1
|
Jabbari P, Kim JH, Le BH, Zhang W, Zhang H, Martins-Green M. Chronic Wound Initiation: Single-Cell RNAseq of Cutaneous Wound Tissue and Contributions of Oxidative Stress to Initiation of Chronicity. Antioxidants (Basel) 2025; 14:214. [PMID: 40002400 PMCID: PMC11852160 DOI: 10.3390/antiox14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic wounds (CWs) in humans affect millions of people in the US alone, cost billions of dollars, cause much suffering, and still there are no effective treatments. Patients seek medical care when wound chronicity is already established, making it impossible to investigate factors that initiate chronicity. In this study, we used a diabetic mouse model of CWs that mimics many aspects of chronicity in humans. We performed scRNAseq to compare the cell composition and function during the first 72 h post-injury and profiled 102,737 cells into clusters of all major cell types involved in healing. We found two types of fibroblasts. Fib 1 (pro-healing) was enriched in non-CWs (NCWs) whereas Fib 2 (non-healing) was in CWs. Both showed disrupted proliferation and migration, and extracellular matrix (ECM) deposition in CWs. We identified several subtypes of keratinocytes, all of which were more abundant in NCWs, except for Channel-related keratinocytes, and showed altered migration, apoptosis, and response to oxidative stress (OS) in CWs. Vascular and lymphatic endothelial cells were both less abundant in CWs and both had impaired migration affecting the development of endothelial and lymphatic microvessels. Study of immune cells showed that neutrophils and mast cells are less abundant in CWs and that NCWs contained more proinflammatory macrophages (M1) whereas CWs were enriched in anti-inflammatory macrophages (M2). Also, several genes involved in mitochondrial function were abnormally expressed in CWs, suggesting impaired mitochondrial function and/or higher OS. Heat shock proteins needed for response to OS were downregulated in CWs, potentially leading to higher cellular damage. In conclusion, the initiation of chronicity is multifactorial and involves various cell types and cellular functions, indicating that one type of treatment will not fix all problems, unless the root cause is fundamental to the cell and molecular mechanisms of healing. We propose that such a fundamental process is high OS and its association with wound infection/biofilm.
Collapse
Affiliation(s)
- Parnian Jabbari
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| | - Jane H. Kim
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| | - Brandon H. Le
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; (B.H.L.); (W.Z.)
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Wei Zhang
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; (B.H.L.); (W.Z.)
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Huimin Zhang
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| | - Manuela Martins-Green
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA; (P.J.); (J.H.K.); (H.Z.)
| |
Collapse
|
2
|
Jiang X, Geng H, Zhang C, Zhu Y, Zhu M, Feng D, Wang D, Yao J, Deng L. Circadian Rhythm Enhances mTORC1/AMPK Pathway-Mediated Milk Fat Synthesis in Dairy Cows via the Microbial Metabolite Acetic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28178-28193. [PMID: 39630106 DOI: 10.1021/acs.jafc.4c07488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Livestock may respond differently to circadian rhythms, leading to differences in the composition of the animal products. Nevertheless, the circadian effects on rumen microorganisms and animal products are poorly understood. In the study, it was found that dairy cows exhibited increased milk fat levels, decreased acetic acid concentrations in the rumen fluid, and elevated acetic acid levels in the blood during the night compared to those of the day. Correlational analyses suggested a high association between Succiniclasticum, Lactobacillus, Prevotellacene NK3B31_group, Muribaculaceae_unclassified, etc., which were significantly enriched in rumen fluid at night, and milk fat levels. The differential metabolite Vitamin B6, significantly elevated at night, promoted the translocation of acetic acid into the circulation by increasing the level of rumen epithelial MCT1 protein expression. In addition, we found that both acetic acid treatment time and dose modulated the expression of lipid metabolism transcription factors (PPARγ, PPARα, and SREBP1c) and downstream genes (FASN, SCD1, ACCα, and CPT1A). Additionally, the mTORC1 and AMPK pathways were responsible for the effects of acetic acid on transcription factors and genes involved in lipid metabolism. Differences in rumen microbial taxa were observed between the day and night. Microbial metabolite (acetic acid) was found to be absorbed into the bloodstream and entered the mammary gland at night at a significantly elevated level. This regulation impacted the expression of lipid metabolism-related transcription factors (PPARγ, PPARα, and SREBP1c), as well as downstream genes through the mTORC1 and AMPK signaling pathways, ultimately affecting milk fat synthesis. These findings provide a new perspective for the microbial regulation of milk synthesis.
Collapse
Affiliation(s)
- Xingwei Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miaomiao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dingping Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, Guangdong 518000, China
| |
Collapse
|
3
|
Li B, Baima Y, De J, Wen D, Liu Y, Basang Z, Jiang N. Hypoxic stress caused apoptosis of MDBK cells by p53/BCL6-mitochondrial apoptosis pathway. Anim Biotechnol 2024; 35:2299241. [PMID: 38178593 DOI: 10.1080/10495398.2023.2299241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hypoxia is an important characteristic of Tibetan plateau environment. It can lead to apoptosis, but the mechanism of apoptosis caused by hypoxic stress needs further clarification. Here, cattle kidney cell MDBK were used as cell model. The effect of hypoxic stress on apoptosis and its molecular mechanism were explored. MDBK cells were treated with hypoxic stress, apoptosis and mitochondrial apoptotic pathway were significantly increased, and the expression of B-cell lymphoma 6 (BCL6) was significantly decreased. Overexpressing or inhibiting BCL6 demonstrated that BCL6 inhibited the apoptosis. And the increase of apoptosis controlled by hypoxic stress was blocked by BCL6 overexpressing. MDBK cells were treated with hypoxic stress, the expression and the nuclear localization of p53 were significantly increased. Overexpressing or inhibiting p53 demonstrated that hypoxic stress suppressed the expression of BCL6 through p53. Together, these results indicated that hypoxic stress induced the apoptosis of MDBK cells, and BCL6 was an important negative factor for this regulation process. In MDBK cells, hypoxic stress suppressed the expression of BCL6 through p53/BCL6-mitochondrial apoptotic pathway. This study enhanced current understanding of the molecular mechanisms underlying the regulation of apoptosis by hypoxic stress in MDBK cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Tibet, China
| | - Yangjin Baima
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Ji De
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Yang Liu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
| | - Zhuzha Basang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Tibet, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Tibet, China
- Colleges of Life Science and Technology, Dalian University, Dalian Economic Technological Development Zone, Dalian, China
| |
Collapse
|
4
|
Yu W, Guo J, Mao L, Wang Q, Liu Y, Xu D, Ma J, Luo C. Glucose promotes cell growth and casein synthesis via ATF4/Nrf2-Sestrin2- AMPK-mTORC1 pathway in dairy cow mammary epithelial cells. Anim Biotechnol 2023; 34:3808-3818. [PMID: 37435839 DOI: 10.1080/10495398.2023.2228847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
In the dairy industry, glucose (Glu) is used as bioactive substance to increase milk yield. However, the molecular regulation underneath needs further clarification. Here, the regulation and its molecular mechanism of Glu on cell growth and casein synthesis of dairy cow mammary epithelial cells (DCMECs) were investigated. When Glu was added from DCMECs, both cell growth, β-casein expression and the mechanistic target of rapamycin complex 1 (mTORC1) pathway were increased. Overexpression and silencing of mTOR revealed that Glu promoted cell growth and β-casein expression through the mTORC1 pathway. When Glu was added from DCMECs, both Adenosine 5'-monophosphate-activated protein kinase α (AMPKα) and Sestrin2 (SESN2) expression were decreased. Overexpression and silencing of AMPKα or SESN2 uncovered that AMPKα suppressed cell growth and β-casein synthesis through inhibiting mTORC1 pathway, and SESN2 suppressed cell growth and β-casein synthesis through activating AMPK pathway. When Glu was depleted from DCMECs, both activating transcription factor 4 (ATF4) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression were increased. Overexpression or silencing of ATF4 or Nrf2 demonstrated that Glu depletion promoted SESN2 expression through ATF4 and Nrf2. Together, these results indicate that in DCMECs, Glu promoted cell growth and casein synthesis via ATF4/Nrf2-SESN2-AMPK-mTORC1 pathway.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Jinqi Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Lei Mao
- College of Life Sciences, Shihezi University, Shihezi, P. R. China
| | - Qingzhu Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
| | - Yuanyuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Dong Xu
- Harbin Weike Biotechnology Co., Ltd, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
- Harbin Weike Biotechnology Co., Ltd, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Chaochao Luo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Branch of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
5
|
