1
|
Padró-Villegas L, Gómez-Gaviria M, Martínez-Duncker I, López-Ramírez LA, Martínez-Álvarez JA, Niño-Vega GA, Mora-Montes HM. Sporothrix brasiliensis Gp70 is a cell wall protein required for adhesion, proper interaction with innate immune cells, and virulence. Cell Surf 2025; 13:100139. [PMID: 39866864 PMCID: PMC11763198 DOI: 10.1016/j.tcsw.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Sporothrix brasiliensis is one of the leading etiological agents of sporotrichosis, a cutaneous and subcutaneous mycosis worldwide distributed. This organism has been recently associated with epidemic outbreaks in Brazil. Despite the medical relevance of this species, little is known about its virulence factors, and most of the information on this subject is extrapolated from Sporothrix schenckii. Here, we generated S. brasiliensis mutants, where GP70 was silenced. In S. schenckii, this gene encodes a glycoprotein with adhesive properties required for virulence. The S. brasiliensis GP70 silencing led to an abnormal cellular phenotype, with smaller, round yeast-like cells that aggregate. Cell aggregation was disrupted with glucanase, suggesting this phenotype is linked to changes in the cell wall. The cell wall characterization confirmed changes in the structural polysaccharide β-1,3-glucan, which increased in quantity and exposure at the cell surface. This was accompanied by a reduction in protein content and N-linked glycans. Mutant strains with high GP70-silencing levels showed minimal levels of 3-carboxy-cis,cis-muconate cyclase activity, this glycoprotein's predicted enzyme function, and decreased ability to bind laminin and fibronectin. These phenotypical changes coincided with abnormal interaction with human peripheral blood mononuclear cells, where production of IL-1β, IL-17, and IL-22 was reduced and the strong dependence on cytokine stimulation via mannose receptor was lost. Phagocytosis by monocyte-derived macrophages was increased and virulence attenuated in a Galleria mellonella larvae. In conclusion, Gp70 is an abundant cell wall glycoprotein in S. brasiliensis that contributes to virulence and proper interaction with innate immnune cells.
Collapse
Affiliation(s)
- Leonardo Padró-Villegas
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor. 62209, Mexico
| | - Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| |
Collapse
|
2
|
Souza CMD, Bezerra BT, Mellon DA, de Oliveira HC. The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100341. [PMID: 39897698 PMCID: PMC11786858 DOI: 10.1016/j.crmicr.2025.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Fungal infections kill more than 3 million people every year. This high number reflects the significant challenges that treating these diseases worldwide presents. The current arsenal of antifungal drugs is limited and often accompanied by high toxicity to patients, elevated treatment costs, increased frequency of resistance rates, and the emergence of naturally resistant species. These treatment challenges highlight the urgency of developing new antifungal therapies, which could positively impact millions of lives each year globally. Our review offers an overview of the antifungal drugs currently available for treatment, presents the status of new antifungal drugs under clinical study, and explores ahead to future candidates that aim to help address this important global health issue.
Collapse
Affiliation(s)
| | | | - Daniel Agreda Mellon
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Haroldo Cesar de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
3
|
Oliveira MDA, de Almeida SR, Martins JO. Novel Insights into Sporotrichosis and Diabetes. J Fungi (Basel) 2024; 10:527. [PMID: 39194853 DOI: 10.3390/jof10080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Sporotrichosis is a type of zoonotic subcutaneous mycosis caused by different species of dimorphic fungus of the genus Sporothrix, and it is the most common form of subcutaneous mycosis in Latin America. Sporotrichosis is generally restricted to cutaneous and lymphatic tissue (i.e., localized forms), and involvement in the viscera (i.e., disseminated or disseminated cutaneous form) is uncommon, especially in the central nervous system. However, immunosuppression in individuals with diabetes mellitus can lead to the disseminated form of the disease due to a failure to eliminate the pathogen and poor infection treatment outcomes. Possible correlations between patients with diabetes and their greater susceptibility to disseminated cases of sporotrichosis include a decreased cytokine response after stimulation, increased oxidative stress, decreased chemotaxis, phagocytic activity, adhesion and rolling of neutrophils and monocytes/macrophages, and increased macrophage/monocyte and polymorphonuclear cell apoptosis. Therefore, this review highlights novel insights into diabetes and sporotrichosis by investigating how chronic inflammation affects and aggravates the infection, the possible causes of the greater susceptibility of Sporothrix sp. to hematogenous dissemination in immunocompromised patients, and the main alterations that this dissemination can cause.
Collapse
Affiliation(s)
- Mariana de Araujo Oliveira
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Sandro Rogério de Almeida
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
4
|
de Miranda LHM, Santiago MDA, Frankenfeld J, dos Reis EG, Menezes RC, Pereira SA, Gremião IDF, Hofmann-Lehmann R, Conceição-Silva F. Neutrophil Oxidative Burst Profile Is Related to a Satisfactory Response to Itraconazole and Clinical Cure in Feline Sporotrichosis. J Fungi (Basel) 2024; 10:422. [PMID: 38921408 PMCID: PMC11205038 DOI: 10.3390/jof10060422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Despite the central role of cats in the transmission and amplification of Sporothrix, studies regarding immune response in feline sporotrichosis are scarce. In cats with sporotrichosis, neutrophil-rich lesions are usually associated to good general condition and lower fungal burden. However, the role of neutrophils in anti-Sporothrix immunity has been little explored in cats. Thus, the aim of this study was to evaluate the neutrophil oxidative burst in the blood of cats with sporotrichosis. Cats with sporotrichosis included in the study were treated with itraconazole (ITZ) alone or combined with potassium iodide (KI). The neutrophil oxidative burst was evaluated through a flow-cytometry-based assay using dihydrorhodamine 123 (background) and stimulation with Zymosan and heat-killed Sporothrix yeasts. The cure rate was 50.0% in cats under treatment with ITZ monotherapy and 90.9% in cats treated with ITZ + KI (p = 0.014), endorsing the combination therapy as an excellent alternative for the treatment of feline sporotrichosis. Higher percentages of Sporothrix-stimulated neutrophils were associated with good general condition (p = 0.003). Higher percentages of Sporothrix- (p = 0.05) and Zymosan-activated (p = 0.014) neutrophils before and early in the treatment were related to clinical cure in ITZ-treated cats. The correlation between oxidative burst and successful use of KI could not be properly assessed given the low number of failures (n = 2) in this treatment group. Nasal mucosa involvement, typically linked to treatment failure, was related to lower percentages of activated neutrophils in the background at the treatment outcome (p = 0.02). Our results suggest a beneficial role of neutrophils in feline sporotrichosis and a positive correlation between neutrophil activation and the cure process in ITZ-treated cats.
