1
|
Stamenkovic S, Li Y, Waters J, Shih A. Deep Imaging to Dissect Microvascular Contributions to White Matter Degeneration in Rodent Models of Dementia. Stroke 2023; 54:1403-1415. [PMID: 37094035 PMCID: PMC10460612 DOI: 10.1161/strokeaha.122.037156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The increasing socio-economic burden of Alzheimer disease (AD) and AD-related dementias has created a pressing need to define targets for therapeutic intervention. Deficits in cerebral blood flow and neurovascular function have emerged as early contributors to disease progression. However, the cause, progression, and consequence of small vessel disease in AD/AD-related dementias remains poorly understood, making therapeutic targets difficult to pinpoint. Animal models that recapitulate features of AD/AD-related dementias may provide mechanistic insight because microvascular pathology can be studied as it develops in vivo. Recent advances in in vivo optical and ultrasound-based imaging of the rodent brain facilitate this goal by providing access to deeper brain structures, including white matter and hippocampus, which are more vulnerable to injury during cerebrovascular disease. Here, we highlight these novel imaging approaches and discuss their potential for improving our understanding of vascular contributions to AD/AD-related dementias.
Collapse
Affiliation(s)
- Stefan Stamenkovic
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Yuandong Li
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Andy Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Zheng F, Deng X, Zhang Q, He J, Ye P, Liu S, Li P, Zhou J, Fang X. Advances in swept-source optical coherence tomography and optical coherence tomography angiography. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:67-79. [PMID: 37846376 PMCID: PMC10577875 DOI: 10.1016/j.aopr.2022.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 10/18/2023]
Abstract
Background The fast development of swept-source optical coherence tomography (SS-OCT) and swept-source optical coherence tomography angiography (SS-OCTA) enables both anterior and posterior imaging of the eye. These techniques have evolved from a research tool to an essential clinical imaging modality. Main text The longer wavelength and faster speed of SS-OCT and SS-OCTA facilitate better visualization of structure and vasculature below pigmented tissue with a larger field of view of the posterior segment and 360-degree visualization of the anterior segment. In the past 10 years, algorithms dealing with OCT and OCTA data also vastly improved the image quality and enabled the automated quantification of OCT- and OCTA-derived metrics. This technology has enriched our current understanding of healthy and diseased eyes. Even though the high cost of the systems currently limited the widespread use of SS-OCT and SS-OCTA at the first beginning, the gap between research and clinic practice got obviously shortened in the past few years. Conclusions SS-OCT and SS-OCTA will continue to evolve rapidly, contributing to a paradigm shift toward more widespread adoption of new imaging technology in clinical practice.
Collapse
Affiliation(s)
- Fang Zheng
- Eye Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Deng
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Eye Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jingliang He
- Eye Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Panpan Ye
- Eye Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Li
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Zhou
- TowardPi (Beijing) Medical Technology Ltd, Shanghai, China
| | - Xiaoyun Fang
- Eye Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Terman D. Modeling the response of homogeneous and heterogeneous cerebral capillary networks to local changes in vessel diameters. J Theor Biol 2023; 568:111509. [PMID: 37120132 DOI: 10.1016/j.jtbi.2023.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
While microvascular cerebral capillary networks are known to be highly heterogeneous, previous computational models have predicted that heterogeneous cerebral capillary flow patterns result in lower brain tissue partial oxygen pressures. Moreover, as blood flow increases, the flux among capillaries homogenizes. This homogenization of flow is expected to improve the efficiency of oxygenation extraction from the blood. In this work, we use mathematical modeling to explore a possible functional role for the high degree of heterogeneity observed in cerebral capillary networks. Our results suggest that heterogeneity allows for a greater response of tissue oxygen levels to local changes in vessel diameters due to neuronal activation. This result is confirmed for a full 3-dimensional model of capillary networks that includes oxygen diffusion within the tissue region and a reduced model that accounts for changes in capillary blood flow.
Collapse
Affiliation(s)
- David Terman
- Department of Mathematics, The Ohio State University, Columbus, Ohio, 43210 USA.
| |
Collapse
|
4
|
Sargent SM, Bonney SK, Li Y, Stamenkovic S, Takeno M, Coelho-Santos V, Shih AY. Endothelial structure contributes to heterogeneity in brain capillary diameter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538503. [PMID: 37163126 PMCID: PMC10168366 DOI: 10.1101/2023.04.26.538503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The high metabolic demand of brain tissue is supported by a constant supply of blood through dense microvascular networks. Capillaries are the smallest class of vessels and vary in diameter between ∼2 to 5 μm in the brain. This diameter range plays a significant role in the optimization of blood flow resistance, blood cell distribution, and oxygen extraction. The control of capillary diameter has largely been ascribed to pericyte contractility, but it remains unclear if endothelial wall architecture also contributes to capillary diameter heterogeneity. Here, we use public, large-scale volume electron microscopy data from mouse cortex (MICrONS Explorer, Cortical MM^3) to examine how endothelial cell number, endothelial cell thickness, and pericyte coverage relates to microvascular lumen size. We find that transitional vessels near the penetrating arteriole and ascending venule are composed of 2 to 5 interlocked endothelial cells, while the numerous capillary segments intervening these zones are composed of either 1 or 2 endothelial cells, with roughly equal proportions. The luminal area and diameter is on average slightly larger with capillary segments composed of 2 interlocked endothelial cells versus 1 endothelial cell. However, this difference is insufficient to explain the full range of capillary diameters seen in vivo. This suggests that both endothelial structure and other influences, such as pericyte tone, contribute to the basal diameter and optimized perfusion of brain capillaries.