Li B, Khan MZ, Khan IM, Ullah Q, Cisang ZM, Zhang N, Wu D, Huang B, Ma Y, Khan A, Jiang N, Zahoor M. Genetics, environmental stress, and amino acid supplementation affect lactational performance via mTOR signaling pathway in bovine mammary epithelial cells. Front Genet 2023; 14:1195774. [PMID: 37636261 PMCID: PMC10448190 DOI: 10.3389/fgene.2023.1195774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Mammary glands are known for their ability to convert nutrients present in the blood into milk contents. In cows, milk synthesis and the proliferation of cow mammary epithelial cells (CMECs) are regulated by various factors, including nutrients such as amino acids and glucose, hormones, and environmental stress. Amino acids, in particular, play a crucial role in regulating cell proliferation and casein synthesis in mammalian epithelial cells, apart from being building blocks for protein synthesis. Studies have shown that environmental factors, particularly heat stress, can negatively impact milk production performance in dairy cattle. The mammalian target of rapamycin complex 1 (mTORC1) pathway is considered the primary signaling pathway involved in regulating cell proliferation and milk protein and fat synthesis in cow mammary epithelial cells in response to amino acids and heat stress. Given the significant role played by the mTORC signaling pathway in milk synthesis and cell proliferation, this article briefly discusses the main regulatory genes, the impact of amino acids and heat stress on milk production performance, and the regulation of mTORC signaling pathway in cow mammary epithelial cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Zhuo-Ma Cisang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Nan Zhang
- Tibet Autonomous Region Animal Husbandry Station, Lhasa, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Andlovic B, Heilmann G, Ninck S, Andrei SA, Centorrino F, Higuchi Y, Kato N, Brunsveld L, Arkin M, Menninger S, Choidas A, Wolf A, Klebl B, Kaschani F, Kaiser M, Eickhoff J, Ottmann C. IFNα primes cancer cells for Fusicoccin-induced cell death via 14-3-3 PPI stabilization. Cell Chem Biol 2023; 30:573-590.e6. [PMID: 37130519 DOI: 10.1016/j.chembiol.2023.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/04/2023]
Abstract
The natural product family of the fusicoccanes (FCs) has been shown to display anti-cancer activity, especially when combined with established therapeutic agents. FCs stabilize 14-3-3 protein-protein interactions (PPIs). Here, we tested combinations of a small library of FCs with interferon α (IFNα) on different cancer cell lines and report a proteomics approach to identify the specific 14-3-3 PPIs that are induced by IFNα and stabilized by FCs in OVCAR-3 cells. Among the identified 14-3-3 target proteins are THEMIS2, receptor interacting protein kinase 2 (RIPK2), EIF2AK2, and several members of the LDB1 complex. Biophysical and structural biology studies confirm these 14-3-3 PPIs as physical targets of FC stabilization, and transcriptome as well as pathway analyses suggest possible explanations for the observed synergistic effect of IFNα/FC treatment on cancer cells. This study elucidates the polypharmacological effects of FCs in cancer cells and identifies potential targets from the vast interactome of 14-3-3s for therapeutic intervention in oncology.
Collapse
Affiliation(s)
- Blaž Andlovic
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands; Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Geronimo Heilmann
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Sabrina Ninck
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Sebastian A Andrei
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Federica Centorrino
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Yusuke Higuchi
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, Japan
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, Japan
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Michelle Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Axel Choidas
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | | | - Bert Klebl
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Farnusch Kaschani
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands.
| |
Collapse
|
7
|
Suárez-Vega A, Frutos P, Gutiérrez-Gil B, Esteban-Blanco C, Toral PG, Arranz JJ, Hervás G. Feed efficiency in dairy sheep: An insight from the milk transcriptome. Front Vet Sci 2023; 10:1122953. [PMID: 37077950 PMCID: PMC10106586 DOI: 10.3389/fvets.2023.1122953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionAs higher feed efficiency in dairy ruminants means a higher capability to transform feed nutrients into milk and milk components, differences in feed efficiency are expected to be partly linked to changes in the physiology of the mammary glands. Therefore, this study aimed to determine the biological functions and key regulatory genes associated with feed efficiency in dairy sheep using the milk somatic cell transcriptome.Material and methodsRNA-Seq data from high (H-FE, n = 8) and low (L-FE, n = 8) feed efficiency ewes were compared through differential expression analysis (DEA) and sparse Partial Least Square-Discriminant analysis (sPLS-DA).ResultsIn the DEA, 79 genes were identified as differentially expressed between both conditions, while the sPLS-DA identified 261 predictive genes [variable importance in projection (VIP) > 2] that discriminated H-FE and L-FE sheep.DiscussionThe DEA between sheep with divergent feed efficiency allowed the identification of genes associated with the immune system and stress in L-FE animals. In addition, the sPLS-DA approach revealed the importance of genes involved in cell division (e.g., KIF4A and PRC1) and cellular lipid metabolic process (e.g., LPL, SCD, GPAM, and ACOX3) for the H-FE sheep in the lactating mammary gland transcriptome. A set of discriminant genes, commonly identified by the two statistical approaches, was also detected, including some involved in cell proliferation (e.g., SESN2, KIF20A, or TOP2A) or encoding heat-shock proteins (HSPB1). These results provide novel insights into the biological basis of feed efficiency in dairy sheep, highlighting the informative potential of the mammary gland transcriptome as a target tissue and revealing the usefulness of combining univariate and multivariate analysis approaches to elucidate the molecular mechanisms controlling complex traits.
Collapse
Affiliation(s)
- Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pilar Frutos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo G. Toral
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- *Correspondence: Juan-José Arranz
| | - Gonzalo Hervás
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| |
Collapse
|
8
|
Chen J, Lin T, Zhang S, Yue X, Liu X, Wu C, Liang Y, Zeng X, Ren M, Chen F, Guan W, Zhang S. Niacin/β-hydroxybutyrate regulates milk fat and milk protein synthesis via the GPR109A/G i/mTORC1 pathway. Food Funct 2023; 14:2642-2656. [PMID: 36866679 DOI: 10.1039/d3fo00127j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
As a crucial receptor of BHBA and niacin, GPR109A is largely expressed in the mammary gland. However, the role of GPR109A in milk synthesis and its underlying mechanism is still largely unknown. In this study, we first investigated the effect of GPR109A agonists (niacin/BHBA) on milk fat and milk protein synthesis in a mouse mammary epithelial cell line (HC11) and PMECs (porcine mammary epithelial cells). The results showed that both niacin and BHBA promote milk fat and milk protein synthesis with the activation of mTORC1 signaling. Importantly, knockdown GPR109A attenuated the niacin-induced increase of milk fat and protein synthesis and the niacin-induced activation of mTORC1 signaling. Furthermore, we found that GPR109A downstream G protein-Gαi and -Gβγ participated in the regulation of milk synthesis and the activation of mTORC1 signaling. Consistent with the finding in vitro, dietary supplementation with niacin increases milk fat and protein synthesis in mice with the activation of GPR109A-mTORC1 signaling. Collectively, GPR109A agonists promote the synthesis of milk fat and milk protein through the GPR109A/Gi/mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Tongbin Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Shuchang Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xianhuai Yue
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - XingHong Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Caichi Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yunyi Liang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
SESN2 Could Be a Potential Marker for Diagnosis and Prognosis in Glioma. Genes (Basel) 2023; 14:genes14030701. [PMID: 36980973 PMCID: PMC10048065 DOI: 10.3390/genes14030701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
(1) Background: Glioma is among the most common brain tumors, and is difficult to eradicate with current therapeutic strategies due to its highly invasive and aggressive characteristics. Sestrin2 (SESN2) is an autophagy inducer. The effect of SESN2 on glioma is controversial and unclear. (2) Methods: We downloaded related RNA-seq data from the TCGA and GTEx databases. Bioinformatic analyses including differential gene expression analysis, KM survival curve analysis, univariate and multivariate Cox regression analyses, nomogram analysis, ROC curve analysis, gene function enrichment analysis, and immune cell infiltration analysis were conducted. In addition, data from the Human Protein Atlas (HPA) database were collected to validate SESN2 expression in glioma. (3) Results: In comparison with normal tissue, expression of SESN2 in glioma tissue was higher, and those with higher expressions had significantly lower overall survival rates. The results of univariate Cox regression analyses showed that SESN2 can be a disadvantageous factor in poor glioma prognosis. Both nomograms and ROC curves confirmed these findings. Meanwhile, according to gene function analysis, SESN2 may be involved in immune responses and the tumor microenvironment (TME). Based on the HPA database results, SESN2 is localized in the cytosol and shows high expression in glioma. (4) Conclusions: The expression of SESN2 in gliomas was positively relevant to a poorer prognosis, suggesting that SESN2 could be used as a prognostic gene.