Collapse
Affiliation(s)
- Luisa Helena Monteiro de Miranda
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Marta de Almeida Santiago
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
| | - Julia Frankenfeld
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Facility, University of Zurich, 8057 Zurich, Switzerland; (J.F.); (R.H.-L.)
| | - Erica Guerino dos Reis
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Rodrigo Caldas Menezes
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Sandro Antonio Pereira
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Isabella Dib Ferreira Gremião
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Facility, University of Zurich, 8057 Zurich, Switzerland; (J.F.); (R.H.-L.)
| | - Fátima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
| |
Collapse
|
5
|
López-Ramírez LA, Martínez-Álvarez JA, Martínez-Duncker I, Lozoya-Pérez NE, Mora-Montes HM. Silencing of Sporothrix schenckii GP70 Reveals Its Contribution to Fungal Adhesion, Virulence, and the Host-Fungus Interaction. J Fungi (Basel) 2024; 10:302. [PMID: 38786657 PMCID: PMC11121839 DOI: 10.3390/jof10050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Sporothrix schenckii is one of the etiological agents of sporotrichosis, a cutaneous and subcutaneous infection distributed worldwide. Like other medically relevant fungi, its cell wall is a molecular scaffold to display virulence factors, such as protective pigments, hydrolytic enzymes, and adhesins. Cell wall proteins with adhesive properties have been previously reported, but only a handful of them have been identified and characterized. One of them is Gp70, an abundant cell wall protein mainly found on the surface of yeast-like cells. Since the protein also has a role in the activity of 3-carboxy-cis,cis-muconate cyclase and its abundance is low in highly virulent strains, its role in the Sporothrix-host interaction remains unclear. Here, a set of GP70-silenced strains was generated, and the molecular and phenotypical characterization was performed. The results showed that mutants with high silencing levels showed a significant reduction in the adhesion to laminin and fibrinogen, enzyme activity, and defects in the cell wall composition, which included reduced mannose, rhamnose, and protein content, accompanied by an increment in β-1,3-glucans levels. The cell wall N-linked glycan content was significantly reduced. These strains induced poor TNFα and IL-6 levels when interacting with human peripheral blood mononuclear cells in a dectin-1-, TLR2-, and TLR4-dependent stimulation. The IL-1β and IL-10 levels were significantly higher and were stimulated via dectin-1. Phagocytosis and stimulation of neutrophil extracellular traps by human granulocytes were increased in highly GP70-silenced strains. Furthermore, these mutants showed virulence attenuation in the invertebrate model Galleria mellonella. Our results demonstrate that Gp70 is a versatile protein with adhesin properties, is responsible for the activity of 3-carboxy-cis,cis-muconate cyclase, and is relevant for the S. schenckii-host interaction.
Collapse
Affiliation(s)
- Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico;
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| |
Collapse
|
6
|
Procópio-Azevedo AC, de Abreu Almeida M, Almeida-Paes R, Zancopé-Oliveira RM, Gutierrez-Galhardo MC, de Macedo PM, Novaes E, Bailão AM, de Almeida Soares CM, Freitas DFS. The State of the Art in Transcriptomics and Proteomics of Clinically Relevant Sporothrix Species. J Fungi (Basel) 2023; 9:790. [PMID: 37623561 PMCID: PMC10455387 DOI: 10.3390/jof9080790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Proteomics provide a robust approach to profile and quantify proteins within cells, organs, or tissues, providing comprehensive insights about the dynamics of cellular processes, modifications, and interactions. Similarly, understanding the transcriptome is essential to decipher functional elements of the genome, unraveling the mechanisms of disease development and the molecular constituents of cells and tissues. Some thermodimorphic fungi of the genus Sporothrix cause sporotrichosis, a subcutaneous mycosis of worldwide relevance. The transcriptome and proteome of the main Sporothrix species of clinical interest can elucidate the mechanisms underlying pathogenesis and host interactions. Studies of these techniques can contribute to the advancement of novel diagnostic and therapeutic strategies. A literature review was carried out, addressing all articles based on proteomics using mass spectrometry and transcriptomics of Sporothrix spp. Twenty-one studies were eligible for this review. The main findings include proteins and genes involved in dimorphism, cell differentiation, thermotolerance, virulence, immune evasion, metabolism, cell adhesion, cell transport, and biosynthesis. With the spread and emergence of sporotrichosis in different countries, ongoing research efforts and new discoveries are welcome to advance knowledge about this mycosis and its agents.
Collapse
Affiliation(s)
- Anna Carolina Procópio-Azevedo
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Marcos de Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Maria Clara Gutierrez-Galhardo
- Laboratório de Pesquisa Clínica em Dermatologia Infecciosa, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Priscila Marques de Macedo
- Laboratório de Pesquisa Clínica em Dermatologia Infecciosa, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Evandro Novaes
- Setor de Genética, Departamento de Biologia, Universidade Federal de Lavras, Lavras 37203-202, MG, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
| | - Dayvison Francis Saraiva Freitas
- Laboratório de Pesquisa Clínica em Dermatologia Infecciosa, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
7
|
Gómez-Gaviria M, Martínez-Álvarez JA, Mora-Montes HM. Current Progress in Sporothrix brasiliensis Basic Aspects. J Fungi (Basel) 2023; 9:jof9050533. [PMID: 37233242 DOI: 10.3390/jof9050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Sporotrichosis is known as a subacute or chronic infection, which is caused by thermodimorphic fungi of the genus Sporothrix. It is a cosmopolitan infection, which is more prevalent in tropical and subtropical regions and can affect both humans and other mammals. The main etiological agents causing this disease are Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa, which have been recognized as members of the Sporothrix pathogenic clade. Within this clade, S. brasiliensis is considered the most virulent species and represents an important pathogen due to its distribution and prevalence in different regions of South America, such as Brazil, Argentina, Chile, and Paraguay, and Central American countries, such as Panama. In Brazil, S. brasiliensis has been of great concern due to the number of zoonotic cases that have been reported over the years. In this paper, a detailed review of the current literature on this pathogen and its different aspects will be carried out, including its genome, pathogen-host interaction, resistance mechanisms to antifungal drugs, and the caused zoonosis. Furthermore, we provide the prediction of some putative virulence factors encoded by the genome of this fungal species.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato 36050, Mexico
| | - José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato 36050, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato 36050, Mexico
| |
Collapse
|
8
|
Chechi JL, da Costa FAC, Figueiredo JM, de Souza CM, Valdez AF, Zamith-Miranda D, Camara AC, Taborda CP, Nosanchuk JD. Vaccine development for pathogenic fungi: current status and future directions. Expert Rev Vaccines 2023; 22:1136-1153. [PMID: 37936254 PMCID: PMC11500455 DOI: 10.1080/14760584.2023.2279570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Fungal infections are caused by a broad range of pathogenic fungi that are found worldwide with different geographic distributions, incidences, and mortality rates. Considering that there are relatively few approved medications available for combating fungal diseases and no vaccine formulation commercially available, multiple groups are searching for new antifungal drugs, examining drugs for repurposing and developing antifungal vaccines, in order to control deaths, sequels, and the spread of these complex infections. AREAS COVERED This review provides a summary of advances in fungal vaccine studies and the different approaches under development, such as subunit vaccines, whole organism vaccines, and DNA vaccines, as well as studies that optimize the use of adjuvants. We conducted a literature search of the PubMed with terms: fungal vaccines and genus of fungal pathogens (Cryptococcus spp. Candida spp. Coccidioides spp. Aspergillus spp. Sporothrix spp. Histoplasma spp. Paracoccidioides spp. Pneumocystis spp. and the Mucorales order), a total of 177 articles were collected from database. EXPERT OPINION Problems regarding the immune response development in an immunocompromised organism, the similarity between fungal and mammalian cells, and the lack of attention by health organizations to fungal infections are closely related to the fact that, at present, there are no fungal vaccines available for clinical use.
Collapse
Affiliation(s)
- Jéssica L. Chechi
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Felipe A. C. da Costa
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Julia M. Figueiredo
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Cássia M. de Souza
- Laboratório de Fisiologia e Biologia Molecular de Fungos, Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, Brasil
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brasil
| | - Alessandro F. Valdez
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Aline C. Camara
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Carlos P. Taborda
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
9
|
Alvarez CM, Oliveira MME, Pires RH. Sporotrichosis: A Review of a Neglected Disease in the Last 50 Years in Brazil. Microorganisms 2022; 10:2152. [PMID: 36363744 PMCID: PMC9695284 DOI: 10.3390/microorganisms10112152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/15/2023] Open
Abstract
Sporotrichosis is caused by fungi belonging to the genus Sporothrix, which saprophytically are found in plants and organic matter. However, cats are highly susceptible to contamination with fungal spores and, when they become sick, they can transmit it to other animals and to man. The objective of this study is to carry out a systematic review on the emergency, diagnosis, clinical symptoms, therapeutics, and control of zoonotic sporotrichosis. Published data covering the last 50 years using a combination of keywords were selected to answer the question: Why has the zoonotic sporotrichosis been a neglected disease up to now? A total of 135 studies were included in this review. The studies emphasize that in recent decades, Brazil has experienced an unprecedented zoonotic outbreak of sporotrichosis. Advances on the genus Sporothrix allowed one to associate thermotolerance, capacity for melanin synthesis, potential for adhesion to tissue macromolecules, ergosterol peroxide production, and expression of virulence proteins as tools for infection and invasion in S. brasiliensis, the main species involved, although cases with S. schenckii or S. lurei were also reported. Correct diagnosis, early treatment, basic educational measures that emphasize responsible ownership of animals and reproductive control programs for felines can contribute to the control of zoonosis.
