1
|
Akpoghelie PO, Edo GI, Mafe AN, Isoje EF, Igbuku UA, Ali ABM, Yousif E, Owheruo JO, Oberhiri Oberhiri S, Essaghah AEA, Ahmed DS, Umar H, Alamiery AA. Food, Health, and Environmental Impact of Lactic Acid Bacteria: The Superbacteria for Posterity. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10546-x. [PMID: 40289239 DOI: 10.1007/s12602-025-10546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
Lactic acid bacteria (LAB) are Gram-positive cocci or rods that do not produce spores or respire. Their primary function is to ferment carbohydrates and produce lactic acid. The two primary forms of LAB that are currently recognized are homofermentative and heterofermentative. This review discusses the evolutionary diversity and the biochemical and biophysical conditions required by LAB for their metabolism. Next, it concentrates on the applications of these bacteria in gut health, cancer prevention, and overall well-being and food systems. There are numerous uses for LAB, including the food and dairy sectors, as probiotics to improve human and animal gut-health, as anti-carcinogenic agents, and in food safety as biopreservatives, pathogen inhibitors, and reducers of anti-nutrients in foods. The group included many genera, including Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus, Tetragenococcus, Vagococcus, and Weissella. Numerous species of Lactobacillus and Bifidobacterium genera as well as other microbes have been suggested as probiotic strains, or live microorganisms added to meals to improve health. LAB can colonize the intestine and take part in the host's physiological processes. This review briefly highlights the role of these bacteria in food safety and security as well as aspects of regulation and consumer acceptance. Finally, the recent innovations in LAB fermentations and the limitations and challenges of the applications of LAB in the food industry are discussed. Notwithstanding recent developments, the study of LAB and their functional components is still an emerging topic of study that has not yet realized its full potential.
Collapse
Affiliation(s)
- Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria.
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Jalingo, Nigeria
| | - Endurance Fegor Isoje
- Faculty of Science, Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, College of Engineering, Warith Al-Anbiyaa University, Karbala, Iraq
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Joseph Oghenewogaga Owheruo
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | | | - Arthur Efeoghene Athan Essaghah
- Faculty of Environmental Sciences, Department of Urban and Regional Planning, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Ahmed A Alamiery
- AUIQ, Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, P.O. Box: 64004, An Nasiriyah, Thi Qar, Iraq
| |
Collapse
|
2
|
Ng CS. From the midfacial destructive drama to the unfolding EBV story: a short history of EBV-positive NK-cell and T-cell lymphoproliferative diseases. Pathology 2024; 56:773-785. [PMID: 39127542 DOI: 10.1016/j.pathol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that has been related to oncogenesis of lymphoid and epithelial malignancies. Although the mechanism of EBV infection of NK and T cells remains enigmatic, it plays a pathogenic role in various EBV+ NK-cell and T-cell lymphoproliferative diseases (LPDs), through promotion of cell activation pathways, inhibition of cell apoptotic pathways, behaving as oncogenes, interacting with host oncogenes or acting epigenetically. The study of NK-cell LPDs, previously hampered by the lack of immunophenotypical and genotypical criteria of NK cells, has become feasible with the recently accepted criteria. EBV+ NK- and T-cell LPDs are mostly of poor prognosis. This review delivers a short history from primeval to recent EBV+ NK- and T-cell LPDs in non-immunocompromised subjects, coupled with increasing interest, and work on the biological and oncogenic roles of EBV.
Collapse
Affiliation(s)
- Chi Sing Ng
- Department of Pathology, Caritas Medical Center, Shamshuipo, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Ulvmoen A, Greiff V, Bechensteen AG, Inngjerdingen M. NKG2A discriminates natural killer cells with a suppressed phenotype in pediatric acute leukemia. J Leukoc Biol 2024; 115:334-343. [PMID: 37738462 DOI: 10.1093/jleuko/qiad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
Natural killer (NK) cells are important for early tumor immune surveillance. In patients with hematological cancers, NK cells are generally functional deficient and display dysregulations in their receptor repertoires. Acute leukemia is the most common cancer in children, and we here performed a comparative phenotypic profiling of NK cells from B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients to identify aberrant NK cell phenotypes. NK cell phenotypes, maturation, and function were analyzed in matched bone marrow and blood NK cells from BCP-ALL patients at diagnosis, during treatment, and at end of treatment and compared with age-matched pediatric control subjects. Expression of several markers were skewed in patients, but with large interindividual variations. Undertaking a multiparameter approach, we found that high expression levels of NKG2A was the single predominant marker distinguishing NK cells in BCP-ALL patients compared with healthy control subjects. Moreover, naïve CD57-NKG2A NK cells dominated in BCP-ALL patients at diagnosis. Further, we found dysregulated expression of the activating receptor DNAM-1 in resident bone marrow CXCR6+ NK cells. CXCR6+ NK cells lacking DNAM-1 expressed NKG2A and had a tendency for lower degranulation activity. In conclusion, high expression of NKG2A dominates NK cell phenotypes from pediatric BCP-ALL patients, indicating that NKG2A could be targeted in therapies for this patient group.