Collapse
|
10
|
Luo C, Li N, Wang Q, Li C. Sodium acetate promotes fat synthesis by suppressing TATA element modulatory factor 1 in bovine mammary epithelial cells. ANIMAL NUTRITION 2023; 13:126-136. [PMID: 37123620 PMCID: PMC10130354 DOI: 10.1016/j.aninu.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Short-chain fatty acids are important nutrients that regulate milk fat synthesis. They regulate milk synthesis via the sterol regulatory element binding protein 1 (SREBP1) pathway; however, the details are still unknown. Here, the regulation and mechanism of sodium acetate (SA) in milk fat synthesis in bovine mammary epithelial cells (BMECs) were assessed. BMECs were treated with SA supplementation (SA+) or without SA supplementation (SA-), and milk fat synthesis and activation of the SREBP1 pathway were increased (P = 0.0045; P = 0.0042) by SA+ and decreased (P = 0.0068; P = 0.0031) by SA-, respectively. Overexpression or inhibition of SREBP1 demonstrated that SA promoted milk fat synthesis (P = 0.0045) via the SREBP1 pathway. Overexpression or inhibition of TATA element modulatory factor 1 (TMF1) demonstrated that TMF1 suppressed activation of the SREBP1 pathway (P = 0.0001) and milk fat synthesis (P = 0.0022) activated by SA+. Overexpression or inhibition of TMF1 and SREBP1 showed that TMF1 suppressed milk fat synthesis (P = 0.0073) through the SREBP1 pathway. Coimmunoprecipitation analysis revealed that TMF1 interacted with SREBP1 in the cytoplasm and suppressed the nuclear localization of SREBP1 (P = 0.0066). The absence or presence of SA demonstrated that SA inhibited the expression of TMF1 (P = 0.0002) and the interaction between TMF1 and SREBP1 (P = 0.0001). Collectively, our research suggested that TMF1 was a new negative regulator of milk fat synthesis. In BMECs, SA promoted the SREBP1 pathway and milk fat synthesis by suppressing TMF1. This study enhances the current understanding of the regulation of milk fat synthesis and provides new scientific data for the regulation of milk fat synthesis.
Collapse
|
11
|
Frerker N, Karlsen TA, Stensland M, Nyman TA, Rayner S, Brinchmann JE. Comparison between articular chondrocytes and mesenchymal stromal cells for the production of articular cartilage implants. Front Bioeng Biotechnol 2023; 11:1116513. [PMID: 36896010 PMCID: PMC9989206 DOI: 10.3389/fbioe.2023.1116513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Focal lesions of articular cartilage give rise to pain and reduced joint function and may, if left untreated, lead to osteoarthritis. Implantation of in vitro generated, scaffold-free autologous cartilage discs may represent the best treatment option. Here we compare articular chondrocytes (ACs) and bone marrow-derived mesenchymal stromal cells (MSCs) for their ability to make scaffold-free cartilage discs. Articular chondrocytes produced more extracellular matrix per seeded cell than mesenchymal stromal cells. Quantitative proteomics analysis showed that articular chondrocyte discs contained more articular cartilage proteins, while mesenchymal stromal cell discs had more proteins associated with cartilage hypertrophy and bone formation. Sequencing analysis revealed more microRNAs associated with normal cartilage in articular chondrocyte discs, and large-scale target predictions, performed for the first time for in vitro chondrogenesis, suggested that differential expression of microRNAs in the two disc types were important mechanisms behind differential synthesis of proteins. We conclude that articular chondrocytes should be preferred over mesenchymal stromal cells for tissue engineering of articular cartilage.
Collapse
Affiliation(s)
- Nadine Frerker
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tommy A Karlsen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Maria Stensland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Simon Rayner
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan E Brinchmann
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Bta-miR-106b Regulates Bovine Mammary Epithelial Cell Proliferation, Cell Cycle, and Milk Protein Synthesis by Targeting the CDKN1A Gene. Genes (Basel) 2022; 13:genes13122308. [PMID: 36553575 PMCID: PMC9777812 DOI: 10.3390/genes13122308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Our previous studies found that bta-miR-106b and its corresponding target gene, CDKN1A, were differentially expressed between the mammary epithelium of lactating Holstein cows with extremely high and low milk protein and fat percentage, implying the potential role of bta-miR-106b in milk composition synthesis. In this study, with luciferase assay experiment, bta-miR-106b was validated to target the 3'-untranslated region (UTR) of bovine CDKN1A, thereby regulating its expression. Moreover, in bovine mammary epithelial cells (BMECs), over-expression of bta-miR-106b significantly down-regulated the CDKN1A expression at both mRNA and protein levels, and inhibitors of bta-miR-106b increased CDKN1A expression. Of note, we observed that bta-miR-106b accelerated cell proliferation and cell cycle, and changed the expressions of protein synthesis related pathways such as JAK-STAT and PI3K/AKT/mTOR through regulating CDKN1A expression. Our findings highlight the important regulatory role of bta-miR-106b in milk protein synthesis by targeting CDKN1A in dairy cattle.
Collapse
|
13
|
Pszczolkowski VL, Hu H, Zhang J, Connelly MK, Munsterman AS, Arriola Apelo SI. Effects of methionine, leucine, and insulin on circulating concentrations and mammary extraction of energy substrates and amino acids in lactating dairy cows. Domest Anim Endocrinol 2022; 81:106730. [PMID: 35580513 DOI: 10.1016/j.domaniend.2022.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/03/2022]
Abstract
The aim of this experiment was to test whether insulin potentiates the effects of two abomasally infused amino acids (AA), leucine and methionine (LM), on mammary extraction efficiency of energetic and nitrogenous nutrients. Six lactating Holstein cows (155 ± 9 DIM) were ruminally-cannulated and had the right carotid artery subcutaneously transposed. Cows were fed a 20% metabolizable protein-restricted diet and abomasally infused with water (8 L/d) or AA (Met 26 g/d, Leu 70 g/d) for 8 h/d, for 7 days. On the last day of each period, cows were intravenously infused with saline (0.9% NaCl, 110 mL/h) or subjected to 8 h hyperinsulinemic clamp (IC) alongside abomasal infusions. For IC, insulin was infused at 1 µg/kg/h. Normoglycemia was maintained by varying glucose (50% w/v in water) infusion rate based on coccygeal vein glucose concentration. Carotid arterial and subcutaneous abdominal (mammary) vein blood samples were collected at 0, 1, 2, 4, and 6 h from the start of infusions. Milk weights and samples for baseline measurements of production were taken on day 5 PM, day 6 AM and PM, and day 7 AM of the experimental period. A final milk weight and sample was taken immediately after abomasal and intravenous infusions on day 7 PM for assessing the interaction between insulin and the infused AA. The experiment had an incompletely replicated Latin square design with a 2 × 2 factorial arrangement of treatments (abomasal and intravenous infusion). Baseline milk production when cows were only receiving abomasal infusions was largely unaffected by LM, but milk protein yield tended to be decreased. On day 7, LM tended to positively increase milk fat and de novo fatty acid content, and IC tended to decrease milk protein content. Both milk urea nitrogen and plasma urea nitrogen were decreased by IC. Circulating AA concentrations in plasma were decreased by both LM and IC, but mammary extraction efficiency was affected by neither. Infusion of LM had no effect on any energy metabolite analyzed. Circulating non-esterified fatty acid concentration was decreased by IC, with no effect on mammary extraction efficiency. Mammary extraction efficiency of both acetate and β-hydroxybutyrate were decreased by IC. Overall, while both circulating concentrations of energy metabolites and amino acids were decreased in response to treatments, this was not due to improved mammary extraction efficiency.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI, 53706, USA
| | - Haowen Hu
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI, 53706, USA
| | - Jun Zhang
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI, 53706, USA; College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Meghan K Connelly
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI, 53706, USA; Vita Plus Corporation, Madison, WI, 53713, USA
| | - Amelia S Munsterman
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA; Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI, 53706, USA.