Collapse
|
5
|
Sargent SM, Bonney SK, Li Y, Stamenkovic S, Takeno MM, Coelho-Santos V, Shih AY. Endothelial structure contributes to heterogeneity in brain capillary diameter. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2023; 5:e230010. [PMID: 37582180 PMCID: PMC10503221 DOI: 10.1530/vb-23-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
The high metabolic demand of brain tissue is supported by a constant supply of blood flow through dense microvascular networks. Capillaries are the smallest class of vessels in the brain and their lumens vary in diameter between ~2 and 5 μm. This diameter range plays a significant role in optimizing blood flow resistance, blood cell distribution, and oxygen extraction. The control of capillary diameter has largely been ascribed to pericyte contractility, but it remains unclear if the architecture of the endothelial wall also contributes to capillary diameter. Here, we use public, large-scale volume electron microscopy data from mouse cortex (MICrONS Explorer, Cortical mm3) to examine how endothelial cell number, endothelial cell thickness, and pericyte coverage relates to microvascular lumen size. We find that transitional vessels near the penetrating arteriole and ascending venule are composed of two to six interlocked endothelial cells, while the capillaries intervening these zones are composed of either one or two endothelial cells, with roughly equal proportions. The luminal area and diameter are on average slightly larger with capillary segments composed of two interlocked endothelial cells vs one endothelial cell. However, this difference is insufficient to explain the full range of capillary diameters seen in vivo. This suggests that both endothelial structure and other influences, including pericyte tone, contribute to the basal diameter and optimized perfusion of brain capillaries.
Collapse
Affiliation(s)
- Sheridan M Sargent
- Neuroscience Graduate Program, University of Washington, Seattle, Washington, USA
| | - Stephanie K Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Yuandong Li
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Stefan Stamenkovic
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Marc M Takeno
- Allen Institute for Brain Science, Seattle, Washington, USA
| | - Vanessa Coelho-Santos
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health, University of Coimbra, Portugal
| | - Andy Y Shih
- Neuroscience Graduate Program, University of Washington, Seattle, Washington, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Berthiaume AA, Schmid F, Stamenkovic S, Coelho-Santos V, Nielson CD, Weber B, Majesky MW, Shih AY. Pericyte remodeling is deficient in the aged brain and contributes to impaired capillary flow and structure. Nat Commun 2022; 13:5912. [PMID: 36207315 PMCID: PMC9547063 DOI: 10.1038/s41467-022-33464-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/14/2022] [Indexed: 02/06/2023] Open
Abstract
Deterioration of brain capillary flow and architecture is a hallmark of aging and dementia. It remains unclear how loss of brain pericytes in these conditions contributes to capillary dysfunction. Here, we conduct cause-and-effect studies by optically ablating pericytes in adult and aged mice in vivo. Focal pericyte loss induces capillary dilation without blood-brain barrier disruption. These abnormal dilations are exacerbated in the aged brain, and result in increased flow heterogeneity in capillary networks. A subset of affected capillaries experience reduced perfusion due to flow steal. Some capillaries stall in flow and regress, leading to loss of capillary connectivity. Remodeling of neighboring pericytes restores endothelial coverage and vascular tone within days. Pericyte remodeling is slower in the aged brain, resulting in regions of persistent capillary dilation. These findings link pericyte loss to disruption of capillary flow and structure. They also identify pericyte remodeling as a therapeutic target to preserve capillary flow dynamics.
Collapse
Affiliation(s)
- Andrée-Anne Berthiaume
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Stefan Stamenkovic
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cara D Nielson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Mark W Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Chiarelli AM, Germuska M, Chandler H, Stickland R, Patitucci E, Biondetti E, Mascali D, Saxena N, Khot S, Steventon J, Foster C, Rodríguez-Soto AE, Englund E, Murphy K, Tomassini V, Wehrli FW, Wise RG. A flow-diffusion model of oxygen transport for quantitative mapping of cerebral metabolic rate of oxygen (CMRO 2) with single gas calibrated fMRI. J Cereb Blood Flow Metab 2022; 42:1192-1209. [PMID: 35107026 PMCID: PMC9207485 DOI: 10.1177/0271678x221077332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One promising approach for mapping CMRO2 is dual-calibrated functional MRI (dc-fMRI). This method exploits the Fick Principle to combine estimates of CBF from ASL, and OEF derived from BOLD-ASL measurements during arterial O2 and CO2 modulations. Multiple gas modulations are required to decouple OEF and deoxyhemoglobin-sensitive blood volume. We propose an alternative single gas calibrated fMRI framework, integrating a model of oxygen transport, that links blood volume and CBF to OEF and creates a mapping between the maximum BOLD signal, CBF and OEF (and CMRO2). Simulations demonstrated the method's viability within physiological ranges of mitochondrial oxygen pressure, PmO2, and mean capillary transit time. A dc-fMRI experiment, performed on 20 healthy subjects using O2 and CO2 challenges, was used to validate the approach. The validation conveyed expected estimates of model parameters (e.g., low PmO2), with spatially uniform OEF maps (grey matter, GM, OEF spatial standard deviation ≈ 0.13). GM OEF estimates obtained with hypercapnia calibrated fMRI correlated with dc-fMRI (r = 0.65, p = 2·10-3). For 12 subjects, OEF measured with dc-fMRI and the single gas calibration method were correlated with whole-brain OEF derived from phase measures in the superior sagittal sinus (r = 0.58, p = 0.048; r = 0.64, p = 0.025 respectively). Simplified calibrated fMRI using hypercapnia holds promise for clinical application.