Collapse
Affiliation(s)
- Aina Ulvmoen
- Department of Pediatrics, Oslo University Hospital, Sognsvannsveien 20, Oslo 0372, Norway
| | - Victor Greiff
- Department of Immunology, Oslo University Hospital and University of Oslo, Sognsvannsveien 20, Oslo 0372, Norway
| | - Anne G Bechensteen
- Department of Pediatrics, Oslo University Hospital, Sognsvannsveien 20, Oslo 0372, Norway
| | - Marit Inngjerdingen
- Department of Pharmacology, Oslo University Hospital and University of Oslo, Sognsvannsveien 20, Oslo 0372, Norway
| |
Collapse
|
4
|
Rebuli ME, Stanley Lee A, Nurhussien L, Tahir UA, Sun WY, Kimple AJ, Ebert CS, Almond M, Jaspers I, Rice MB. Nasal biomarkers of immune function differ based on smoking and respiratory disease status. Physiol Rep 2023; 11:e15528. [PMID: 36780897 PMCID: PMC9925276 DOI: 10.14814/phy2.15528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 02/15/2023] Open
Abstract
Respiratory biomarkers have the potential to identify airway injury by revealing inflammatory processes within the respiratory tract. Currently, there are no respiratory biomarkers suitable for clinical use to identify patients that warrant further diagnostic work-up, counseling, and treatment for toxic inhalant exposures or chronic airway disease. Using a novel, noninvasive method of sampling the nasal epithelial lining fluid, we aimed to investigate if nasal biomarker patterns could distinguish healthy nonsmoking adults from active smokers and those with chronic upper and lower airway disease in this exploratory study. We compared 28 immune mediators from healthy nonsmoking adults (n = 32), former smokers with COPD (n = 22), chronic rhinosinusitis (CRS) (n = 22), and smoking adults without airway disease (n = 13). Using ANOVA, multinomial logistic regressions, and weighted gene co-expression network analysis (WGCNA), we determined associations between immune mediators and each cohort. Six mediators (IL-7, IL-10, IL-13, IL-12p70, IL-15, and MCP-1) were lower among disease groups compared to healthy controls. Participants with lower levels of IL-10, IL-12p70, IL-13, and MCP-1 in the nasal fluid had a higher odds of being in the COPD or CRS group. The cluster analysis identified groups of mediators that correlated with disease status. Specifically, the cluster of IL-10, IL-12p70, and IL-13, was positively correlated with healthy and negatively correlated with COPD groups, and two clusters were correlated with active smoking. In this exploratory study, we preliminarily identified groups of nasal mucosal mediators that differed by airway disease and smoking status. Future prospective, age-matched studies that control for medication use are needed to validate these patterns and determine if nasosorption has diagnostic utility for upper and lower airway disease or injury.