| |
Collapse
|
14
|
Sim EZ, Enomoto T, Shiraki N, Furuta N, Kashio S, Kambe T, Tsuyama T, Arakawa A, Ozawa H, Yokoyama M, Miura M, Kume S. Methionine metabolism regulates pluripotent stem cell pluripotency and differentiation through zinc mobilization. Cell Rep 2022; 40:111120. [PMID: 35858556 DOI: 10.1016/j.celrep.2022.111120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Pluripotent stem cells (PSCs) exhibit a unique feature that requires S-adenosylmethionine (SAM) for the maintenance of their pluripotency. Methionine deprivation in the medium causes a reduction in intracellular SAM, thus rendering PSCs in a state potentiated for differentiation. In this study, we find that methionine deprivation triggers a reduction in intracellular protein-bound Zn content and upregulation of Zn exporter SLC30A1 in PSCs. Culturing PSCs in Zn-deprived medium results in decreased intracellular protein-bound Zn content, reduced cell growth, and potentiated differentiation, which partially mimics methionine deprivation. PSCs cultured under Zn deprivation exhibit an altered methionine metabolism-related metabolite profile. We conclude that methionine deprivation potentiates differentiation partly by lowering cellular Zn content. We establish a protocol to generate functional pancreatic β cells by applying methionine and Zn deprivation. Our results reveal a link between Zn signaling and methionine metabolism in the regulation of cell fate in PSCs.
Collapse
Affiliation(s)
- Erinn Zixuan Sim
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takayuki Enomoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Nao Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taiho Kambe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomonori Tsuyama
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akihiro Arakawa
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto, Kawasaki-shi, Kanagawa, Japan
| | - Hiroki Ozawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mizuho Yokoyama
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto, Kawasaki-shi, Kanagawa, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
15
|
Bian Y, Shi C, Song S, Mu L, Wu M, Qiu D, Dong J, Zhang W, Yuan C, Wang D, Zhou Z, Dong X, Shi Y. Sestrin2 attenuates renal damage by regulating Hippo pathway in diabetic nephropathy. Cell Tissue Res 2022; 390:93-112. [PMID: 35821438 DOI: 10.1007/s00441-022-03668-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/01/2022] [Indexed: 11/27/2022]
Abstract
Glomerular mesangial cell proliferation and extracellular matrix accumulation contribute to the progression of diabetic nephropathy (DN). As a conserved stress-inducible protein, sestrin2 (Sesn2) plays critical role in the regulation of oxidative stress, inflammation, autophagy, metabolism, and endoplasmic reticulum stress. In this study, we investigated the role of Sesn2 on renal damage in diabetic kidney using transgenic mice overexpressing Sesn2 and the effect of Sesn2 on mesangial cell proliferation and extracellular matrix accumulation in diabetic conditions and the possible molecular mechanisms involved. Sesn2 overexpression improved renal function and decreased glomerular hypertrophy, albuminuria, mesangial expansion, extracellular matrix accumulation, and TGF-β1 expression, as well as oxidative stress in diabetic mice. In vitro experiments, using human mesangial cells (HMCs), revealed that Sesn2 overexpression inhibited high glucose (HG)-induced proliferation, fibronectin and collagen IV production, and ROS generation. Meanwhile, Sesn2 overexpression restored phosphorylation levels of Lats1 and YAP and inhibited TEAD1 expression. Inhibition of Lats1 accelerated HG-induced proliferation and expression of fibronectin and collagen IV. Verteporfin, an inhibitor of YAP, suppressed HG-induced proliferation and expression of fibronectin and collagen IV. However, Sesn2 overexpression reversed Lats1 deficiency-induced Lats1 and YAP phosphorylation, nuclear expression levels of YAP and TEAD1, and proliferation and fibronectin and collagen IV expressions in HMCs exposed to HG. In addition, antioxidant NAC or tempol treatment promoted phosphorylation of Lats1 and YAP and inhibited TEAD1 expression, proliferation, and fibronectin and collagen IV accumulation in HG-treated HMCs. Taken together, Sesn2 overexpression inhibited mesangial cell proliferation and fibrosis via regulating Hippo pathway in diabetic nephropathy. Induction of Sesn2 may be a potential therapeutic target in diabetic nephropathy.
Collapse
Affiliation(s)
- Yawei Bian
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chonglin Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, 050017, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Duojun Qiu
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiajia Dong
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chen Yuan
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Dongyun Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zihui Zhou
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuan Dong
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, 050017, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, 050017, China.
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
16
|
Mutation of Signal Transducer and Activator of Transcription 5 (STAT5) Binding Sites Decreases Milk Allergen α S1-Casein Content in Goat Mammary Epithelial Cells. Foods 2022; 11:foods11030346. [PMID: 35159497 PMCID: PMC8834060 DOI: 10.3390/foods11030346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
αS1-Casein (encoded by the CSN1S1 gene) is associated with food allergy more than other milk protein components. Milk allergy caused by αS1-casein is derived from cow milk, goat milk and other ruminant milk. However, little is known about the transcription regulation of αS1-casein synthesis in dairy goats. This study aimed to investigate the regulatory roles of signal transducer and activator of transcription 5 (STAT5) on αS1-casein in goat mammary epithelial cells (GMEC). Deletion analysis showed that the core promoter region of CSN1S1 was located at −110 to −18 bp upstream of transcription start site, which contained two putative STAT5 binding sites (gamma-interferon activation site, GAS). Overexpression of STAT5a gene upregulated the mRNA level and the promoter activity of the CSN1S1 gene, and STAT5 inhibitor decreased phosphorylated STAT5 in the nucleus and CSN1S1 transcription activity. Further, GAS site-directed mutagenesis and chromatin immunoprecipitation (ChIP) assays revealed that GAS1 and GAS2 sites in the CSN1S1 promoter core region were binding sites of STAT5. Taken together, STAT5 directly regulates CSN1S1 transcription by GAS1 and GAS2 sites in GMEC, and the mutation of STAT5 binding sites could downregulate CSN1S1 expression and decrease αS1-casein synthesis, which provide the novel strategy for reducing the allergic potential of goat milk and improving milk quality in ruminants.
Collapse
|
17
|
Zhang X, Groen K, Morten BC, Steffens Reinhardt L, Campbell HG, Braithwaite AW, Bourdon JC, Avery-Kiejda KA. Effect of p53 and its N-terminally truncated isoform, Δ40p53, on breast cancer migration and invasion. Mol Oncol 2021; 16:447-465. [PMID: 34657382 PMCID: PMC8763661 DOI: 10.1002/1878-0261.13118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Breast cancer is the most diagnosed malignancy in women, with over half a million women dying from this disease each year. In our previous studies, ∆40p53, an N‐terminally truncated p53 isoform, was found to be upregulated in breast cancers, and a high ∆40p53 : p53α ratio was linked with worse disease‐free survival. Although p53α inhibits cancer migration and invasion, little is known about the role of ∆40p53 in regulating these metastasis‐related processes and its role in contributing to worse prognosis. The aim of this study was to assess the role of ∆40p53 in breast cancer migration and invasion. A relationship between Δ40p53 and gene expression profiles was identified in oestrogen‐receptor‐positive breast cancer specimens. To further evaluate the role of Δ40p53 in oestrogen‐receptor‐positive breast cancer, MCF‐7 and ZR75‐1 cell lines were transduced to knockdown p53α or Δ40p53 and overexpress Δ40p53. Proliferation, migration and invasion were assessed in the transduced sublines, and gene expression was assessed through RNA‐sequencing and validated by reverse‐transcription quantitative PCR. Knockdown of both p53α and ∆40p53 resulted in increased proliferation, whereas overexpression of ∆40p53 reduced proliferation rates. p53α knockdown was also associated with increased cell mobility. ∆40p53 overexpression reduced both migratory and invasive properties of the transduced cells. Phenotypic findings are supported by gene expression data, including differential expression of LRG1, HYOU1, UBE2QL1, SERPINA5 and PCDH7. Taken together, these results suggest that, at the basal level, ∆40p53 works similarly to p53α in suppressing cellular mobility and proliferation, although the role of Δ40p53 may be cell context‐specific.