Collapse
Affiliation(s)
- Carmen Magaly Alvarez
- Laboratory of Mycology and Environmental Diagnosis, Postgraduate Program in Health Promotion, University of Franca, Franca 14404-600, SP, Brazil
- Faculty of Veterinary Medicine, Universidad Agraria del Ecuador, Guayaquil 090104, Ecuador
| | | | - Regina Helena Pires
- Laboratory of Mycology and Environmental Diagnosis, Postgraduate Program in Health Promotion, University of Franca, Franca 14404-600, SP, Brazil
| |
Collapse
|
10
|
Portuondo Fuentes DL, Batista-Duharte A, Carvajal CC, de Oliveira CS, Borges JC, Téllez-Martínez D, Santana PA, Gauna A, Mercado L, Soleder BC, Inácio da Costa P, Quimbayo FG, Carlos IZ. A Sporothrix spp enolase derived multi-epitope vaccine confers protective response in BALB/c mice challenged with Sporothrix brasiliensis. Microb Pathog 2022; 166:105539. [PMID: 35447314 DOI: 10.1016/j.micpath.2022.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Sporotrichosis is a cosmopolitan mycosis caused by pathogenic species of Sporothrix genus, that in Brazil is often acquired by zoonotic transmission involved infected cats with S. brasiliensis. Previous studies showed that the Sporothrix spp. recombinant enolase (rSsEno), a multifunctional protein with immunogenic properties, could be a promising target for vaccination against sporotrichosis in cats. Nevertheless, the considerable sequence identity (62%) of SsEno with its feline counterpart is a great concern. Here, we report the identification in silico, chemical synthesis and biological validation of six peptides of SsEno with low sequence identity to its cat orthologue. All synthesized peptides exhibit B-cell epitopes on the molecular surface of SsEno and proved to be highly reactive with the serum of infected mice with S. brasiliensis and sera of cats with sporotrichosis. Interestingly, our study revealed that anti-peptide sera did not react with the recombinant enolase from Felis catus (cats, rFcEno), thus, may not trigger autoimmune response in these felines if used as a vaccine antigen. The immunization with peptide mixture (PeptMix) formulated with Freund adjuvant (FA), induced high levels of antigen-specific IgG, IgG1 and IgG2b antibodies that conferred protection upon passive transference in infected BALB/c mice with S. brasiliensis. We also observed, that the FA + PeptMix formulation induced a Th1/Th2/Th17 cytokine profile ex vivo, associated with protecting effect against the experimental sporotrichosis. Our results suggest that the six SsEno-derived peptides here evaluated, could be used as safe antigens for the development of vaccine strategies against feline sporotrichosis, whether prophylactic or therapeutic.
Collapse
Affiliation(s)
| | - Alexander Batista-Duharte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil; GC01 Immunology and Allergy Group. Maimonides Biomedical Research Institute of Cordoba (IMIBIC). Reina Sofía University Hospital, IMIBIC Building, Córdoba, Spain.
| | - Constanza Cardenas Carvajal
- Nucleo Biotecnologıa Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile.
| | - Carlos S de Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, P.O. Box 780, 13560-970, Brazil.
| | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, P.O. Box 780, 13560-970, Brazil.
| | - Damiana Téllez-Martínez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Paula Andrea Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago, Chile.
| | - Adriana Gauna
- Nucleo Biotecnologıa Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223, Valparaíso, Chile.
| | - Bruna Castilho Soleder
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Paulo Inácio da Costa
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Fanny Guzmán Quimbayo
- Nucleo Biotecnologıa Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile.
| | - Iracilda Zeppone Carlos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| |
Collapse
|
11
|
Nava-Pérez N, Neri-García LG, Romero-González OE, Terrones-Cruz JA, García-Carnero LC, Mora-Montes HM. Biological and Clinical Attributes of Sporothrix globosa, a Causative Agent of Sporotrichosis. Infect Drug Resist 2022; 15:2067-2090. [PMID: 35498634 PMCID: PMC9041366 DOI: 10.2147/idr.s362099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Sporotrichosis is an important subcutaneous mycosis with high prevalence and threat to human and animal health worldwide. Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are the main etiological agents of this disease; and even though many efforts have been made recently to understand the Sporothrix-host interaction, little is known about S. globosa, an underestimated species. This organism shows the lowest virulence among the members of the Sporothrix pathogenic clade and represents an important pathogenic agent due to its global distribution. Here, we offer a review with all the known information about S. globosa, including its genome and proteomic information, and compare it with S. schenckii and S. brasiliensis, to explain the differences observed among these species, in terms of virulence, the host immune response, and the antifungal sensitivity. Also, we provide the gene prediction of some S. globosa putative virulence factors.
Collapse
Affiliation(s)
- Nallely Nava-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
| | - Lisset G Neri-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
| | - Oscar E Romero-González
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
| | - Joshua A Terrones-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
- Correspondence: Laura C García-Carnero; Héctor M Mora-Montes, Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P, Guanajuato, 36050, Gto., México, Tel +52 473-7320006 Ext. 8193, Fax +52 473-7320006 Ext. 8153, Email ;
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
| |
Collapse
|
12
|
Vargas-Macías AP, Gómez-Gaviria M, García-Carnero LC, Mora-Montes HM. Current Models to Study the Sporothrix-Host Interaction. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:833111. [PMID: 37746241 PMCID: PMC10512367 DOI: 10.3389/ffunb.2022.833111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 09/26/2023]
Abstract
Sporotrichosis is a worldwide distributed subcutaneous mycosis that affects mammals, including human beings. The infection is caused by members of the Sporothrix pathogenic clade, which includes Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The fungus can be acquired through traumatic inoculation of conidia growing in vegetal debris or by zoonotic transmission from sick animals. Although is not considered a life-threatening disease, it is an emergent health problem that affects mostly immunocompromised patients. The sporotrichosis causative agents differ in their virulence, host range, and sensitivity to antifungal drugs; therefore, it is relevant to understand the molecular bases of their pathogenesis, interaction with immune effectors, and mechanisms to acquired resistance to antifungal compounds. Murine models are considered the gold standard to address these questions; however, some alternative hosts offer numerous advantages over mammalian models, such as invertebrates like Galleria mellonella and Tenebrio molitor, or ex vivo models, which are useful tools to approach questions beyond virulence, without the ethical or budgetary features associated with the use of animal models. In this review, we analyze the different models currently used to study the host-Sporothrix interaction.
