aLTA treatment and started to decrease after 24 h and levels were decreased at 48 h by more than 50% compared to untreated cells. The expression of CD55 in HepG2 cells was shown to be regulated by IRAK-M induced by aLTA. Serum C3 levels increased in mice injected with aLTA, which resulted in an increase in the amount and activity of the membrane attack complex (MAC). We also observed that CD55 mRNA was increased in the liver 24 h after aLTA injection, but was decreased 48 h after injection. These results suggest that aLTA increases complement levels via induction of C3 and inhibition of CD55, which may cause associated MAC-mediated liver damage.
Collapse
|
9
|
Park OJ, Kwon Y, Park C, So YJ, Park TH, Jeong S, Im J, Yun CH, Han SH. Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components. Microorganisms 2020; 8:microorganisms8121852. [PMID: 33255499 PMCID: PMC7761167 DOI: 10.3390/microorganisms8121852] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Streptococcus gordonii, a Gram-positive bacterium, is a commensal bacterium that is commonly found in the skin, oral cavity, and intestine. It is also known as an opportunistic pathogen that can cause local or systemic diseases, such as apical periodontitis and infective endocarditis. S. gordonii, an early colonizer, easily attaches to host tissues, including tooth surfaces and heart valves, forming biofilms. S. gordonii penetrates into root canals and blood streams, subsequently interacting with various host immune and non-immune cells. The cell wall components of S. gordonii, which include lipoteichoic acids, lipoproteins, serine-rich repeat adhesins, peptidoglycans, and cell wall proteins, are recognizable by individual host receptors. They are involved in virulence and immunoregulatory processes causing host inflammatory responses. Therefore, S.gordonii cell wall components act as virulence factors that often progressively develop diseases through overwhelming host responses. This review provides an overview of S. gordonii, and how its cell wall components could contribute to the pathogenesis and development of therapeutic strategies.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Yeongkag Kwon
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Yoon Ju So
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Tae Hwan Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
- Correspondence: ; Tel.: +82-2-880-2310
| |
Collapse
|
10
|
Im J, Baik JE, Lee D, Park OJ, Park DH, Yun CH, Han SH. Bacterial Lipoproteins Induce BAFF Production via TLR2/MyD88/JNK Signaling Pathways in Dendritic Cells. Front Immunol 2020; 11:564699. [PMID: 33123136 PMCID: PMC7566273 DOI: 10.3389/fimmu.2020.564699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
B-cell activating factor (BAFF) plays a crucial role in survival, differentiation, and antibody secretion of B cells. Microbial products with B-cell mitogenic properties can indirectly promote expansion and activation of B cells by stimulating accessory cells, such as dendritic cells (DCs), to induce BAFF. Although bacterial lipoproteins are potent B-cell mitogen like lipopolysaccharides (LPSs), it is uncertain whether they can stimulate DCs to induce BAFF expression. Here, we evaluated the effect of bacterial lipoproteins on BAFF expression in mouse bone marrow-derived DCs. Lipoprotein-deficient Staphylococcus aureus mutant induced relatively low expression level of membrane-bound BAFF (mBAFF) and the mRNA compared with its wild-type strain, implying that bacterial lipoproteins can positively regulate BAFF induction. The synthetic lipopeptides Pam2CSK4 and Pam3CSK4, which mimic bacterial lipoproteins, dose-dependently induced BAFF expression, and their BAFF-inducing capacities were comparable to those of LPS in DCs. Induction of BAFF by the lipopeptide was higher than the induction by other microbe-associated molecular patterns, including peptidoglycan, flagellin, zymosan, lipoteichoic acid, and poly(I:C). Pam3CSK4 induced both mBAFF and soluble BAFF expression in a dose- and time-dependent manner. BAFF expression by Pam3CSK4 was completely absent in DCs from TLR2- or MyD88-deficient mice. Among various MAP kinase inhibitors, only JNK inhibitors blocked Pam3CSK4-induced BAFF mRNA expression, while inhibitors blocking ERK or p38 kinase had no such effect. Furthermore, Pam3CSK4 increased the DNA-binding activities of NF-κB and Sp1, but not that of C/EBP. Pam3CSK4-induced BAFF promoter activity via TLR2/1 was blocked by NF-κB or Sp1 inhibitor. Collectively, these results suggest that bacterial lipoproteins induce expression of BAFF through TLR2/MyD88/JNK signaling pathways leading to NF-κB and Sp1 activation in DCs, and BAFF derived from bacterial lipoprotein-stimulated DCs induces B-cell proliferation.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm. J Microbiol 2019; 57:310-315. [DOI: 10.1007/s12275-019-8538-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
|
12
|
Kim HY, Kim AR, Seo HS, Baik JE, Ahn KB, Yun CH, Han SH. Lipoproteins in Streptococcus gordonii are critical in the infection and inflammatory responses. Mol Immunol 2018; 101:574-584. [PMID: 30176521 DOI: 10.1016/j.molimm.2018.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/29/2018] [Accepted: 08/23/2018] [Indexed: 11/28/2022]
Abstract
Gram-positive bacteria such as Streptococcus gordonii causing life-threatening infective endocarditis are mainly recognized by Toll-like receptor 2 (TLR2). Lipoteichoic acid (LTA) and lipoproteins are representative TLR2 ligands that play important roles in bacterial infection and in host inflammatory responses. In the present study, we generated an LTA-deficient mutant (ΔltaS) and a lipoprotein-deficient mutant (Δlgt) and investigated the contributions of LTA and lipoproteins to bacterial morphology and their effect on induction of proinflammatory cytokines in THP-1 and mouse bone-marrow derived macrophages (BMDMs). Deletion of ltaS and lgt was confirmed by PCR analysis of genomic DNA from each mutant. The mutants with absence of LTA or lipoproteins were examined by SDS-PAGE followed by Western blotting with anti-LTA antibodies and silver staining, respectively. Interestingly, scanning and transmission electron microscopies showed no difference in the bacterial cell morphology or size between the wild-type and the mutants even though substantial changes in the cell size and/or morphology have been reported in other Gram-positive bacteria such as Staphylococcus aureus, Listeria monocytogenes, and Bacillus subtilis. However, S. gordonii wild-type and ΔltaS potently induced the expression of proinflammatory cytokines including TNF-α, IL-8, and IL-1β at the mRNA and protein levels, while Δlgt did not have these effects. Furthermore, lipoproteins purified from S. gordonii also induced the expression of the aforementioned cytokines more potently than the purified LTA. Neither LTA nor lipoprotein induced TNF-α, KC (IL-8 counterpart in mouse), and IL-1β in TLR2-deficient BMDMs. S. gordonii Δlgt was less virulent than the wild-type or ΔltaS in a mouse intraperitoneal infection model. Collectively, these results suggest that S. gordonii lipoproteins, but not LTA, are mainly responsible for the infection and inflammatory responses.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - A Reum Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Bum Ahn
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea; Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|