Collapse
Affiliation(s)
- Meghan E. Rebuli
- Department of Pediatrics and Curriculum in Toxicology and Environmental MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Center for Environmental Medicine, Asthma and Lung BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Anna Stanley Lee
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Lina Nurhussien
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Usman A. Tahir
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Wendy Y. Sun
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Adam J. Kimple
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Charles S. Ebert
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Martha Almond
- Center for Environmental Medicine, Asthma and Lung BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Ilona Jaspers
- Department of Pediatrics and Curriculum in Toxicology and Environmental MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Center for Environmental Medicine, Asthma and Lung BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Mary B. Rice
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Marron K, Harrity C. Potential utility of a non-invasive menstrual blood immunophenotype analysis in reproductive medicine. REPRODUCTION AND FERTILITY 2022; 3:RAF-22-0047. [PMID: 36173705 PMCID: PMC9641796 DOI: 10.1530/raf-22-0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/16/2022] [Indexed: 08/27/2023] Open
Abstract
Purpose Can a comprehensive flow cytometry panel be used to assess immunophenotype profiles in menstrual blood of patients experiencing reproductive failure and age matched controls of proven fertility? Methods 58 recurrent pregnancy loss and repeated implantation failure patients, along with 15 age matched controls of proven fertility, had menstrual blood samples obtained within the first 24 hours of the onset of menstruation to non-invasively assess the local immunophenotype. Using a comprehensive multi-parameter flow panel the lymphocyte sub-populations were described and compared. Results Relative to well established peripheral blood immunophenotyping values, distinct lymphocyte population differences were noted between the subgroups. The ratios of CD4+ and CD8+ T-cells were inverted relative to peripheral blood and uterine NK cells represented by CD56bright were distinctly visualised, emphasising the distinction of menstrual and peripheral blood. Relative to controls there were marked increases in CD3+ve T-cells (p=0.009), CD4:CD8 ratio (p=0.004), CD19 B-cells (p=0.026) and CD56dim NK's (p=0.002) in the reproductive failure cases. Conclusions Flow cytometric evaluation can provide a rapid and objective analysis of lymphocyte subpopulations in many forms of tissue and fluid. The findings show significant variations in cellular composition of immune cells indicating a distinct compartment, with differences between cases and controls. Immunological assessment of the menstrual blood immunophenotype, in clinically appropriate patients, may provide insight into the aetiology of adverse reproductive outcome, without the risks and inconveniences associated with a more invasive endometrial biopsy.
Collapse
Affiliation(s)
| | - Conor Harrity
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
6
|
NK Cell Subpopulation Is Altered and the Expression of TLR1 and TLR9 Is Decreased in Patients with Acute Lymphoblastic Leukemia. JOURNAL OF ONCOLOGY 2021; 2021:5528378. [PMID: 34567117 PMCID: PMC8457960 DOI: 10.1155/2021/5528378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022]
Abstract
NK cells represent a heterogeneous subpopulation of lymphocytes of the innate immune system, which possess powerful antitumor activity. NK cells exhibit their function through a complex collection of receptors that act synergistically to recognize, regulate, or amplify the immune response. TLRs allow cells to detect PAMPs, MAMPs, or DAMPs, which are essential for the initiation of the immune response. Studies on the different subpopulations of NK cells and their expression profile of innate immune receptors in hematological cancers are limited. In this study, the specific subpopulations of NK cells in pediatric patients with acute lymphoblastic leukemia (ALL) and the repertoire and level of expression of TLRs in cytotoxic NK cells were assessed. The results suggested that pediatric patients with ALL exhibited a significant decrease in NK cells in peripheral blood and bone marrow, in addition to alterations in the distribution of the subpopulations of cells. Regulatory and cytotoxic NK cells were diminished, whereas dysfunctional phenotype was considerably increased. Cytotoxic NK cells from children with ALL expressed all 10 TLRs, and expression of TLR1 and TLR9 was decreased compared with the controls. Interestingly, cytotoxic NK cells exhibited a higher expression of TLR1 in the bone marrow than in the peripheral blood of patients with ALL. The present study is the first to show that TLR10 was expressed in the cytotoxic NK cells and the first to assess the profile and levels of the 10 known TLRs in cytotoxic NK cells from patients with ALL. The alterations in expression levels and cellular distribution may be involved in the immune response.