Collapse
Affiliation(s)
| | | | | | - Héctor M. Mora-Montes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
13
|
Kischkel B, Boniche-Alfaro C, Menezes IDG, Rossi SA, Angeli CB, de Almeida SR, Palmisano G, Lopes-Bezerra L, Nosanchuk JD, Taborda CP. Immunoproteomic and Immunopeptidomic Analyses of Histoplasma capsulatum Reveal Promiscuous and Conserved Epitopes Among Fungi With Vaccine Potential. Front Immunol 2021; 12:764501. [PMID: 34880863 PMCID: PMC8645968 DOI: 10.3389/fimmu.2021.764501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
As there are more than 6 million human deaths due to mycoses each year, there is an urgent need to develop fungal vaccines. Moreover, given the similarities among pathogenic fungi, it may be possible to create a multi-fungi vaccine. In this study, we combined immunoproteomic and immunopeptidomic methods, for which we have adapted a technique based on co-immunoprecipitation (Co-IP) that made it possible to map Histoplasma capsulatum epitopes for the first time in a natural context using murine dendritic cells (DCs) and macrophages (Mφ). Although polysaccharide epitopes exist, this research focused on mapping protein epitopes as these are more immunogenic. We used different algorithms to screen proteins and peptides identified by two-dimensional electrophoresis (2-D) and Co-IP. Seventeen proteins were revealed by 2-D gels, and 45 and 24 peptides from distinct proteins were presented by DCs and Mφ, respectively. We then determined which epitopes were restricted to MHC-I and II from humans and mice and showed high promiscuity, but lacked identity with human proteins. The 4 most promising peptides were synthesized, and the peptides with and without incorporation into glucan particles induced CD4+ and CD8+ T cell proliferation and produced a Th1 and Th17 response marked by the secretion of high levels of IFN-γ, IL-17 and IL-2. These epitopes were from heat shock protein 60, enolase, and the ATP-dependent molecular chaperone HSC82, and they each have a high degree of identity with proteins expressed by other medically important pathogenic fungi. Thus, the epitopes described in this study have the potential for use in the development of vaccines that could result in cross-protection among fungal species.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Camila Boniche-Alfaro
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Isabela de Godoy Menezes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suelen Andreia Rossi
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.,Department of Dermatology, Tropical Medicine Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Leila Lopes-Bezerra
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.,Department of Dermatology, Tropical Medicine Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
García-Carnero LC, Salinas-Marín R, Lozoya-Pérez NE, Wrobel K, Wrobel K, Martínez-Duncker I, Niño-Vega GA, Mora-Montes HM. The Heat Shock Protein 60 and Pap1 Participate in the Sporothrixschenckii-Host Interaction. J Fungi (Basel) 2021; 7:jof7110960. [PMID: 34829247 PMCID: PMC8620177 DOI: 10.3390/jof7110960] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Sporothrixschenckii is one of the etiological agents of sporotrichosis, a worldwide-distributed subcutaneous mycosis. Its cell wall contains a glycoconjugate composed of rhamnose, mannose, glucuronic acid, and proteins, named peptidorhamnomannan, which harbors important Sporothrix-specific immunogenic epitopes. Although the peptidorhamnomannan carbohydrate moiety has been extensively studied, thus far, little is known about the protein core. Here, using LC-MS/MS, we analyzed the S.schenckii peptidorhamnomannan peptide fraction and generated mass signals of 325 proteins, most of them likely to be moonlighting proteins. Among the identified proteins, chaperonin GroEL/Hsp60 and the uncharacterized protein Pap1 were selected for further analysis. Both proteins were heterologously expressed in bacteria, and they showed adhesive properties to the extracellular matrix proteins laminin, elastin, fibrinogen, and fibronectin, although Pap1 also was bound to type-I and type-II collagen. The inoculation of concentrations higher than 40 μg of these proteins, separately, increased immune effectors in the hemolymph of Galleriamellonella larvae and protected animals from an S.schenckii lethal challenge. These observations were confirmed when yeast-like cells, pre-incubated with anti-rHsp60 or anti-rPap1 antibodies were used to inoculate larvae. The animals inoculated with pretreated cells showed increased survival rates when compared to the control groups. In conclusion, we report that Hsp60 and Pap1 are part of the cell wall peptidorhamnomannan, can bind extracellular matrix components, and contribute to the S.schenckii virulence. To our knowledge, this is the first report about moonlighting protein in the S.schenckii cell wall with an important role during the pathogen-host interaction.
Collapse
Affiliation(s)
- Laura C. García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (N.E.L.-P.); (G.A.N.-V.)
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mor., Mexico; (R.S.-M.); (I.M.-D.)
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (N.E.L.-P.); (G.A.N.-V.)
| | - Katarzyna Wrobel
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (K.W.); (K.W.)
| | - Kazimierz Wrobel
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (K.W.); (K.W.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mor., Mexico; (R.S.-M.); (I.M.-D.)
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (N.E.L.-P.); (G.A.N.-V.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (N.E.L.-P.); (G.A.N.-V.)
- Correspondence: ; Tel.: +52-473-7320006 (ext. 8193)
| |
Collapse
|
15
|
Neutrophil-suppressive activity over T-cell proliferation and fungal clearance in a murine model of Fonsecaea pedrosoi infection. Sci Rep 2021; 11:20220. [PMID: 34642440 PMCID: PMC8511260 DOI: 10.1038/s41598-021-99847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Neutrophils are essential to control several fungal infections. These cells are commonly known for their pro-inflammatory activities. However, some studies have demonstrated the anti-inflammatory properties of neutrophils during certain infectious diseases, culminating in the inhibition of T cell proliferation. Chromoblastomycosis (CBM) is a deep and progressive mycosis that affects thousands of people worldwide. Although neutrophil infiltrates are observed in the lesion histopathology, the fungus can overtake the immune system response and destroy the host-infected tissue. The present study demonstrated that neutropenic animals had an increase in the IL-6 production in the spleen and liver, followed by a lower fungal burden in these organs up to 14 days of infection. Neutropenic animals also showed a lower F. pedrosoi-specific antibody production 14-days post infection and higher T-cell proliferation in the in vitro experiments after stimulation with F. pedrosoi-purified proteins. Taken together, our results suggest that the presence of regulatory neutrophils in the mouse model of F. pedrosoi infection could act favoring the spread of the fungus and the chronicity of the infection. These findings shed light on the CBM treatment, which might target neutrophil polarization as a new therapy approach to treat CBM lesions.
Collapse
|
16
|
Villalobos-Duno HL, Barreto LA, Alvarez-Aular Á, Mora-Montes HM, Lozoya-Pérez NE, Franco B, Lopes-Bezerra LM, Niño-Vega GA. Comparison of Cell Wall Polysaccharide Composition and Structure Between Strains of Sporothrix schenckii and Sporothrix brasiliensis. Front Microbiol 2021; 12:726958. [PMID: 34616384 PMCID: PMC8489378 DOI: 10.3389/fmicb.2021.726958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are the main causative agents of sporotrichosis, a human subcutaneous mycosis. Differences in virulence patterns are associated with each species but remain largely uncharacterized. The S. schenckii and S. brasiliensis cell wall composition and virulence are influenced by the culturing media, with little or no influence on S. globosa. By keeping constant the culturing media, we compared the cell wall composition of three S. schenckii and two S. brasiliensis strains, previously described as presenting different virulence levels on a murine model of infection. The cell wall composition of the five Sporothrix spp. strains correlated with the biochemical composition of the cell wall previously reported for the species. However, the rhamnose-to-β-glucan ratio exhibits differences among strains, with an increase in cell wall rhamnose-to-β-glucan ratio as their virulence increased. This relationship can be expressed mathematically, which could be an important tool for the determination of virulence in Sporothrix spp. Also, structural differences in rhamnomannan were found, with longer side chains present in strains with lower virulence reported for both species here studied, adding insight to the importance of this polysaccharide in the pathogenic process of these fungi.