Collapse
Affiliation(s)
- Antonio M Chiarelli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Michael Germuska
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Hannah Chandler
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Rachael Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eleonora Patitucci
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Emma Biondetti
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Daniele Mascali
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Neeraj Saxena
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Sharmila Khot
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Jessica Steventon
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Catherine Foster
- Wales Institute of Social and Economic Research and Data (WISERD), School of Social Sciences, Cardiff University, Cardiff, UK
| | - Ana E Rodríguez-Soto
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Erin Englund
- Department of Radiology, University of Colorado, Aurora, Colorado, USA
| | - Kevin Murphy
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK.,MS Centre, Dept of Clinical Neurology, SS. Annunziata University Hospital, Chieti, Italy.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.,Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard G Wise
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Hartmann DA, Coelho-Santos V, Shih AY. Pericyte Control of Blood Flow Across Microvascular Zones in the Central Nervous System. Annu Rev Physiol 2022; 84:331-354. [PMID: 34672718 PMCID: PMC10480047 DOI: 10.1146/annurev-physiol-061121-040127] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The vast majority of the brain's vascular length is composed of capillaries, where our understanding of blood flow control remains incomplete. This review synthesizes current knowledge on the control of blood flow across microvascular zones by addressing issues with nomenclature and drawing on new developments from in vivo optical imaging and single-cell transcriptomics. Recent studies have highlighted important distinctions in mural cell morphology, gene expression, and contractile dynamics, which can explain observed differences in response to vasoactive mediators between arteriole, transitional, and capillary zones. Smooth muscle cells of arterioles and ensheathing pericytes of the arteriole-capillary transitional zone control large-scale, rapid changes in blood flow. In contrast, capillary pericytes downstream of the transitional zone act on slower and smaller scales and are involved in establishing resting capillary tone and flow heterogeneity. Many unresolved issues remain, including the vasoactive mediators that activate the different pericyte types in vivo, the role of pericyte-endothelial communication in conducting signals from capillaries to arterioles, and how neurological disease affects these mechanisms.
Collapse
Affiliation(s)
- David A Hartmann
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA;
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA;
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Mendelson AA, Ho E, Scott S, Vijay R, Hunter T, Milkovich S, Ellis CG, Goldman D. Capillary module hemodynamics and mechanisms of blood flow regulation in skeletal muscle capillary networks: Experimental and computational analysis. J Physiol 2022; 600:1867-1888. [DOI: 10.1113/jp282342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Asher A Mendelson
- Department of Medicine Section of Critical Care Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Edward Ho
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Shayla Scott
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Raashi Vijay
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Timothy Hunter
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Stephanie Milkovich
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
- Robarts Research Institute London Ontario Canada
| | - Christopher G Ellis
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
- Robarts Research Institute London Ontario Canada
| | - Daniel Goldman
- Department of Medical Biophysics Schulich School of Medicine and Dentistry Western University London Ontario Canada
- School of Biomedical Engineering Western University London Ontario Canada
| |
Collapse
|
10
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
11
|
Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat Neurosci 2021; 24:633-645. [PMID: 33603231 PMCID: PMC8102366 DOI: 10.1038/s41593-020-00793-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/23/2020] [Indexed: 01/30/2023]
Abstract
The majority of the brain's vasculature is composed of intricate capillary networks lined by capillary pericytes. However, it remains unclear whether capillary pericytes influence blood flow. Using two-photon microscopy to observe and manipulate brain capillary pericytes in vivo, we find that their optogenetic stimulation decreases lumen diameter and blood flow, but with slower kinetics than similar stimulation of mural cells on upstream pial and precapillary arterioles. This slow vasoconstriction was inhibited by the clinically used vasodilator fasudil, a Rho-kinase inhibitor that blocks contractile machinery. Capillary pericytes were also slower to constrict back to baseline following hypercapnia-induced dilation, and slower to dilate towards baseline following optogenetically induced vasoconstriction. Optical ablation of single capillary pericytes led to sustained local dilation and a doubling of blood cell flux selectively in capillaries lacking pericyte contact. These data indicate that capillary pericytes contribute to basal blood flow resistance and slow modulation of blood flow throughout the brain.