Collapse
|
7
|
Hegewisch-Solloa E, Seo S, Mundy-Bosse BL, Mishra A, Waldman EH, Maurrasse S, Grunstein E, Connors TJ, Freud AG, Mace EM. Differential Integrin Adhesome Expression Defines Human NK Cell Residency and Developmental Stage. THE JOURNAL OF IMMUNOLOGY 2021; 207:950-965. [PMID: 34282002 DOI: 10.4049/jimmunol.2100162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Abstract
NK cells are innate immune cells that reside within tissue and circulate in peripheral blood. They interact with a variety of microenvironments, yet how NK cells engage with these varied microenvironments is not well documented. The adhesome represents a molecular network of defined and predicted integrin-mediated signaling interactions. In this study, we define the integrin adhesome expression profile of NK cells from human tonsil, peripheral blood, and those derived from human hematopoietic precursors through stromal cell coculture systems. We report that the site of cell isolation and NK cell developmental stage dictate differences in expression of adhesome associated genes and proteins. Furthermore, we define differences in cortical actin content associated with differential expression of actin regulating proteins, suggesting that differences in adhesome expression are associated with differences in cortical actin homeostasis. These data provide understanding of the diversity of human NK cell populations and how they engage with their microenvironment.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Seungmae Seo
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Anjali Mishra
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH.,Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Erik H Waldman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Sarah Maurrasse
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Eli Grunstein
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, NY
| | - Thomas J Connors
- Division of Pediatric Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; and
| | - Aharon G Freud
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH.,Department of Pathology, The Ohio State University, Columbus, OH
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY;
| |
Collapse
|
8
|
Rebuli ME, Glista-Baker E, Hoffman JR, Duffney PF, Robinette C, Speen AM, Pawlak EA, Dhingra R, Noah TL, Jaspers I. Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. Am J Respir Cell Mol Biol 2021; 64:126-137. [PMID: 33095645 PMCID: PMC7781000 DOI: 10.1165/rcmb.2020-0164oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhalation of tobacco smoke has been linked to increased risk of viral infection, such as influenza. Inhalation of electronic-cigarette (e-cigarette) aerosol has also recently been linked to immune suppression within the respiratory tract, specifically the nasal mucosa. We propose that changes in the nasal mucosal immune response modify antiviral host-defense responses in e-cigarette users. Nonsmokers, cigarette smokers, and e-cigarette users were inoculated with live-attenuated influenza virus (LAIV) to safely examine the innate immune response to influenza infection. Before and after LAIV inoculation, we collected nasal epithelial-lining fluid, nasal lavage fluid, nasal-scrape biopsy specimens, urine, and blood. Endpoints examined include cytokines and chemokines, influenza-specific IgA, immune-gene expression, and markers of viral load. Statistical analysis included primary comparisons of cigarette and e-cigarette groups with nonsmokers, as well as secondary analysis of demographic factors as potential modifiers. Markers of viral load did not differ among the three groups. Nasal-lavage-fluid anti-LAIV IgA levels increased in nonsmokers after LAIV inoculation but did not increase in e-cigarette users and cigarette smokers. LAIV-induced gene-expression changes in nasal biopsy specimens differed in cigarette smokers and e-cigarette users as compared with nonsmokers, with a greater number of genes changed in e-cigarette users, mostly resulting in decreased expression. The top downregulated genes in cigarette smokers were SMPD3, NOS2A, and KLRB1, and the top downregulated genes in e-cigarette users were MR1, NT5E, and HRAS. Similarly, LAIV-induced cytokine levels in nasal epithelial-lining fluid differed among the three groups, including decreased antiviral host-defense mediators (IFNγ, IL6, and IL12p40). We also detected that sex interacted with tobacco-product exposure to modify LAIV-induced immune-gene expression. Our results demonstrate that e-cigarette use altered nasal LAIV-induced immune responses, including gene expression, cytokine and chemokine release, and LAIV-specific IgA levels. Together, these data suggest that e-cigarette use induces changes in the nasal mucosa that are consistent with the potential for altered respiratory antiviral host-defense function. Clinical trial registered with www.clinicaltrials.gov (NCT 02019745).