Collapse
Affiliation(s)
- Héctor L Villalobos-Duno
- Laboratorio de Micología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Laura A Barreto
- Instituto Superior de Formación Docente Salome Ureña, Santo Domingo, Dominican Republic
| | - Álvaro Alvarez-Aular
- Laboratorio de Síntesis Orgánica y Productos Naturales, Centro de Química, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Héctor M Mora-Montes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Nancy E Lozoya-Pérez
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | | | - Gustavo A Niño-Vega
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
17
|
Zheng F, Gao W, Wang Y, Chen Q, Zhang Q, Jiang X, Hou B, Zhang Z. Map of dimorphic switching‑related signaling pathways in Sporothrix schenckii based on its transcriptome. Mol Med Rep 2021; 24:646. [PMID: 34278493 PMCID: PMC8299191 DOI: 10.3892/mmr.2021.12285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/24/2021] [Indexed: 11/06/2022] Open
Abstract
Sporothrix schenckii (S. schenckii) induces sporotrichosis, which has gained attention in recent years due to its worldwide prevalence. The dimorphic switching process is essential for the pathogenesis of S. schenckii. Previously, overexpression of several signal transduction genes, including SsDRK1 and SsSte20, was observed during the mycelium‑to‑yeast transition; these were necessary for asexual development, yeast‑phase cell formation, cell wall integrity and melanin synthesis. However, the mechanisms of the signaling pathways during dimorphic switching of S. schenckii remain unclear. In the present study, transcriptome sequencing of the 48‑h induced yeast forms and mycelium of S. schenckii was performed. In total, 24,904,510 high‑quality clean reads were obtained from mycelium samples and 22,814,406 from 48‑h induced yeast form samples. Following assembly, 31,779 unigene sequences were obtained with 52.98% GC content (The proportion of guanine G and cytosine C to all bases in nucleic acid). The results demonstrated that 12,217 genes, including genes involved in signal transduction and chitin synthesis, were expressed differentially between the two stages. According to these results, a map of the signaling pathways, including two‑component and heterotrimeric G‑protein signaling systems, Ras and MAPK cascades associated with the dimorphic switch, was drawn. Taken together, the transcriptome data and analysis performed in the present study lay the foundation for further research into the molecular mechanisms controlling the dimorphic switch of S. schenckii and support the development of anti‑S. schenckii strategies targeting genes associated with signaling pathways.
Collapse
Affiliation(s)
- Fangliang Zheng
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Wei Gao
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Ying Wang
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Qingyan Chen
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Qiuling Zhang
- Department of Dermatology, Shenzhen Shekou People's Hospital, Shenzhen, Guangdong 518067, P.R. China
| | - Xiuyan Jiang
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Binbin Hou
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Zhenying Zhang
- Department of Dermatology, University of Hong Kong Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
18
|
Lozoya-Pérez NE, García-Carnero LC, Martínez-Álvarez JA, Martínez-Duncker I, Mora-Montes HM. Tenebrio molitor as an Alternative Model to Analyze the Sporothrix Species Virulence. Infect Drug Resist 2021; 14:2059-2072. [PMID: 34113132 PMCID: PMC8184153 DOI: 10.2147/idr.s312553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/16/2021] [Indexed: 01/14/2023] Open
Abstract
Background Sporotrichosis is an increasing threat for humans, affecting mainly skin and subcutaneous tissues but that can cause disseminated infection in immunocompromised patients. Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are the main etiological agents of this mycosis, and each species show different virulence levels. The gold standard to assess fungal virulence is the mouse model that is expensive and time-consuming. Thus, invertebrate models have been reported as an alternative for the evaluation of fungal virulence. Here, we assessed whether Tenebrio molitor larvae could be a new alternative to study Sporothrix spp. virulence. Methods T. molitor larvae were inoculated with different doses of S. schenckii, S. brasiliensis, and S. globosa, and animal mortality, cytotoxicity, and immunological parameters were analyzed, including the ability to stimulate immunological priming. Results Mortality curves demonstrated that yeast-like cells were the best fungal morphology to kill larvae and showed a similar ranking in virulence than that reported in other animal models, ie, being S. brasiliensis and S. globosa the species with the highest and lowest virulence, respectively. The usefulness of this model was validated with the analysis of several S. schenckii strains with different virulence degrees, and changes in cytotoxicity, humoral and cellular immunological parameters. Low-virulence strains stimulated low levels of cytotoxicity, phenoloxidase activity, and hemocyte countings, and these immunological cells poorly uptake fungi. Moreover, using recombinant Gp70 from S. schenckii immunological priming was stimulated in larvae and this protected against a lethal dose of fungal cells from any of the three species under study. Conclusion The study demonstrated that T. molitor larvae are an appropriate alternative invertebrate model to analyze the virulence of S. schenckii, S. brasiliensis, and S. globosa. Additionally, hemocyte levels, phenoloxidase activity, cytotoxicity, uptake by hemocytes, and immunological priming are biological parameters that can be used to study the Sporothrix-T. molitor interaction.
Collapse
Affiliation(s)
- Nancy E Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, México
| | - José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, México
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, México
| |
Collapse
|
19
|
Gremião IDF, Martins da Silva da Rocha E, Montenegro H, Carneiro AJB, Xavier MO, de Farias MR, Monti F, Mansho W, de Macedo Assunção Pereira RH, Pereira SA, Lopes-Bezerra LM. Guideline for the management of feline sporotrichosis caused by Sporothrix brasiliensis and literature revision. Braz J Microbiol 2021; 52:107-124. [PMID: 32990922 PMCID: PMC7966609 DOI: 10.1007/s42770-020-00365-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
We herein present a Brazilian guideline for the management of feline sporotrichosis, a mycosis caused by Sporothrix brasiliensis. This guideline is an effort of a national technical group organized by the Working Group on Sporothrix and Sporotrichosis of the International Society for Human and Animal Mycology (ISHAM). This publication intends to provide information on clinical-epidemiological aspects of this zoonosis, as well as a literature revision. Moreover, it gives some practical information on diagnosis and treatment of feline sporotrichosis. It also contains information that can be helpful for the prevention and control of S. brasiliensis transmission.
Collapse
Affiliation(s)
- Isabella Dib Ferreira Gremião
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro. Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| | | | - Hildebrando Montenegro
- Laboratório de Diagnóstico de Zoonoses, Divisão de Vigilância de Zoonoses (COVISA/SMS/PMSP), São Paulo, Brazil
| | - Aroldo José Borges Carneiro
- Secretaria Municipal da Saúde de Salvador (SMS), Salvador, Brazil
- Instituto de Saúde Coletiva (ISC), Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Melissa Orzechowski Xavier
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande (FURG), Rio Grande do Sul, Brazil
| | | | - Fabiana Monti
- Pós-graduação em Ciência Animal, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Wilson Mansho
- Centro de Controle de Zoonoses (CCZ), Secretaria Municipal de Saúde de Guarulhos, São Paulo, Brazil
| | | | - Sandro Antonio Pereira
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro. Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Leila M Lopes-Bezerra
- BIDiagnostics, Centro de Inovação, Empreendedorismo e Tecnologia (CIETEC)/Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Etchecopaz A, Toscanini MA, Gisbert A, Mas J, Scarpa M, Iovannitti CA, Bendezú K, Nusblat AD, Iachini R, Cuestas ML. Sporothrix Brasiliensis: A Review of an Emerging South American Fungal Pathogen, Its Related Disease, Presentation and Spread in Argentina. J Fungi (Basel) 2021; 7:jof7030170. [PMID: 33652625 PMCID: PMC7996880 DOI: 10.3390/jof7030170] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Sporotrichosis, caused by Sporothrix schenckii and related species, is the most frequent implantation mycosis in Latin America. In Argentina, over the last 8 years, there have been 0.16 new cases per month of feline sporotrichosis in 2011, increasing to 0.75 cases per month in 2019 and involving zoonotic transmission to humans. Molecular identification by polymerase chain reaction (PCR) detected Sporothrix brasiliensis in these feline and zoonotic outbreaks. This study will focus on different feline and human sporotrichosis outbreaks caused by S. brasiliensis in Argentina during 2011–2019. We will address the sources of infection and environmental hotspots, as well as the application of several treatment strategies for improving the pharmacotherapy of the different clinical forms of the disease. Finally, we will provide a detailed summary of the clinical aspects and new advances in host–pathogen interactions, virulence factors and immune response, focusing on state-of-the-art diagnostic tools and potential vaccine candidates.