Collapse
|
12
|
McDowell KP, Berthiaume AA, Tieu T, Hartmann DA, Shih AY. VasoMetrics: unbiased spatiotemporal analysis of microvascular diameter in multi-photon imaging applications. Quant Imaging Med Surg 2021; 11:969-982. [PMID: 33654670 PMCID: PMC7829163 DOI: 10.21037/qims-20-920] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Multi-photon imaging of the cerebrovasculature provides rich data on the dynamics of cortical arterioles, capillaries, and venules. Vascular diameter is the major determinant of blood flow resistance, and is the most commonly quantified metric in studies of the cerebrovasculature. However, there is a lack of accessible and easy-to-use methods to quantify vascular diameter in imaging data. METHODS We created VasoMetrics, a macro written in ImageJ/Fiji for spatiotemporal analysis of microvascular diameter. The key feature of VasoMetrics is rapid analysis of many evenly spaced cross-sectional lines along the vessel of interest, permitting the extraction of numerous diameter measurements from individual vessels. Here we demonstrated the utility of VasoMetrics by analyzing in vivo multi-photon imaging stacks and movies collected from lightly sedated mice, as well as data from optical coherence tomography angiography (OCTA) of human retina. RESULTS Compared to the standard approach, which is to measure cross-sectional diameters at arbitrary points along a vessel, VasoMetrics accurately reported spatiotemporal features of vessel diameter, reduced measurement bias and time spent analyzing data, and improved the reproducibility of diameter measurements between users. VasoMetrics revealed the dynamics in pial arteriole diameters during vasomotion at rest, as well as changes in capillary diameter before and after pericyte ablation. Retinal arteriole diameter was quantified from a human retinal angiogram, providing proof-of-principle that VasoMetrics can be applied to contrast-enhanced clinical imaging of microvasculature. CONCLUSIONS VasoMetrics is a robust macro for spatiotemporal analysis of microvascular diameter in imaging applications.
Collapse
Affiliation(s)
- Konnor P. McDowell
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Andrée-Anne Berthiaume
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Taryn Tieu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - David A. Hartmann
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Wei W, Zhang Q, Rayner SG, Qin W, Cheng Y, Wang F, Zheng Y, Wang RK. Automated vessel diameter quantification and vessel tracing for OCT angiography. JOURNAL OF BIOPHOTONICS 2020; 13:e202000248. [PMID: 32857462 PMCID: PMC7857721 DOI: 10.1002/jbio.202000248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Optical coherence tomography angiography (OCTA) is capable of non-invasively imaging the vascular networks within circulatory tissue beds in vivo. Following improvements in OCTA image quality, it is now possible to extract vascular parameters from imaging data to potentially facilitate the diagnosis and treatment of human disease. In this paper, we present a method for automated mapping of vessel diameter down to the individual capillary level, through gradient-guided minimum radial distance (MRD). During validation using well-characterized microfluidic flow phantoms, this method demonstrated superior consistency and a nearly threefold decrease in error when compared to currently accepted techniques. In addition, the MRD technique exhibited a high tolerance to rotation of the vasculature pattern. We also incorporated a modified A* path searching algorithm to trace vessel branches and calculate the diameter of each branch from the OCTA images. After validation in vitro, we applied these algorithms to the in vivo setting through analysis of mouse cortical vasculature. Our algorithm returned results that followed Murray's law, until reaching the capillary level, agreeing well with known physiological data. From our tracing process, vessel tortuosity and branching angle could also be measured. Our techniques provide a platform for the automated evaluation of the vasculature and may aid in diagnosis of vascular diseases, especially those resulting in regional early-stage morphological changes.
Collapse
Affiliation(s)
- Wei Wei
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Samuel G. Rayner
- Department of Bioengineering, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Wan Qin
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Fupeng Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Chen R, Yao L, Liu K, Cao T, Li H, Li P. Improvement of Decorrelation-Based OCT Angiography by an Adaptive Spatial-Temporal Kernel in Monitoring Stimulus-Evoked Hemodynamic Responses. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4286-4296. [PMID: 32790625 DOI: 10.1109/tmi.2020.3016334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Complex decorrelation-based OCT angiography (OCTA) has the potential for monitoring hemodynamic activities in a label-free, high-resolution, and quantitative manner. To improve the measurement dynamic range and uncertainty of blood flow, an adaptive spatial-temporal (ST) kernel was proposed for decorrelation estimation and it was validated through a theoretical simulation and experimental measurements. The ensemble size in the decorrelation computation was effectively enlarged by collecting samples of the phasor pair in both the spatial and temporal dimensions. The spatial sub-kernel size was adaptively changed to suppress the influence of bulk motion in the temporal dimension by solving a maximum entropy model. Using the flow phantom, it was observed that the decorrelation dynamic range presented an increase of ~49% and the uncertainty exhibited a decrease of ~40% and ~38% in the saturation and background limits, respectively. In monitoring the stimulus-evoked hemodynamic response, the extended dynamic range enabled an improvement of ~180% in the separability between different stimulation modes. Furthermore, the suppressed uncertainty and motion artifacts allowed a reliable temporal analysis of the hemodynamic response. The proposed adaptive ST-kernel will greatly promote the development of decorrelation-based quantitative OCTA in hemodynamic studies.
Collapse
|
15
|
Validation of red blood cell flux and velocity estimations based on optical coherence tomography intensity fluctuations. Sci Rep 2020; 10:19584. [PMID: 33177606 PMCID: PMC7658245 DOI: 10.1038/s41598-020-76774-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023] Open
Abstract
We present a validation of red blood cell flux and speed measurements based on the passage of erythrocytes through the OCT’s focal volume. We compare the performance of the so-called RBC-passage OCT technique to co-localized and simultaneously acquired two-photon excitation fluorescence microscopy (TPEF) measurements. Using concurrent multi-modal imaging, we show that fluctuations in the OCT signal display highly similar features to TPEF time traces. Furthermore, we demonstrate an overall difference in RBC flux and speed of 2.5 ± 3.27 RBC/s and 0.12 ± 0.67 mm/s (mean ± S.D.), compared to TPEF. The analysis also revealed that the OCT RBC flux estimation is most accurate between 20 RBC/s to 60 RBC/s, and is severely underestimated at fluxes beyond 80 RBC/s. Lastly, our analysis shows that the RBC speed estimations increase in accuracy as the speed decreases, reaching a difference of 0.16 ± 0.25 mm/s within the 0–0.5 mm/s speed range.