Collapse
Affiliation(s)
- Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine.,Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine
| | | | - Jessica R Hoffman
- Curriculum for the Environment and Ecology, College of Arts and Sciences
| | | | | | - Adam M Speen
- Curriculum in Toxicology and Environmental Medicine
| | - Erica A Pawlak
- Center for Environmental Medicine, Asthma and Lung Biology, and
| | - Radhika Dhingra
- Institute for Environmental Health Solutions, and.,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Terry L Noah
- Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine.,Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine.,Institute for Environmental Health Solutions, and
| |
Collapse
|
9
|
Differences in biomarkers of inflammation and immune responses in chronic smokers and moist snuff users. Cytokine 2020; 137:155299. [PMID: 33011400 DOI: 10.1016/j.cyto.2020.155299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cigarette smoking is a major risk factor for cancer and other diseases. While smoking induces chronic inflammation and aberrant immune responses, the effects of smokeless tobacco products (STPs) on immune responses is less clear. Here we evaluated markers related to immune regulation in smokers (SMK), moist snuff consumers (MSC) and non-tobacco consumers (NTC) to better understand the effects of chronic tobacco use. MATERIALS AND METHODS Several markers associated with immune regulation were measured in peripheral blood mononuclear cells (PBMCs) from SMK (n = 40), MSC (n = 40), and NTC (n = 40) by flow cytometry. RESULTS Relative to NTC, seven markers were significantly suppressed in SMK, whereas in MSC, only one marker was significantly suppressed. In a logistic regression model, markers including granzyme B+ lymphocytes, perforin+ lymphocytes, granzyme B+ CD8+T cells, and KLRB1+ CD8+ T cells remained as statistically significant predictors for classifying the three cohorts. Further, cell-surface receptor signaling pathways and cell-cell signaling processes were downregulated in SMK relative to MSC; chemotaxis and LPS-mediated signaling pathways, were upregulated in SMK compared to MSC. A network of the tested markers was constructed to visualize the immunosuppression in SMK relative to MSC. CONCLUSION Moist snuff consumption is associated with significantly fewer perturbations in inflammation and immune function biomarkers relative to smoking. IMPACT This work identifies several key immunological biomarkers that differentiate the effects of chronic smoking from the use of moist snuff. Additionally, a molecular basis for aberrant immune responses that could render smokers more susceptible for infections and cancer is provided.
Collapse
|
10
|
Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cell Mol Immunol 2020; 17:799-806. [PMID: 32541835 PMCID: PMC7294524 DOI: 10.1038/s41423-020-0482-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022] Open
Abstract
Malaria is one of the deadliest infectious diseases in the world. Immune responses to Plasmodium falciparum malaria vary among individuals and between populations. Human genetic variation in immune system genes is likely to play a role in this heterogeneity. Natural killer (NK) cells produce inflammatory cytokines in response to malaria infection, kill intraerythrocytic Plasmodium falciparum parasites by cytolysis, and participate in the initiation and development of adaptive immune responses to plasmodial infection. These functions are modulated by interactions between killer-cell immunoglobulin-like receptors (KIRs) and human leukocyte antigens (HLAs). Therefore, variations in KIR and HLA genes can have a direct impact on NK cell functions. Understanding the role of KIRs and HLAs in immunity to malaria can help to better characterize antimalarial immune responses. In this review, we summarize the different KIRs and HLAs associated with immunity to malaria thus far.
Collapse
|
11
|
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics (Basel) 2019; 9:diagnostics9030091. [PMID: 31394725 PMCID: PMC6787585 DOI: 10.3390/diagnostics9030091] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease of unknown aetiology that is recognized by the World Health Organization (WHO) and the United States Center for Disease Control and Prevention (US CDC) as a disorder of the brain. The disease predominantly affects adults, with a peak age of onset of between 20 and 45 years with a female to male ratio of 3:1. Although the clinical features of the disease have been well established within diagnostic criteria, the diagnosis of ME/CFS is still of exclusion, meaning that other medical conditions must be ruled out. The pathophysiological mechanisms are unclear but the neuro-immuno-endocrinological pattern of CFS patients gleaned from various studies indicates that these three pillars may be the key point to understand the complexity of the disease. At the moment, there are no specific pharmacological therapies to treat the disease, but several studies' aims and therapeutic approaches have been described in order to benefit patients' prognosis, symptomatology relief, and the recovery of pre-existing function. This review presents a pathophysiological approach to understanding the essential concepts of ME/CFS, with an emphasis on the population, clinical, and genetic concepts associated with ME/CFS.