Collapse
Affiliation(s)
- Alejandro Etchecopaz
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
| | - María A. Toscanini
- Instituto de Nanobiotecnología (Nanobiotec), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (M.A.T.); (A.D.N.)
| | - Amelia Gisbert
- Cátedra de Clínica Médica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.G.); (J.M.)
| | - Javier Mas
- Cátedra de Clínica Médica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.G.); (J.M.)
| | - Miguel Scarpa
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
| | - Cristina A. Iovannitti
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
| | - Karla Bendezú
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
| | - Alejandro D. Nusblat
- Instituto de Nanobiotecnología (Nanobiotec), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (M.A.T.); (A.D.N.)
| | - Ricardo Iachini
- Instituto de Zoonosis «Luis Pasteur», Buenos Aires C1405 DCD, Argentina;
| | - María L. Cuestas
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
- Correspondence: ; Tel.: +54-11-59509500 (ext. 2176/77)
| |
Collapse
|
21
|
Extracellular Vesicles from Sporothrix Yeast Cells. Curr Top Microbiol Immunol 2021; 432:35-44. [DOI: 10.1007/978-3-030-83391-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Influences of the Culturing Media in the Virulence and Cell Wall of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. J Fungi (Basel) 2020; 6:jof6040323. [PMID: 33260702 PMCID: PMC7712150 DOI: 10.3390/jof6040323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are etiological agents of sporotrichosis, a human subcutaneous mycosis. Although the protocols to evaluate Sporothrix virulence in animal models are well described, the cell preparation before inoculation is not standardized, and several culturing media are used to grow yeast-like cells. Here, we found that carbon or nitrogen limitation during fungal cell preparation negatively impacted the ability of S. schenckii and S. brasiliensis to kill Galleria mellonella larvae, but not S. globosa. The fungal growth conditions associated with the short median survival of animals were accompanied by increased hemocyte countings, phenoloxidase activity, and cytotoxicity. The fungal growth under carbon or nitrogen limitation also affected the cell wall composition of both S. schenckii and S. brasiliensis and showed increased exposure of β-1,3-glucan at the cell surface, while those growing conditions had a minimal impact on the S.globosa wall, which had higher levels of this polysaccharide exposed on the wall regardless of the culture condition. This polysaccharide exposure was linked to the increased ability of insect hemocytes to uptake fungal cells, suggesting that this is one of the mechanisms behind the lower virulence of S.globosa or cells from the other species grown in carbon or nitrogen limitation.
Collapse
|
23
|
Zu J, Yao L, Song Y, Cui Y, Guan M, Chen R, Zhen Y, Li S. Th2 Biased Immunity With Altered B Cell Profiles in Circulation of Patients With Sporotrichosis Caused by Sporothrix globosa. Front Immunol 2020; 11:570888. [PMID: 33281813 PMCID: PMC7691245 DOI: 10.3389/fimmu.2020.570888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/16/2020] [Indexed: 11/26/2022] Open
Abstract
Sporotrichosis is a subcutaneous mycotic infection, and Sporothrixglobosa is one of the causative agents with a worldwide distribution, notably in Asia. However, the immune profile in human sporotrichosis caused by S. globosa still remains obscure. Here, we demonstrated enhanced Th2 response in circulation with significant increases in Th2 frequency, Th2/Tregs as well as IL-4 seretion in patients. Elevated IL-17A+Th17 percentage was accompanied with reduced IL-17A level in serum, which may imply a dysfunction of this CD4+T subset in S. globosa infection. In addition, Th2 percentage, the ratios of Th2/Tregs and Th17/Tregs were all raised in patients with fixed cutaneous form, while only Th2/Tregs displayed increment in lymphocutaneous form. Meanwhile, the percentage of double negative B cells was significantly increased and positively correlated with Th2 and Tregs in whole patients. Except naïve B cells, all memory B cells together with Th2 cells increased in patients with short duration (less than 6 months), which may suggest a collaboration of T cells with altered B cell profile in human sporotrichosis caused by S. globosa. In consistent with the changes of IFN-γ+Th1, IL-4+Th2 and IL-17A+Th17 in patients with short duration, the percentages of these effector T cells all expanded when cocultured with S. globosa yeast cells in vitro. These data shed light on the potential involvement of peripheral T and B cell immunity against this mycotic infection and indicated that different immune responses existed in different stages of sporotrichosis; meanwhile different immune profile may contribute to different clinical manifestations of this disease.
Collapse
Affiliation(s)
- Jianjiao Zu
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China
| | - Lei Yao
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China
| | - Yang Song
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China
| | - Yan Cui
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China
| | - Mengqi Guan
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China
| | - Ruili Chen
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China
| | - Yu Zhen
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Silva-Bailão MG, Lima PDS, Oliveira MME, Oliveira LC, Almeida-Paes R, Borges CL, Bailão AM, Coelho ASG, Soares CMDA, Zancopé-Oliveira RM. Comparative proteomics in the three major human pathogenic species of the genus Sporothrix. Microbes Infect 2020; 23:104762. [PMID: 32992009 DOI: 10.1016/j.micinf.2020.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
Abstract
Sporotrichosis is a subcutaneous mycosis of humans and other mammals, caused by dimorphic species of the genus Sporothrix. In Brazil, human disease is broadly linked to transmission by infected cats and is mainly caused by Sporothrix brasiliensis, Sporothrix schenckii and Sporothrix globosa. In this study, we used a nanoscale liquid chromatography coupled with tandem mass spectrometry approach to provide the yeast proteomic profiles of S. brasiliensis, S. schenckii and S. globosa. From a total of 247 identified proteins, 137 were found as differentially expressed. Functional classification revealed that most are related to carbohydrate and amino acid metabolism as well as stress response. Our data indicate that S. brasiliensis metabolism is distinct of that of S. schenckii and S. globosa, mainly regarding amino acid metabolism and cell wall remodeling, which are induced in the former. Enzymes belonging to glycolytic pathway are, on the other hand, up-regulated in S. schenckii and S. globosa. These findings may explain the previously described more virulent character of S. brasiliensis. Besides complementing genomic comparisons already published, this first comparative proteomic study provided information that indicates new aspects of Sporothrix species metabolism as well as offers information that may be useful in the development of prospective functional studies.
Collapse
Affiliation(s)
- Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | | | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | | |
Collapse
|
25
|
Batista-Duharte A, Téllez-Martínez D, de Andrade CR, Polesi MC, Portuondo DL, Carlos IZ. Transient Foxp3(+) regulatory T-cell depletion enhances protective Th1/Th17 immune response in murine sporotrichosis caused by Sporothrix schenckii. Immunobiology 2020; 225:151993. [PMID: 32962813 DOI: 10.1016/j.imbio.2020.151993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The role of regulatory T cells (Tregs) on protective immunity in fungal infections, is controversial. Sporotrichosis is an emerging and worldwide-distributed subcutaneous mycosis caused by various related thermodimorphic fungi of the genus Sporothrix. Previously, we showed an elevated percent of Tregs around 21 days post-infection (dpi) in C57BL/6 mice infected with either Sporothrix schenckii or Sporothrix brasiliensis, but the effect of these cells in the ongoing infection was not evaluated. Here, we aim to characterize the role of Foxp3+ Tregs in a subcutaneous S. schenckii infection model. The flow cytometric analyses showed that S. schenckii infection elicited an expansion of a splenic CD4+Foxp3+ population, including a subset of Helioslow+ after ex vivo stimulation with S. schenckii-heat killed yeast. Depletion of Tregs in DEREG mice revealed a reduction of fungal burden in the skin and systemically in liver and kidneys, associated with enhanced Th1 and Th17 responses. Altogether, our results reveal for the first time that Tregs depletion in ongoing S. schenckii infection improves the protective antifungal immunity and these data suggest that Tregs modulation could be explored as a potential therapeutic strategy in sporotrichosis.