Collapse
|
16
|
Rakymzhan A, Li Y, Tang P, Wang RK. Optical microangiography reveals temporal and depth-resolved hemodynamic change in mouse barrel cortex during whisker stimulation. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200117RR. [PMID: 32945154 PMCID: PMC7495356 DOI: 10.1117/1.jbo.25.9.096005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/04/2020] [Indexed: 06/01/2023]
Abstract
SIGNIFICANCE Cerebral blood flow (CBF) regulation at neurovascular coupling (NVC) plays an important role in normal brain functioning to support oxygen delivery to activating neurons. Therefore, studying the mechanisms of CBF adjustment is crucial for the improved understanding of brain activity. AIM We investigated the temporal profile of hemodynamic signal change in mouse cortex caused by neural activation and its variation over cortical depth. APPROACH Following the cranial window surgery, intrinsic optical signal imaging (IOSI) was used to spatially locate the activated region in mouse cortex during whisker stimulation. Optical microangiography (OMAG), the functional extension of optical coherence tomography, was applied to image the activated and control regions identified by IOSI. Temporal profiles of hemodynamic response signals obtained by IOSI and OMAG were compared, and OMAG signal was analyzed over cortical layers. RESULTS Our results showed that the hemodynamic response to neural activity revealed by blood flow change signal signal through IOSI is slower than that observed by OMAG signal. OMAG also indicated the laminar variation of the response over cortical depth, showing the largest response in cortical layer IV. CONCLUSIONS Overall, we demonstrated the development and application of dual-modality imaging system composed of IOSI and OMAG, which may have potential to enable the future investigations of depth-resolved CBF and to provide the insights of hemodynamic events associated with the NVC.
Collapse
Affiliation(s)
- Adiya Rakymzhan
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Yuandong Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Peijun Tang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| |
Collapse
|
17
|
Li Y, Rakymzhan A, Tang P, Wang RK. Procedure and protocols for optical imaging of cerebral blood flow and hemodynamics in awake mice. BIOMEDICAL OPTICS EXPRESS 2020; 11:3288-3300. [PMID: 32637255 PMCID: PMC7316002 DOI: 10.1364/boe.394649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 05/10/2023]
Abstract
We describe a method and procedure that allows for the optical coherence tomography angiography (OCTA) and intrinsic optical signal imaging (IOSI) of cerebral blood flow and hemodynamics in fully awake mice. We detail the procedure of chronic cranial window preparation, the use of an air-lift mobile homecage to achieve stable optical recording in the head-restrained awake mouse, and the imaging methods to achieve multiparametric hemodynamic measurements. The results show that by using a collection of OCTA algorithms, the high-resolution cerebral vasculature can be reliably mapped at a fully awake state, including flow velocity measurements in penetrating arterioles and capillary bed. Lastly, we demonstrate how the awake imaging paradigm is used to study cortical hemodynamics in the mouse barrel cortex during whisker stimulation. The method presented here will facilitate optical recording in the awake, active mice and open the door to many projects that can bridge the hemodynamics in neurovascular units to naturalistic behavior.
Collapse
|
18
|
Liu Y, Zhu D, Xu J, Wang Y, Feng W, Chen D, Li Y, Liu H, Guo X, Qiu H, Gu Y. Penetration-enhanced optical coherence tomography angiography with optical clearing agent for clinical evaluation of human skin. Photodiagnosis Photodyn Ther 2020; 30:101734. [PMID: 32171879 DOI: 10.1016/j.pdpdt.2020.101734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Optical coherence tomography angiography (OCTA) is an emerging imaging technique which shows its advantages over visualizing microcirculation with free label. However, its shortcomings in imaging depth limit its development in dermatological field. Nowadays, the newly optical clearing agent (OCA) designed for skin optical imaging demonstrates its potential. In our study, whether this OCA can improve the imaging ability of OCTA in healthy human skin and whether the combination of them is beneficial to compare the lesions and the contralateral normal skins in the patients with port wine stains (PWS) have been investigated. METHODS Five healthy volunteers and 3 PWS patients were recruited in this study. In terms of healthy people, the opisthenar area which has same structure information as facial skin was taken for investigating the OCA's ability of enhancing OCTA imaging depth on healthy human skin, besides, in order to verifying whether the exists of skin corneum interfere OCA's function, we compared the effect of only using OCA with that of comprehensive using pre-processing skin and OCA. There are one physical removing corneum method by using medical tape to strip opisthenar skin for over 20-time and one chemical way through applying exfoliating cream. For PWS patient, the combining using OCA and OCTA was applied at the lesion area and the contralateral normal area for the purpose of verifying their ability to provide the information of vessels. RESULTS This novel OCA had excellent efficacy to increase the penetration depth of human opisthenar skin for the OCTA imaging by approximately 0.16 ± 0.03 mm. Pre-processing of stratum corneum with an exfoliating cream or medical tape stripping did not further benefit the penetrating efficacy of the OCA. Moreover, according to a comprehensive analysis of the OCTA images enhanced by the OCA, the PWS lesions usually have larger density and diameter of the vessels which located in deep layers (beyond 0.21 mm) than the contralateral normal skin. CONCLUSIONS The OCTA imaging depth and contrast were significantly improved by the OCA. The OCA application is a simple and efficient clinical procedure for OCTA enhancement. Moreover, it demonstrated great clinical value to compare the normal skin and the PWS lesions in the patients by the enhanced OCTA imaging.