Collapse
Affiliation(s)
- Xiajie Zhang
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Kira Groen
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Brianna C Morten
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Luiza Steffens Reinhardt
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Hamish G Campbell
- Children's Medical Research Institute, University of Sydney, NSW, Australia
| | - Antony W Braithwaite
- Children's Medical Research Institute, University of Sydney, NSW, Australia.,Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Kelly A Avery-Kiejda
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| |
Collapse
|
18
|
Han M, Zhang M. The regulatory mechanism of amino acids on milk protein and fat synthesis in mammary epithelial cells: a mini review. Anim Biotechnol 2021; 34:402-412. [PMID: 34339350 DOI: 10.1080/10495398.2021.1950743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mammary epithelial cell (MEC) is the basic unit of the mammary gland that synthesizes milk components including milk protein and milk fat. MECs can sense to extracellular stimuli including nutrients such as amino acids though different sensors and signaling pathways. Here, we review recent advances in the regulatory mechanism of amino acids on milk protein and fat synthesis in MECs. We also highlight how these mechanisms reflect the amino acid requirements of MECs and discuss the current and future prospects for amino acid regulation in milk production.
Collapse
Affiliation(s)
- Meihong Han
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
19
|
Luo C, Peng W, Kang J, Chen C, Peng J, Wang Y, Tang Q, Xie H, Li Y, Pan X. Glutamine Regulates Cell Growth and Casein Synthesis through the CYTHs/ARFGAP1-Arf1-mTORC1 Pathway in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6810-6819. [PMID: 34096300 DOI: 10.1021/acs.jafc.1c02223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the dairy industry, glutamine (Gln) is often used as a feed additive to increase milk yield and quality; however, the molecular regulation underneath needs further clarification. Here, with bovine mammary epithelial cells (BMECs), the effects and mechanisms of Gln on cell growth and casein synthesis were assessed. When Gln was added or depleted from BMECs, both cell growth and β-casein (CSN2) expression were increased or decreased, respectively. Overexpressing or inhibiting the mechanistic target of rapamycin (mTOR) revealed that Gln regulated cell growth and CSN2 synthesis through the mTORC1 pathway. A similar intervention of ADP-ribosylation factor 1 (Arf1) uncovered that Gln activated the mTORC1 pathway through Arf1. We next observed that both guanine nucleotide exchange factors, Cytohesin-1/2/3 (CYTH1/2/3, CYTHs) and ADP-ribosylation factor GTPase activating protein 1 (ARFGAP1), interacted with Arf1. Inhibiting CYTHs or ARFGAP1 showed that Gln supplement or depletion activated or inactivated Arf1 through CYTHs or ARFGAP1, respectively. Collectively, this study demonstrated that Gln positively regulated cell growth and casein synthesis in BMECs, which works through the CYTHs/ARFGAP1-Arf1-mTORC1 pathway. These results greatly enhanced current understanding regarding the regulation of the mTOR pathway and provided new insights for the processes of cell growth and casein synthesis by amino acids, particularly Gln.
Collapse
|
20
|
DE Almeida DCN, DE Souza MPC, Amorim CKN, DA Silva MauÉs JH, DO E Santo Sagica F, Moreira-Nunes CA, DE Oliveira EHC. Copy Number Alterations in Papillary Thyroid Carcinomas: Does Loss of SESN2 Have a Role in Age-related Different Prognoses? Cancer Genomics Proteomics 2021; 17:643-648. [PMID: 32859642 DOI: 10.21873/cgp.20220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Thyroid cancer is the only tumor in which age is an important prognostic factor. In papillary thyroid carcinomas (PTC), 45 years of age seems to be a key point that divides adult patients into two groups, with different clinical features. The aim of the study was to perform a microarray-based analysis in two groups of patients (<45 and ≥45 years old), in order to verify the occurrence of specific copy number alterations (CNAs) that could be associated to different patient behaviors associated with age. PATIENTS AND METHODS In order to search and compare genomic alterations that may be related to age, we evaluated the occurrence of CNAs in the genome of 24 PTC samples, divided in two groups (<45 and ≥45 years old). RESULTS We identified only one region showing a statistically significant difference between the groups (p=0.00357): a deletion of approximately 537 kps in 1p35.3., which was more frequent in patients aged 45 years or older. This is the region where, among others, the gene SESN2 is located, which is activated under oxidative stress and plays an antioxidant role, in addition to protecting the genetic material from damage generated by reactive oxygen species (ROS). CONCLUSION This is the first time that a CNA involving the deletion of the SESN2 gene is associated with papillary thyroid carcinomas, particularly in patients aged 45 years and older, indicating that this deletion would lead to a more malignant and prominent tumoral behavior associated to a worst prognosis.
Collapse
Affiliation(s)
| | | | | | - Jersey Heitor DA Silva MauÉs
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Edivaldo Herculano C DE Oliveira
- Laboratory of Tissue Culture and Cytogenetics, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brazil.,Faculty of Natural Sciences, ICEN, UFPA, Belém, PA, Brazil
| |
Collapse
|
21
|
Dai W, Zhao F, Liu J, Liu H. ASCT2 Is Involved in SARS-Mediated β-Casein Synthesis of Bovine Mammary Epithelial Cells with Methionine Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13038-13045. [PMID: 31597423 DOI: 10.1021/acs.jafc.9b03833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The methionine (Met) uptake into mammary cells depends upon the corresponding amino acid (AA) transporters, which play a regulatory role in the mammary protein production beyond transport. Our previous studies have identified that seryl-tRNA synthetase (SARS) could be a novel mediator to regulate essential AA-stimulated casein synthesis in primary bovine mammary epithelial cells (BMECs). However, the regulatory mechanisms of Met in milk protein production in dairy cows remain further clarified. Here, we aimed to investigate the effects of Met on milk protein synthesis in BMECs and explore the underlying mechanism. The effects of Met on the AA transporter, casein synthesis, and the related signaling pathway were evaluated in the BMECs treated with 0.6 mM Met for 6 h combined with or without the inhibition of AA transporter (ASCT2, a neutral AA transporter) activity by the corresponding inhibitor (GPNA). Besides, the effects of SARS on the cells were mainly evaluated in the BMECs treated with 0.6 mM Met for 6 h together with or without SARS knockdown by RNAi interference. The gene expression of AA transporters and pathway-related genes were analyzed by the real-time quantitative polymerase chain reaction method, and the protein expression of related proteins were determined by the western blot assay. Results showed that 0.6 mM Met remarkably enhanced cell growth and β-casein synthesis compared to the supply of other Met concentrations. Among 13 amino acid transporters, 0.6 mM Met highly increased ASCT2 expression. This Met-stimulated ASCT2 expression and the enhanced mammary intracellular Met uptake were both decreased by the addition of 500 μM GPNA, an inhibitor of ASCT2. In the presence of 0.6 mM Met, the inhibition of ASCT2 activity (by GPNA) and SARS expression (by RNAi) both reduced β-casein synthesis. Additionally, 0.6 mM Met increased the gene expression of mTOR, S6K1, 4EBP1, and Akt; in contrast, the inhibition of ASCT2 by GPNA lowered the gene expression of these four genes. Collectively, this work suggests that ASCT2 is involved in the SARS-mediated Met stimulation of β-casein synthesis through enhancing mammary Met uptake and activating the mTOR signaling pathway in BMECs.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Fengqi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
22
|
Pszczolkowski VL, Arriola Apelo SI. The market for amino acids: understanding supply and demand of substrate for more efficient milk protein synthesis. J Anim Sci Biotechnol 2020; 11:108. [PMID: 33292704 PMCID: PMC7659053 DOI: 10.1186/s40104-020-00514-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