Collapse
Affiliation(s)
- Alexander Batista-Duharte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Damiana Téllez-Martínez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Cleverton Roberto de Andrade
- São Paulo State University (UNESP), School of Dentistry, Department of Physiology & Pathology, Araraquara, SP, Brazil
| | - Marisa Campos Polesi
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Deivys Leandro Portuondo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Iracilda Zeppone Carlos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| |
Collapse
|
26
|
Advances in Fungal Peptide Vaccines. J Fungi (Basel) 2020; 6:jof6030119. [PMID: 32722452 PMCID: PMC7558412 DOI: 10.3390/jof6030119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the greatest public health achievements in the past century, protecting and improving the quality of life of the population worldwide. However, a safe and effective vaccine for therapeutic or prophylactic treatment of fungal infections is not yet available. The lack of a vaccine for fungi is a problem of increasing importance as the incidence of diverse species, including Paracoccidioides, Aspergillus, Candida, Sporothrix, and Coccidioides, has increased in recent decades and new drug-resistant pathogenic fungi are emerging. In fact, our antifungal armamentarium too frequently fails to effectively control or cure mycoses, leading to high rates of mortality and morbidity. With this in mind, many groups are working towards identifying effective and safe vaccines for fungal pathogens, with a particular focus of generating vaccines that will work in individuals with compromised immunity who bear the major burden of infections from these microbes. In this review, we detail advances in the development of vaccines for pathogenic fungi, and highlight new methodologies using immunoproteomic techniques and bioinformatic tools that have led to new vaccine formulations, like peptide-based vaccines.
Collapse
|
27
|
Jiao Q, Luo Y, Scheffel J, Geng P, Wang Y, Frischbutter S, Li R, Maurer M, Zhao Z. Skin Mast Cells Contribute to Sporothrix schenckii Infection. Front Immunol 2020; 11:469. [PMID: 32265923 PMCID: PMC7096480 DOI: 10.3389/fimmu.2020.00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 01/19/2023] Open
Abstract
Background:Sporothrix schenckii (S. schenckii), a dimorphic fungus, causes sporotrichosis. Mast cells (MCs) have been described to be involved in skin fungal infections. The role of MCs in cutaneous sporotrichosis remains largely unknown. Objectives: To characterize the role and relevance of MCs in cutaneous sporotrichosis. Methods: We analyzed cutaneous sporotrichosis in wild-type (WT) mice and two different MC-deficient strains. In vitro, MCs were assessed for S. schenckii-induced cytokine production and degranulation after incubation with S. schenckii. We also explored the role of MCs in human cutaneous sporotrichosis. Results: WT mice developed markedly larger skin lesions than MC-deficient mice (> 1.5 fold) after infection with S. schenckii, with significantly increased fungal burden. S. schenckii induced the release of tumor necrosis factor alpha (TNF), interleukin (IL)-6, IL-10, and IL-1β by MCs, but not degranulation. S. schenckii induced larger skin lesions and higher release of IL-6 and TNF by MCs as compared to the less virulent S. albicans. In patients with sporotrichosis, TNF and IL-6 were increased in skin lesions, and markedly elevated levels in the serum were linked to disease activity. Conclusions: These findings suggest that cutaneous MCs contribute to skin sporotrichosis by releasing cytokines such as TNF and IL-6.
Collapse
Affiliation(s)
- Qingqing Jiao
- Department of Dermatology, First Hospital, Peking University, Beijing, China.,Department of Dermatology and Allergy, Charite-Universitätsmeidzin Berlin, Berlin, Germany.,Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Luo
- Department of Dermatology and Allergy, Charite-Universitätsmeidzin Berlin, Berlin, Germany
| | - Jörg Scheffel
- Department of Dermatology and Allergy, Charite-Universitätsmeidzin Berlin, Berlin, Germany
| | - Peng Geng
- Department of Dermatology, First Hospital, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Yuhan Wang
- Department of Dermatology, First Hospital, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Stefan Frischbutter
- Department of Dermatology and Allergy, Charite-Universitätsmeidzin Berlin, Berlin, Germany
| | - Ruoyu Li
- Department of Dermatology, First Hospital, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charite-Universitätsmeidzin Berlin, Berlin, Germany
| | - Zuotao Zhao
- Department of Dermatology, First Hospital, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Department of Dermatology, Peking University First Hospital, Beijing, China
| |
Collapse
|
28
|
Téllez-Martínez D, Batista-Duharte A, Portuondo DL, Carlos IZ. Prophylactic and therapeutic vaccines against sporotrichosis. Feasibility and prospects. Microbes Infect 2019; 21:432-440. [DOI: 10.1016/j.micinf.2019.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022]
|
29
|
|
30
|
Téllez-Martínez D, Leandro Portuondo D, Loesch ML, Batista-Duharte A, Zeppone Carlos I. A Recombinant Enolase-Montanide™ PetGel A Vaccine Promotes a Protective Th1 Immune Response against a Highly Virulent Sporothrix schenckii by Toluene Exposure. Pharmaceutics 2019; 11:E144. [PMID: 30934594 PMCID: PMC6471120 DOI: 10.3390/pharmaceutics11030144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
The effect of vaccination in fungal strains that suffered changes in their virulence by exposure to environmental contaminants is largely known. Growing reports of resistance to antifungal drugs and the emergence of new highly virulent strains, possibly acquired in the environment, prompt the design of new vaccines able to prevent and combat emerging mycotic diseases. In this study, we evaluated the protective capacity of an enolase-based vaccine and Montanide PetGel A (PGA) as an adjuvant against S. schenckii with increased virulence by exposure to toluene. The adjuvanted vaccine induced a strong specific Th1 response and protective immunity against a challenge with either wildtype or toluene-adapted S. schenckii in Balb/c mice. This study highlights the role of the adjuvant PGA driving the quality of the anti-sporothrix immunity and the key component in the vaccine efficacy.
Collapse
Affiliation(s)
- Damiana Téllez-Martínez
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| | - Deivys Leandro Portuondo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| | - Maria Luiza Loesch
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| | - Alexander Batista-Duharte
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| | - Iracilda Zeppone Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil.
| |
Collapse
|
31
|
Martínez-Álvarez JA, García-Carnero LC, Kubitschek-Barreira PH, Lozoya-Pérez NE, Belmonte-Vázquez JL, de Almeida JR, J Gómez-Infante AD, Curty N, Villagómez-Castro JC, Peña-Cabrera E, Martínez-Duncker I, Almeida SR, Lopes-Bezerra LM, Mora-Montes HM. Analysis of some immunogenic properties of the recombinant Sporothrix schenckii Gp70 expressed in Escherichia coli. Future Microbiol 2019; 14:397-410. [PMID: 30854893 DOI: 10.2217/fmb-2018-0295] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM Sporothrix schenckii is the causative agent of sporotrichosis. A 70-kDa glycoprotein, Gp70, is a candidate for the development of prophylactic alternatives to control the disease, and its gene (GP70) is predicted to encode for a protein of 43 kDa, contrasting with the molecular weight of the native protein. MATERIALS & METHODS The GP70 was expressed in bacteria, the recombinant protein purified, used in immunoassays and injected to Galleria mellonella. RESULTS & CONCLUSION The recombinant protein was detected by anti-Gp70 antibodies, confirming that the Gp70 backbone is a 43-kDa peptide. This protein showed enzyme activity of cyclase and was recognized by sera of patients with sporotrichosis. Although it was not useful for serodiagnosis of sporotrichosis, it conferred protection to animals against experimental sporotrichosis.