Collapse
Affiliation(s)
- Yidi Liu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Dan Zhu
- Huazhong University of Science and Technology, Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Wuhan, 430033, China
| | - Jingjiang Xu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, 528000, China
| | - Ying Wang
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Wei Feng
- Central People's Hospital of Zhanjiang, Zhanjiang, 524000, China
| | - Defu Chen
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Yunqi Li
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Haolin Liu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Xianghuan Guo
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Haixia Qiu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Ying Gu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China; Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
19
|
Hessler M, Nelis P, Ertmer C, Alnawaiseh M, Lehmann F, Schmidt C, Kampmeier TG, Rehberg SW, Arnemann PH, Rovas A. Optical coherence tomography angiography as a novel approach to contactless evaluation of sublingual microcirculation: A proof of principle study. Sci Rep 2020; 10:5408. [PMID: 32214141 PMCID: PMC7096522 DOI: 10.1038/s41598-020-62128-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/03/2020] [Indexed: 01/06/2023] Open
Abstract
Microcirculatory disorders are crucial in pathophysiology of organ dysfunction in critical illness. Evaluation of sublingual microcirculation is not routinely conducted in daily practice due to time-consuming analysis and susceptibility to artifacts. We investigated the suitability of optical coherence tomography angiography (OCTA) for contactless evaluation of sublingual microcirculation. Sublingual microcirculation was imaged in 10 healthy volunteers, using an OCTA device and an incident dark field (IDF) illumination microscopy (current gold standard). OCTA images were analyzed with regard to flow density and perfused vessel density (PVDbyOCTA). IDF videos were analyzed following current recommendations. Flow density was automatically extracted from OCTA images (whole en face 48.9% [43.2; 54.5]; central ring 52.6% [43.6; 60.6]). PVDbyOCTA did not differ from the PVD calculated from IDF videos (PVDbyOCTA 18.6 mm/mm² [18.0; 21.7]) vs. PVDbyIDF 21.0 mm/mm² [17.5; 22.9]; p = 0.430). Analysis according to Bland-Altman revealed a mean bias of 0.95 mm/mm² (95% Confidence interval −1.34 to 3.25) between PVDbyOCTA and PVDbyIDF with limits of agreement of −5.34 to 7.24 mm/mm². This study is the first to demonstrate the suitability of OCTA for evaluating sublingual microcirculation. Comparison of the perfused vessel density between methods showed a plausible level of agreement.
Collapse
Affiliation(s)
- Michael Hessler
- Department of Anesthesiology, Intensive Care, and Pain Therapy, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, Muenster, Germany
| | - Pieter Nelis
- Department of Ophthalmology, University Hospital Muenster, Domagkstraße 15, Muenster, Germany.,Department of Ophthalmology, University of Brussels (VUB), Laarbeeklaan 101, Jette, Belgium
| | - Christian Ertmer
- Department of Anesthesiology, Intensive Care, and Pain Therapy, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, Muenster, Germany.
| | - Maged Alnawaiseh
- Department of Ophthalmology, University Hospital Muenster, Domagkstraße 15, Muenster, Germany
| | - Florian Lehmann
- Department of Anesthesiology, Intensive Care, and Pain Therapy, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, Muenster, Germany
| | - Christina Schmidt
- Department of Anesthesiology, Intensive Care, and Pain Therapy, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, Muenster, Germany
| | - Tim-Gerald Kampmeier
- Department of Anesthesiology, Intensive Care, and Pain Therapy, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, Muenster, Germany
| | - Sebastian Willy Rehberg
- Department of Anesthesiology, Intensive Care, Emergency Medicine, Transfusion Medicine and Pain Therapy, Protestant Hospital of the Bethel Foundation, Burgsteig, Bielefeld, Germany
| | - Philip-Helge Arnemann
- Department of Anesthesiology, Intensive Care, and Pain Therapy, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, Muenster, Germany
| | - Alexandros Rovas
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
| |
Collapse
|
20
|
Tang P, Li Y, Rakymzhan A, Xie Z, Wang RK. Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:699-710. [PMID: 32206393 PMCID: PMC7041479 DOI: 10.1364/boe.381332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 05/24/2023]
Abstract
We describe a method to measure tissue dynamics in mouse barrel cortex during functional activation via phase-sensitive optical coherence tomography (PhS-OCT). The method measures the phase changes in OCT signals, which are induced by the tissue volume change, upon which to localize the activated tissue region. Phase unwrapping, compensation and normalization are applied to increase the dynamic range of the OCT phase detection. To guide the OCT scanning, intrinsic optical signal imaging (IOSI) system equipped with a green light laser source (532 nm) is integrated with the PhS-OCT system to provide a full field time-lapsed images of the reflectance that is used to identify the transversal 2D localized tissue response in the mouse brain. The OCT results show a localized decrease in the OCT phase signal in the activated region of the mouse brain tissue. The decrease in the phase signal may be originated from the brain tissue compression caused by the vasodilatation in the activated region. The activated region revealed in the cross-sectional OCT image is consistent with that identified by the IOSI imaging, indicating the phase change in the OCT signals may associate with the changes in the corresponding hemodynamics. In vivo localized tissue dynamics in the barrel cortex at depth during whisker stimulation is observed and monitored in this study.