For dairy production systems, nitrogen is an expensive nutrient and potentially harmful waste product. With three quarters of fed nitrogen ending up in the manure, significant research efforts have focused on understanding and mitigating lactating dairy cows’ nitrogen losses. Recent changes proposed to the Nutrient Requirement System for Dairy Cattle in the US include variable efficiencies of absorbed essential AA for milk protein production. This first separation from a purely substrate-based system, standing on the old limiting AA theory, recognizes the ability of the cow to alter the metabolism of AA. In this review we summarize a compelling amount of evidence suggesting that AA requirements for milk protein synthesis are based on a demand-driven system. Milk protein synthesis is governed at mammary level by a set of transduction pathways, including the mechanistic target of rapamycin complex 1 (mTORC1), the integrated stress response (ISR), and the unfolded protein response (UPR). In tight coordination, these pathways not only control the rate of milk protein synthesis, setting the demand for AA, but also manipulate cellular AA transport and even blood flow to the mammary glands, securing the supply of those needed nutrients. These transduction pathways, specifically mTORC1, sense specific AA, as well as other physiological signals, including insulin, the canonical indicator of energy status. Insulin plays a key role on mTORC1 signaling, controlling its activation, once AA have determined mTORC1 localization to the lysosomal membrane. Based on this molecular model, AA and insulin signals need to be tightly coordinated to maximize milk protein synthesis rate. The evidence in lactating dairy cows supports this model, in which insulin and glucogenic energy potentiate the effect of AA on milk protein synthesis. Incorporating the effect of specific signaling AA and the differential role of energy sources on utilization of absorbed AA for milk protein synthesis seems like the evident following step in nutrient requirement systems to further improve N efficiency in lactating dairy cow rations.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA. .,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
23
|
Cai B, Wan P, Chen H, Chen X, Sun H, Pan J. Identification of octopus peptide and its promotion of β-casein synthesis in a mouse mammary epithelial cell line. J Food Biochem 2020; 44:e13467. [PMID: 32935377 DOI: 10.1111/jfbc.13467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Octopus protein hydrolysate has been reported to increase milk yield and milk protein production. In this paper, the utilization and underlying mechanisms of bioactive peptide fractions from octopus protein hydrolysate on β-casein expression in mouse mammary epithelial cells (HC11) were investigated. Fraction OPH3-1 significantly stimulated cell proliferation and β-casein synthesis in HC11 cells, which was purified by ultra-filtration and gel-filtration chromatography. The MWs of the peptides from OPH3-1 ranged from 525-2,578 Da and consisted of 7-26 amino acid residues. Most of the peptides demonstrated the typical characteristics of milk protein synthesis promotion, especially MGLAGPR, MGDVLNF, EAPLMHV, and TEAPLMHV. Additionally, the mRNA abundances of mTOR, S6K1, 4EBP1, JAK2, and STAT5 were significantly enhanced by OPH3-1, which was consistent with the increased β-casein expression. These results suggest that the OPH3-1 peptides can promote the proliferation of mammary epithelial cells and increase β-casein synthesis. PRACTICAL APPLICATIONS: Breastfeeding mothers are generally recommended to take octopus soup as a daily diet to promote lactation. The peptides fraction OPH3-1 from the enzymatic hydrolysate of Octopus vulgaris which was revealed to significantly stimulate mammary epithelial cell proliferation and β-casein synthesis was obtained. This study suggests that octopus peptides can be used as nutritional supplements to increase the quantity and quality of milk production.
Collapse
Affiliation(s)
- Bingna Cai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Peng Wan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Hua Chen
- Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Xin Chen
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Huili Sun
- Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jianyu Pan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Pszczolkowski VL, Halderson SJ, Meyer EJ, Lin A, Arriola Apelo SI. Pharmacologic inhibition of mTORC1 mimics dietary protein restriction in a mouse model of lactation. J Anim Sci Biotechnol 2020; 11:67. [PMID: 32612825 PMCID: PMC7322913 DOI: 10.1186/s40104-020-00470-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Understanding the mechanisms of N utilization for lactation can lead to improved requirement estimates and increased efficiency, which modern dairy diets currently fail to maximize. The mechanistic target of rapamycin complex 1 (mTORC1) is a central hub of translation regulation, processing extra- and intra-cellular signals of nutrient availability and physiological state, such as amino acids and energy. We hypothesized that dietary amino acids regulate lactation through mTORC1, such that inhibition of mTORC1 will lead to decreased lactation performance when amino acids are not limiting. Our objectives were to assess lactation performance in lactating mice undergoing dietary and pharmacologic interventions designed to alter mTORC1 activity. Methods First lactation mice (N = 18; n = 6/treatment) were fed an adequate protein diet (18% crude protein), or an isocaloric protein-restricted diet (9% crude protein) from the day after parturition until lactation day 13. A third group of mice was fed an adequate protein diet and treated with the mTORC1 inhibitor rapamycin (4 mg/kg every other day) intraperitoneally, with the first two groups treated with vehicle as control. Dams and pups were weighed daily, and feed intake was recorded every other day. Milk production was measured every other day beginning on lactation day 4 by the weigh-suckle-weigh method. Tissues were collected after fasting and refeeding. Results Milk production and pup weight were similarly decreased by both protein restriction and rapamycin treatment, with final production at 50% of control (P = 0.008) and final pup weight at 85% of control (P < 0.001). Mammary phosphorylation of mTORC1’s downstream targets were decreased by protein restriction and rapamycin treatment (P < 0.05), while very little effect was observed in the liver of rapamycin treated mice, and none by protein restriction. Conclusions Overall, sufficient supply of dietary amino acids was unable to maintain lactation performance status in mice with pharmacologically reduced mammary mTORC1 activity, as evidenced by diminished pup growth and milk production, supporting the concept that mTORC1 activation rather than substrate supply is the primary route by which amino acids regulate synthesis of milk components.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI USA.,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Steven J Halderson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Emma J Meyer
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Amy Lin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI USA.,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
25
|
Sestrin2 inhibits YAP activation and negatively regulates corneal epithelial cell proliferation. Exp Mol Med 2020; 52:951-962. [PMID: 32528056 PMCID: PMC7338388 DOI: 10.1038/s12276-020-0446-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/08/2020] [Indexed: 01/14/2023] Open
Abstract
Corneal wound healing is essential for the maintenance of corneal integrity and transparency and involves a series of physiological processes that depend on the proliferation of epithelial cells. However, the molecular mechanisms that control corneal epithelial cell proliferation are poorly understood. Here, we show that Sestrin2, a stress-inducible protein, is downregulated in the corneal epithelium during wound healing and that the proliferation of epithelial basal cells is enhanced in Sestrin2-deficient mice. We also show that YAP, a major downstream effector of the Hippo signaling pathway, regulates cell proliferation during corneal epithelial wound repair and that Sestrin2 suppresses its activity. Moreover, increased levels of reactive oxygen species in the Sestrin2-deficient corneal epithelium promote the nuclear localization and dephosphorylation of YAP, activating it to enhance the proliferation of corneal epithelial cells. These results reveal that Sestrin2 is a negative regulator of YAP, which regulates the proliferative capacity of basal epithelial cells, and may serve as a potential therapeutic target for corneal epithelial damage.