Collapse
|
12
|
Zhao C, Liu Y, Liang Z, Feng H, Xu S. MACC1 facilitates the escape of nasopharyngeal carcinoma cells from killing by natural killer cells. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1596041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Chong Zhao
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yuehua Liu
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Zhuoping Liang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Huajun Feng
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Sheng’en Xu
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
13
|
Vujanovic L, Chuckran C, Lin Y, Ding F, Sander CA, Santos PM, Lohr J, Mashadi-Hossein A, Warren S, White A, Huang A, Kirkwood JM, Butterfield LH. CD56 dim CD16 - Natural Killer Cell Profiling in Melanoma Patients Receiving a Cancer Vaccine and Interferon-α. Front Immunol 2019; 10:14. [PMID: 30761123 PMCID: PMC6361792 DOI: 10.3389/fimmu.2019.00014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic and immunoregulatory lymphocytes that have a central role in anti-tumor immunity and play a critical role in mediating cellular immunity in advanced cancer immunotherapies, such as dendritic cell (DC) vaccines. Our group recently tested a novel recombinant adenovirus-transduced autologous DC-based vaccine that simultaneously induces T cell responses against three melanoma-associated antigens for advanced melanoma patients. Here, we examine the impact of this vaccine as well as the subsequent systemic delivery of high-dose interferon-α2b (HDI) on the circulatory NK cell profile in melanoma patients. At baseline, patient NK cells, particularly those isolated from high-risk patients with no measurable disease, showed altered distribution of CD56dim CD16+ and CD56dim CD16− NK cell subsets, as well as elevated serum levels of immune suppressive MICA, TN5E/CD73 and tactile/CD96, and perforin. Surprisingly, patient NK cells displayed a higher level of activation than those from healthy donors as measured by elevated CD69, NKp44 and CCR7 levels, and enhanced K562 killing. Elevated cytolytic ability strongly correlated with increased representation of CD56dim CD16+ NK cells and amplified CD69 expression on CD56dim CD16+ NK cells. While intradermal DC immunizations did not significantly impact circulatory NK cell activation and distribution profiles, subsequent HDI injections enhanced CD56bright CD16− NK cell numbers when compared to patients that did not receive HDI. Phenotypic analysis of tumor-infiltrating NK cells showed that CD56dim CD16− NK cells are the dominant subset in melanoma tumors. NanoString transcriptomic analysis of melanomas resected at baseline indicated that there was a trend of increased CD56dim NK cell gene signature expression in patients with better clinical response. These data indicate that melanoma patient blood NK cells display elevated activation levels, that intra-dermal DC immunizations did not effectively promote systemic NK cell responses, that systemic HDI administration can modulate NK cell subset distributions and suggest that CD56dim CD16− NK cells are a unique non-cytolytic subset in melanoma patients that may associate with better patient outcome.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher Chuckran
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Lin
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fei Ding
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cindy A Sander
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Patricia M Santos
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joel Lohr
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Sarah Warren
- NanoString Technologies, Seattle, WA, United States
| | - Andy White
- NanoString Technologies, Seattle, WA, United States
| | - Alan Huang
- NanoString Technologies, Seattle, WA, United States
| | - John M Kirkwood
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lisa H Butterfield
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Sun H, Sun C, Xiao W, Sun R. Tissue-resident lymphocytes: from adaptive to innate immunity. Cell Mol Immunol 2019; 16:205-215. [PMID: 30635650 DOI: 10.1038/s41423-018-0192-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Efficient immune responses against invading pathogens often involve coordination between cells from both the innate and adaptive immune systems. For multiple decades, it has been believed that CD8+ memory T cells and natural killer (NK) cells constantly and uniformly recirculate. Only recently was the existence of noncirculating memory T and NK cells that remain resident in the peripheral tissues, termed tissue-resident memory T (TRM) cells and tissue-resident NK (trNK) cells, observed in various organs owing to improved techniques. TRM cells populate a wide range of peripheral organs, including the skin, sensory ganglia, gut, lungs, brain, salivary glands, female reproductive tract, and others. Recent findings have demonstrated the existence of TRM in the secondary lymphoid organs (SLOs) as well, leading to revision of the classic theory that they exist only in peripheral organs. trNK cells have been identified in the uterus, skin, kidney, adipose tissue, and salivary glands. These tissue-resident lymphocytes do not recirculate in the blood or lymphatic system and often adopt a unique phenotype that is distinct from those of circulating immune cells. In this review, we will discuss the recent findings on the tissue residency of both innate and adaptive lymphocytes, with a particular focus on CD8+ memory T cells, and describe some advances regarding unconventional T cells (invariant NKT cells, mucosal-associated invariant T cells (MAIT), and γδ T cells) and the emerging family of trNK cells. Specifically, we will focus on the phenotypes and functions of these subsets and discuss their implications in anti-viral and anti-tumor immunity.
Collapse
Affiliation(s)
- Haoyu Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China.
| | - Cheng Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Weihua Xiao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|