Collapse
|
21
|
Wei W, Tang P, Xie Z, Li Y, Wang RK. Dynamic imaging and quantification of subcellular motion with eigen-decomposition optical coherence tomography-based variance analysis. JOURNAL OF BIOPHOTONICS 2019; 12:e201900076. [PMID: 31033200 PMCID: PMC6774886 DOI: 10.1002/jbio.201900076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 06/01/2023]
Abstract
The dynamic properties of subcellular organism are important biomarkers of the health. Imaging subcellular level dynamics provides effective solutions for evaluating cell metabolism and testing the responses of cells to pathogens and drugs in pharmaceutical engineering. In this paper, we demonstrate an innovative approach to contrast the subcellular motion by using eigen decomposition (ED)-based variance analysis of time-dependent complex optical coherence tomography signals. This method reveals a superior advantage of contrast to noise ratio when compared with the approach that employs intensity decorrelation. Furthermore, the eigen values derived from ED processing are calculated and applied to assess the power ratios of complex signal invariance that decreases exponentially along time dimension. The validation experiments are performed on the patterned samples of yeast powder mixed with gelatin/TiO2 water solution. Additionally, the proposed method is used to image mouse cerebral cortex in normal and pathological conditions, suggesting the practicality of variance power mapping in analyzing cortical neural activities. The technique promises efficient measurement of subcellular motions with high sensitivity and high throughput for in vivo and in situ applications.
Collapse
Affiliation(s)
- Wei Wei
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Peijun Tang
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Zhiying Xie
- Department of Biology, University of Washington, Seattle, Washington
| | - Yuandong Li
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, Washington
- Department of Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Schmid F, Barrett MJP, Obrist D, Weber B, Jenny P. Red blood cells stabilize flow in brain microvascular networks. PLoS Comput Biol 2019; 15:e1007231. [PMID: 31469820 PMCID: PMC6750893 DOI: 10.1371/journal.pcbi.1007231] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/18/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022] Open
Abstract
Capillaries are the prime location for oxygen and nutrient exchange in all tissues. Despite their fundamental role, our knowledge of perfusion and flow regulation in cortical capillary beds is still limited. Here, we use in vivo measurements and blood flow simulations in anatomically accurate microvascular network to investigate the impact of red blood cells (RBCs) on microvascular flow. Based on these in vivo and in silico experiments, we show that the impact of RBCs leads to a bias toward equating the values of the outflow velocities at divergent capillary bifurcations, for which we coin the term “well-balanced bifurcations”. Our simulation results further reveal that hematocrit heterogeneity is directly caused by the RBC dynamics, i.e. by their unequal partitioning at bifurcations and their effect on vessel resistance. These results provide the first in vivo evidence of the impact of RBC dynamics on the flow field in the cortical microvasculature. By structural and functional analyses of our blood flow simulations we show that capillary diameter changes locally alter flow and RBC distribution. A dilation of 10% along a vessel length of 100 μm increases the flow on average by 21% in the dilated vessel downstream a well-balanced bifurcation. The number of RBCs rises on average by 27%. Importantly, RBC up-regulation proves to be more effective the more balanced the outflow velocities at the upstream bifurcation are. Taken together, we conclude that diameter changes at capillary level bear potential to locally change the flow field and the RBC distribution. Moreover, our results suggest that the balancing of outflow velocities contributes to the robustness of perfusion. Based on our in silico results, we anticipate that the bi-phasic nature of blood and small-scale regulations are essential for a well-adjusted oxygen and energy substrate supply. Glucose and oxygen are key energy sources of the brain. As energy storage capabilities are limited in the brain, a continuous supply of oxygen and glucose via the bloodstream is crucial for the brain’s functioning. The bulk of discharge occurs at the level of capillaries, which are the smallest and most frequent vessels of the cortical vasculature. Nonetheless, our understanding of perfusion and topology of the capillary bed is still limited. Here, we use in vivo two-photon based blood flow measurements and numerical simulations in large realistic microvascular networks to study the flow in the cortical microvasculature. Our results reveal that the impact of red blood cells enhances the robustness of microvascular perfusion and increases the heterogeneity in red blood cell distribution. It is well established that higher neuronal activity leads to an increase in blood flow. However, the precise regulation mechanisms and their spatial extent remain largely unknown. We show that small-scale regulations locally alter flow and red blood cell distribution. We suggest that these mechanisms are key for an efficient and flexible circulatory system. Moreover, our results reveal a novel role of the bi-phasic nature of blood.