Collapse
|
26
|
Amino acid transportation, sensing and signal transduction in the mammary gland: key molecular signalling pathways in the regulation of milk synthesis. Nutr Res Rev 2020; 33:287-297. [DOI: 10.1017/s0954422420000074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe mammary gland, a unique exocrine organ, is responsible for milk synthesis in mammals. Neonatal growth and health are predominantly determined by quality and quantity of milk production. Amino acids are crucial maternal nutrients that are the building blocks for milk protein and are potential energy sources for neonates. Recent advances made regarding the mammary gland further demonstrate that some functional amino acids also regulate milk protein and fat synthesis through distinct intracellular and extracellular pathways. In the present study, we discuss recent advances in the role of amino acids (especially branched-chain amino acids, methionine, arginine and lysine) in the regulation of milk synthesis. The present review also addresses the crucial questions of how amino acids are transported, sensed and transduced in the mammary gland.
Collapse
|
27
|
Seryl-tRNA synthetase is involved in methionine stimulation of β-casein synthesis in bovine mammary epithelial cells. Br J Nutr 2019; 123:489-498. [PMID: 31711551 PMCID: PMC7015878 DOI: 10.1017/s0007114519002885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the well-characterised mechanisms of amino acids (AA) regulation of milk protein synthesis in mammary glands (MG), the underlying specific AA regulatory machinery in bovine MG remains further elucidated. As methionine (Met) is one of the most important essential and limiting AA for dairy cows, it is crucial to expand how Met exerts its regulatory effects on dairy milk protein synthesis. Our previous work detected the potential regulatory role of seryl-tRNA synthetase (SARS) in essential AA (EAA)-stimulated bovine casein synthesis. Here, we investigated whether and how SARS participates in Met stimulation of casein production in bovine mammary epithelial cells (BMEC). With or without RNA interference against SARS, BMEC were treated with the medium in the absence (containing all other EAA and devoid of Met alone)/presence (containing 0·6 mm of Met in the medium devoid of Met alone) of Met. The protein abundance of β-casein and members of the mammalian target of rapamycin (mTOR) and general control nonderepressible 2 (GCN2) pathways was determined by immunoblot assay after 6 h treatment, the cell viability and cell cycle progression were determined by cell counting and propidium iodide-staining assay after 24 h treatment, and protein turnover was determined by l-[ring-3H5]phenylalanine isotope tracing assay after 48 h treatment. In the absence of Met, there was a general reduction in cell viability, total protein synthesis and β-casein production; in contrast, total protein degradation was enhanced. SARS knockdown strengthened these changes. Finally, SARS may work to promote Met-stimulated β-casein synthesis via affecting mTOR and GCN2 routes in BMEC.
Collapse
|
28
|
Septin6 regulates cell growth and casein synthesis in dairy cow mammary epithelial cells via mTORC1 pathway. J DAIRY RES 2019; 86:181-187. [PMID: 31122298 DOI: 10.1017/s0022029919000268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This research paper addresses the hypothesis that Septin6 is a key regulatory factor influencing amino acid (AA)-mediated cell growth and casein synthesis in dairy cow mammary epithelial cells (DCMECs). DCMECs were treated with absence of AA (AA-), restricted concentrations of AA (AAr) or normal concentrations of AA (AA+) for 24 h. Cell growth, expression of CSN2 and Septin6 were increased in response to AA supply. Overexpressing or inhibiting Septin6 demonstrated that cell growth, expression of CSN2, mTOR, p-mTOR, S6K1 and p-S6K1 were up-regulated by Septin6. Furthermore, overexpressing or inhibiting mTOR demonstrated that the increase in cell growth and expression of CSN2 in response to Septin6 overexpression were inhibited by mTOR inhibition, and vice versa. Our hypothesis was supported; we were able to show that Septin6 is an important positive factor for cell growth and casein synthesis, it up-regulates AA-mediated cell growth and casein synthesis through activating mTORC1 pathway in DCMECs.
Collapse
|
29
|
Luo C, Zheng N, Zhao S, Wang J. Sestrin2 Negatively Regulates Casein Synthesis through the SH3BP4-mTORC1 Pathway in Response to AA Depletion or Supplementation in Cow Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4849-4859. [PMID: 30969118 DOI: 10.1021/acs.jafc.9b00716] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sestrin2 (SESN2) negatively regulates the mammalian target of rapamycin complex 1 (mTORC1) pathway and casein synthesis in response to amino acid (AA) depletion in cow mammary epithelial cells (CMECs); however, the underlying mechanism is unclear. In the current study, the regulation of SESN2 on AA-mediated β-casein (CSN2) synthesis in CMECs and its mechanism were investigated. Overexpression and silencing of SESN2 demonstrated that SESN2 negatively regulated AA-mediated expression of CSN2 and mTORC1 pathway. Co-immunoprecipitation analysis showed that SESN2 interacted with SH3 domain-binding protein 4 (SH3BP4). Overexpression and silencing of SH3BP4 demonstrated that SH3BP4 negatively regulated AA-mediated expression of CSN2 and mTORC1 pathway and that SESN2 negatively regulated expression of CSN2 and mTORC1 pathway through the SH3BP4 in the presence and absence of AA. The absence or presence of AA demonstrated that AA negatively regulated expression and nuclear localization of activating transcription factor 4 (ATF4). Overexpression and silencing of ATF4 demonstrated that AA negatively regulated SESN2 expression through ATF4. Together, these results indicate that SESN2 negatively regulates the mTORC1 pathway and subsequent CSN2 synthesis through the SH3BP4 in response to AA absence or presence in CMECs.
Collapse
Affiliation(s)
- Chaochao Luo
- State Key Laboratory of Animal Nutrition , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| |
Collapse
|
30
|
Wang Q, Zhang Y, Zheng N, Guo L, Song X, Zhao S, Wang J. Biological System Responses of Dairy Cows to Aflatoxin B1 Exposure Revealed with Metabolomic Changes in Multiple Biofluids. Toxins (Basel) 2019; 11:toxins11020077. [PMID: 30717092 PMCID: PMC6410036 DOI: 10.3390/toxins11020077] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 01/20/2019] [Indexed: 01/28/2023] Open
Abstract
Research on mycotoxins now requires a systematic study of post-exposure organisms. In this study, the effects of aflatoxin B1 (AFB1) on biofluids biomarkers were examined with metabolomics and biochemical tests. The results showed that milk concentration of aflatoxin M1 changed with the addition or removal of AFB1. AFB1 significantly affected serum concentrations of superoxide dismutase (SOD) and malon dialdehyde (MDA), SOD/MDA, and the total antioxidant capacity. Significant differences of volatile fatty acids and NH3-N were detected in the rumen fluid. Eighteen rumen fluid metabolites, 11 plasma metabolites, and 9 milk metabolites were significantly affected by the AFB1. These metabolites are mainly involved in the pathway of amino acids metabolism. Our results suggest that not only is the study of macro-indicators (milk composition and production) important, but that more attention should be paid to micro-indicators (biomarkers) when assessing the risks posed by mycotoxins to dairy cows.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liya Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaoming Song
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
31
|
Phosphorylation of TSC2 by PKC-δ reveals a novel signaling pathway that couples protein synthesis to mTORC1 activity. Mol Cell Biochem 2019; 456:123-134. [PMID: 30684133 DOI: 10.1007/s11010-019-03498-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/12/2019] [Indexed: 01/14/2023]
Abstract
Downstream of insulin-like growth factor receptor, the TSC1/2/ TCB1D7 (tuberous sclerosis complex) and mTOR (mechanistic target of rapamycin) pathways are implicated in many human diseases, including cancer and diabetes. Targeting this pathway is currently an important approach for palliating or eradicating cancer. Downstream of mTOR, translational machinery targeting holds great promise for anticancer drug development. Therefore, we investigated whether the protein synthesis machinery that is regulated by mTORC1 (mTOR complex 1) signaling can in turn regulate mTORC1 activity. We found that inhibition of protein synthesis results in rapid activation of mTORC1 signaling, thereby uncovering a feedback loop between mTOR and the translation machinery. This mTORC1 activation requires tuberous sclerosis complex (TSC) but is independent of AKT. In addition, by using a PKC-δ (protein kinase c delta)-specific inhibitor and PKC-δ siRNA knockdown, we found that PKC-δ kinase activity is required for mTORC1 activation in response to translation inhibitors. Furthermore, translation inhibition activates PKC-δ. Subsequently, we investigated whether PKC-δ can phosphorylate and inactivate TSC1/2, leading to mTORC1 activation. In vitro kinase assays showed direct phosphorylation of TSC2 (S932 and S939) by PKC-δ, which was confirmed by mass spectrometry. In vivo kinase analysis further indicated that both S932 and S939 are phosphorylated in response to translation inhibitors. Finally, phosphorylation defective TSC2 mutants (S932A and S939A single mutants and a S932A/S939A double mutant) failed to upregulate mTORC1 activity in the presence of translation inhibitors, suggesting that activation of mTORC1 by translation inhibitors is mediated by PKC-δ phosphorylation of TSC2 at S932/S939, which inactivates TSC.
Collapse
|
32
|
Wang M, Wang Z, Yang C, Liu L, Jiang N. Protein 14-3-3ε Regulates Cell Proliferation and Casein Synthesis via PI3K-mTOR Pathway in Dairy Cow Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12000-12008. [PMID: 30375228 DOI: 10.1021/acs.jafc.8b04590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell proliferation and casein synthesis of dairy cow mammary epithelial cells (DCMECs) are regulated by many factors. This research aimed to investigate the effect of 14-3-3ε on cell proliferation and casein synthesis in DCMECs and to reveal the underlying mechanism. Overexpressing or inhibiting 14-3-3ε demonstrated that cell proliferation; casein synthesis; expression of mTOR, p-mTOR, S6K1, and p-S6K1; and lysosomal localization of mTOR were all up-regulated by 14-3-3ε overexpressing and down-regulated by 14-3-3ε inhibiting. In addition, inhibiting mTOR demonstrated that the up-regulation of cell proliferation and casein synthesis in response to 14-3-3ε overexpressing was removed by inhibiting mTOR. Furthermore, the regulatory mechanism of 14-3-3ε was analyzed by coimmunoprecipitation, and we found that 14-3-3ε could interact with PI3K and activate mTORC1 pathway via PI3K. In addition, DCMECs were treated with insulin and prolactin, and the result showed that the cell proliferation and the expression of CSN2 and 14-3-3ε were all up-regulated by these hormones. In conclusion, the current research showed that 14-3-3ε is an important positive regulatory factor for cell proliferation and casein synthesis in DCMECs, as it up-regulates cell proliferation and casein synthesis via activating PI3K-mTOR pathway.
Collapse
Affiliation(s)
- Mengyu Wang
- College of Life Science and Technology , Dalian University, Dalian Economic Technological Development Zone , Dalian , Liaoning 116622 , China
| | - Zekun Wang
- College of Life Science and Technology , Dalian University, Dalian Economic Technological Development Zone , Dalian , Liaoning 116622 , China
| | - Chao Yang
- College of Life Science and Technology , Dalian University, Dalian Economic Technological Development Zone , Dalian , Liaoning 116622 , China
| | - Liu Liu
- College of Life Science and Technology , Dalian University, Dalian Economic Technological Development Zone , Dalian , Liaoning 116622 , China
| | - Nan Jiang
- College of Life Science and Technology , Dalian University, Dalian Economic Technological Development Zone , Dalian , Liaoning 116622 , China
- Institute of Animal Husbandry and Veterinary , Tibet Autonomous Regional Academy of Agricultural Sciences , Lhasa , Tibet 850000 , China
| |
Collapse
|
33
|
Luo C, Zhao S, Dai W, Zheng N, Wang J. Proteomic analyses reveal GNG12 regulates cell growth and casein synthesis by activating the Leu-mediated mTORC1 signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:1092-1101. [PMID: 30282607 DOI: 10.1016/j.bbapap.2018.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/10/2018] [Accepted: 08/30/2018] [Indexed: 12/01/2022]
Abstract
In cow mammary epithelial cells (CMECs), cell growth and casein synthesis are regulated by amino acids (AAs), and lysosomes are important organelles in this regulatory process, but the mechanisms remain unclear. Herein, lysosomal membrane proteins (LMPs) in CMECs in the presence (Leu+) and absence (Leu-) of leucine were quantitatively analysed using Sequential Windowed Acquisition of All Theoretical Fragment Ion (SWATH) mass spectrometry. In identified LMPs, Guanine nucleotide-binding protein subunit gamma-12 (GNG12) was a markedly up-regulated protein in Leu+ group. CMECs were treated with Leu+ or Leu-, expression and lysosomal localization of GNG12 were decreased in response to Leu absence. Overexpressing or inhibiting GNG12 demonstrated that cell growth, casein synthesis and activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway were all up-regulated by GNG12. Cell growth, casein synthesis and mTORC1 signaling pathway were decreased in response to Leu absence, but these decreases were partially restored by GNG12 overexpression, and those effects were partially reversed by inhibiting GNG12. Co-immunoprecipitation analysis showed that GNG12 activates the mTORC1 pathway via interaction with Ragulator. Taken together, these results suggest that GNG12 is a positive regulator of the Leu-mediated mTORC1 signaling pathway in CMECs that promotes cell growth and casein synthesis.
Collapse
Affiliation(s)
- Chaochao Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Wenting Dai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
34
|
Dai W, White R, Liu J, Liu H. Seryl-tRNA synthetase-mediated essential amino acids regulate β-casein synthesis via cell proliferation and mammalian target of rapamycin (mTOR) signaling pathway in bovine mammary epithelial cells. J Dairy Sci 2018; 101:10456-10468. [DOI: 10.3168/jds.2018-14568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/25/2018] [Indexed: 01/14/2023]
|
35
|
Zhou Y, Zhou Z, Peng J, Loor JJ. Methionine and valine activate the mammalian target of rapamycin complex 1 pathway through heterodimeric amino acid taste receptor (TAS1R1/TAS1R3) and intracellular Ca 2+ in bovine mammary epithelial cells. J Dairy Sci 2018; 101:11354-11363. [PMID: 30268610 DOI: 10.3168/jds.2018-14461] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022]
Abstract
Amino acids play a key role in regulating milk protein synthesis partly through activation of the mammalian target of rapamycin (mTOR) signaling pathway. However, the involvement of extracellular AA sensing receptors in this process is not well understood. In nonruminants, it is well established that the AA taste 1 receptor member 1/3 (TAS1R1/TAS1R3) heterodimer contributes to the sensing of most l-AA. Whether this receptor is functional in bovine mammary cells is unknown. The objective of this study was to determine essential AA signaling through TAS1R1/TAS1R3 and their roles in regulating mTOR signaling pathway and casein mRNA abundance in primary bovine mammary epithelial cells and the Mac-T cell line. The bovine mammary epithelial cells were stimulated with complete Dulbecco's modified Eagle's medium (+EAA), medium without EAA (-EAA), or medium supplemented with only 1 of the 10 essential AA, respectively. The nonessential AA levels were the same across all treatments. Small interference RNA targeting TAS1R1 were designed and transfected into bovine primary mammary epithelial cells (bPMEC). Supplementation of a complete mixture of essential AA or Arg, Val, Leu, His, Phe, Met, and Ile individually led to greater mTOR phosphorylation. Phosphorylation of ribosomal protein S6 kinase β-1 was greater in the presence of Val, Leu, Trp, Met, and Ile. Valine, Leu, Met, and Ile led to greater eIF4E-binding protein 1 phosphorylation. Although +EAA and a few individual AA tested induced increases in intracellular calcium, Met and Val were the most potent. Knockdown of TAS1R1 decreased intracellular calcium in bPMEC cultured with both Val and Met. Phosphorylation of mTOR, ribosomal protein S6 kinase β-1, and eIF4E-binding protein 1 was lower when TAS1R1 was knocked-down in bPMEC supplemented with Val and Met. In addition, small interference RNA silencing of TAS1R1 resulted in lower β-casein (CSN2) abundance. The TAS1R1/TAS1R3 receptor may sense extracellular AA and activate mTOR signaling in bovine mammary cells, likely by elevating intracellular calcium concentration. This mechanism appears to have a role in Met- and Val-induced changes in CSN2 mRNA abundance. Further in vivo studies will have to be performed to assess the relevance of this mechanism in the mammary gland.
Collapse
Affiliation(s)
- Y Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China 430070; Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Z Zhou
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634.
| | - J Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China 430070
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|