Collapse
Affiliation(s)
- Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- * E-mail:
| | - Matthew J. P. Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, Bern, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
| |
Collapse
|
23
|
Hessler M, Lehmann F, Arnemann PH, Eter N, Ertmer C, Alnawaiseh M. [Optical coherence tomography angiography in intensive care medicine : A new field of application?]. Ophthalmologe 2019; 116:728-734. [PMID: 31139886 DOI: 10.1007/s00347-019-0893-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Many critically ill patients show a disturbance of the microcirculation, which is not yet regularly examined in the clinical routine; however, for treatment decisions and estimation of the prognosis it would be important to obtain detailed information about the microcirculation in critically ill patients. Optical coherence tomography angiography (OCTA) is a non-invasive, contact-free technique, which enables visualization of the blood flow in the retinal microcirculation within a few seconds. Therefore, it may have the potential to diagnose microcirculation disorders in critically ill patients. OBJECTIVE The aims of the study were to assess the importance of the microcirculation in intensive care medicine, a comparison of the methods of video microscopy and OCTA and analysis of preclinical and clinical data on the use of OCTA in intensive care medicine. MATERIAL AND METHODS A selective literature review and data analysis were carried out. RESULTS A direct visualization of the microcirculation has been possible for many years with the technique of video microscopy but this has not become established in the clinical routine due to the susceptibility to interferences and a time-consuming manual analysis. The OCTA is a non-invasive and contact-free method for the visualization of retinal blood flow. First preclinical data in septic and hemorrhagic shock show good results of OCTA for analysis of the microcirculation. CONCLUSION The non-invasive technique of OCTA is a promising measurement method to enable bedside analysis of the microcirculation in critically ill paients in the future; however, some technical limitations must still be overcome.
Collapse
Affiliation(s)
- Michael Hessler
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland.
| | - Florian Lehmann
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland
| | - Philip-Helge Arnemann
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland
| | - Nicole Eter
- Klinik für Augenheilkunde, Universitätsklinikum Münster, 48149, Münster, Deutschland
| | - Christian Ertmer
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland
| | - Maged Alnawaiseh
- Klinik für Augenheilkunde, Universitätsklinikum Münster, 48149, Münster, Deutschland
| |
Collapse
|
24
|
Wei W, Li Y, Xie Z, Deegan AJ, Wang RK. Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1295-1303. [PMID: 30489265 PMCID: PMC6563900 DOI: 10.1109/tmi.2018.2883244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cerebral vascular system provides a means to meet the constant metabolic needs of neuronal activities in the brain. Within the cerebral capillary bed, the interactions of spatial and temporal hemodynamics play a deterministic role in oxygen diffusion, however, the progression of which remains unclear. Taking the advantages of high-spatiotemporal resolution of optical coherence tomography capillary velocimetry designed with the eigen-decomposition statistical analysis, we investigated intrinsic red blood cell (RBC) velocities and their spatiotemporal adjustment within the capillaries permeating mouse cerebral cortex during electrical stimulation of contralateral hind paw. We found that the mean capillary transit velocity (mCTV) is increased and its temporal fluctuation bandwidth (TFB) is broadened within hind-paw somatosensory cortex. In addition, the degree to which the mCTV is increased negatively correlates with resting state mCTV, and the degree to which the TFB is increased negatively correlates with both the resting state mCTV and the TFB. In order to confirm the changes are due to hemodynamic regulation, we performed angiographic analyses and found that the vessel density remains almost constant, suggesting the observed functional activation does not involve recruitment of reserved capillaries. To further differentiate the contributions of the mCTV and the TFB to the spatiotemporally coupled hemodynamics, changes in the mCTV and TBF of the capillary flow were modeled and investigated through a Monte Carlo simulation. The results suggest that neural activation evokes the spatial transit time homogenization within the capillary bed, which is regulated via both the heterogeneous acceleration of RBC flow and the heterogeneous increase of temporal RBC fluctuation, ensuring sufficient oxygenation during functional hyperemia.
Collapse
|
25
|
Li Y, Choi WJ, Wei W, Song S, Zhang Q, Liu J, Wang RK. Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography. Neurobiol Aging 2018; 70:148-159. [PMID: 30007164 DOI: 10.1016/j.neurobiolaging.2018.06.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 01/29/2023]
Abstract
Normal aging is associated with significant alterations in brain's vascular structure and function, which can lead to compromised cerebral circulation and increased risk of neurodegeneration. The in vivo examination of cerebral blood flow (CBF), including capillary beds, in aging brains with sufficient spatial detail remains challenging with current imaging modalities. In the present study, we use 3-dimensional (3-D) quantitative optical coherence tomography angiography (OCTA) to examine characteristic differences of the cerebral vasculatures and hemodynamics at the somatosensory cortex between old (16 months old) and young mice (2 months old) in vivo. The quantitative metrics include cortical vascular morphology, CBF, and capillary flow velocity. We show that compared with young mice, the pial arterial tortuosity increases by 14%, the capillary vessel density decreases by 15%, and the CBF reduces by 33% in the old mice. Most importantly, changes in capillary velocity and heterogeneity with aging are quantified for the first time with sufficiently high statistical power between young and old populations, with a 21% (p < 0.05) increase in capillary mean velocity and 19% (p ≤ 0.05) increase in velocity heterogeneity in the latter. Our findings through noninvasive imaging are in line with previous studies of vascular structure modification with aging, with additional quantitative assessment in capillary velocity enabled by advanced OCTA algorithms on a single imaging platform. The results offer OCTA as a promising neuroimaging tool to study vascular aging, which may shed new light on the investigations of vascular factors contributing to the pathophysiology of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuandong Li
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Woo June Choi
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA; School of Electrical and Electronics Engineering, College of ICT Engineering, Chung-Ang University, Seoul, Korea
| | - Wei Wei
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Shaozhen Song
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Qinqin Zhang
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, University of California, San Francisco and SFVAMC, San Francisco, CA, USA
| | - Ruikang K Wang
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|