Collapse
Affiliation(s)
- José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | | | - Nancy E Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - José L Belmonte-Vázquez
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - José Rf de Almeida
- Laboratory of Clinical Mycology, Faculdade de Farmácia, Universidade de São Paulo, Brazil
| | - Antonio de J Gómez-Infante
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Nathalia Curty
- Laboratory of Cellular Mycology & Proteomics, Universidade do Estado do Rio de Janeiro, Brazil
| | - Julio C Villagómez-Castro
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Eduardo Peña-Cabrera
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Sandro R Almeida
- Laboratory of Clinical Mycology, Faculdade de Farmácia, Universidade de São Paulo, Brazil
| | - Leila M Lopes-Bezerra
- Laboratory of Cellular Mycology & Proteomics, Universidade do Estado do Rio de Janeiro, Brazil.,Laboratory of Clinical Mycology, Faculdade de Farmácia, Universidade de São Paulo, Brazil
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| |
Collapse
|
32
|
Queiroz-Telles F, Buccheri R, Benard G. Sporotrichosis In Immunocompromised Hosts. J Fungi (Basel) 2019; 5:jof5010008. [PMID: 30641918 PMCID: PMC6463096 DOI: 10.3390/jof5010008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Sporotrichosis is a global implantation or subcutaneous mycosis caused by several members of the genus Sporothrix, a thermo-dimorphic fungus. This disease may also depict an endemic profile, especially in tropical to subtropical zones around the world. Interestingly, sporotrichosis is an anthropozoonotic disease that may be transmitted to humans by plants or by animals, especially cats. It may be associated with rather isolated or clustered cases but also with outbreaks in different periods and geographic regions. Usually, sporotrichosis affects immunocompetent hosts, presenting a chronic to subacute evolution course. Less frequently, sporotrichosis may be acquired by inhalation, leading to disseminated clinical forms. Both modes of infection may occur in immunocompromised patients, especially associated with human immunodeficiency virus (HIV) infection, but also diabetes mellitus, chronic alcoholism, steroids, anti-TNF treatment, hematologic cancer and transplanted patients. Similar to other endemic mycoses caused by dimorphic fungi, sporotrichosis in immunocompromised hosts may be associated with rather more severe clinical courses, larger fungal burden and longer periods of systemic antifungal therapy. A prolonged outbreak of cat-transmitted sporotrichosis is in progress in Brazil and potentially crossing the border to neighboring countries. This huge outbreak involves thousands of human and cats, including immunocompromised subjects affected by HIV and FIV (feline immunodeficiency virus), respectively. We reviewed the main epidemiologic, clinical, diagnostic and therapeutic aspects of sporotrichosis in immunocompromised hosts.
Collapse
Affiliation(s)
- Flavio Queiroz-Telles
- Department of Public Health, Federal University of Paraná, Curitiba 80060-000, Brazil.
| | - Renata Buccheri
- Emilio Ribas Institute of Infectious Diseases, São Paulo 05411-000, Brazil.
| | - Gil Benard
- Laboratory of Medical Mycology, Department of Dermatology, and Tropical Medicine Institute, University of São Paulo, Sao Paulo 05403-000, Brazil.
| |
Collapse
|
33
|
Mora-Montes HM. Special Issue " Sporothrix and Sporotrichosis". J Fungi (Basel) 2018; 4:jof4040116. [PMID: 30321990 PMCID: PMC6308924 DOI: 10.3390/jof4040116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
Sporotrichosis is a neglected, deep-seated fungal infection traditionally associated with Sporothrixschenckii, a dimorphic organism that was first described more than a century ago in human andrat specimens [1].[...].
Collapse
Affiliation(s)
- Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P.; Guanajuato Gto. 36050, México.
| |
Collapse
|
34
|
Batista-Duharte A, Téllez-Martínez D, Roberto de Andrade C, Portuondo DL, Jellmayer JA, Polesi MC, Carlos IZ. Sporothrix brasiliensis induces a more severe disease associated with sustained Th17 and regulatory T cells responses than Sporothrix schenckii sensu stricto in mice. Fungal Biol 2018; 122:1163-1170. [PMID: 30449354 DOI: 10.1016/j.funbio.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Little is known about the differences in the CD4+ T-cell response induced by Sporothrix schenckii and Sporothrix brasiliensis, the most virulent species that cause sporotrichosis. Here, the helper (Th) and regulatory T cells (Tregs) responses were evaluated comparatively in a murine model of sporotrichosis on days 7, 21 and 35 after subcutaneous infection with either S. schenckii or S. brasiliensis conidia. The fungal load was measured at the site of infection, as well as in the liver and spleen. The Th1/Th17/Tregs responses were analyzed in the spleen, while the level of IL-2, IL-4, IL-6, TNF-alpha, IFN-ɣ, IL-17A and IL-10 cytokines were measured at the local site of infection on 24 h postinfections and in sera on the indicated days. S. brasiliensis caused a longer-lasting infection in the skin and chronic systemic dissemination associated to more severe granulomatous lesions. Similar Th1/Th1-Th17/Tregs responses were induced by both S. brasiliensis and S. schenckii on 7th and 21st d.p.i but on 35 d.p.i a reduction of Th1 and Th1-Th17 cells, associated to higher values of Th17/Tregs cells was observed only in S. brasiliensis-infected mice. In summary, S. brasiliensis caused a more severe disease associated with sustained Th17/Tregs responses than S. schenckii in mice.
Collapse
Affiliation(s)
- Alexander Batista-Duharte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Damiana Téllez-Martínez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Cleverton Roberto de Andrade
- São Paulo State University (UNESP), School of Dentistry, Department of Physiology & Pathology, Araraquara, SP, Brazil
| | - Deivys Leandro Portuondo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Juliana Aparecida Jellmayer
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Marisa Campos Polesi
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Iracilda Zeppone Carlos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| |
Collapse
|
35
|
García Carnero LC, Lozoya Pérez NE, González Hernández SE, Martínez Álvarez JA. Immunity and Treatment of Sporotrichosis. J Fungi (Basel) 2018; 4:jof4030100. [PMID: 30127270 PMCID: PMC6162376 DOI: 10.3390/jof4030100] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/18/2018] [Accepted: 08/19/2018] [Indexed: 12/26/2022] Open
Abstract
Species of the Sporothrix complex are the etiological agents of sporotrichosis, an important subcutaneous mycosis with several clinical forms and an increasing incidence around the world that affects humans and other mammals. The immunological mechanisms involved in the prevention and control of this mycosis are not entirely understood. Many reports have suggested that cell-mediated immunity has an essential role in the development of the disease, being the primary response controlling it, while only recent data supports that the humoral response is essential for the appropriate control. This mycosis is a challenge for diagnosis since the culture and isolation of the organism are time-consuming and complicated; reasons that have led to the study of fungus antigenic molecules capable of generating a detectable humoral response. The treatment for this disease includes the use of several antifungal drugs like itraconazole, amphotericin B, caspofungin, fluconazole, and the combination between them among others such as the extract of Vismia guianensis.
Collapse
Affiliation(s)
- Laura Cristina García Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico.
| | - Nancy Edith Lozoya Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico.
| | - Sandra Elizabeth González Hernández
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico.
| | - José Ascención Martínez Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico.
| |
Collapse
|
36
|
Conceição-Silva F, Morgado FN. Immunopathogenesis of Human Sporotrichosis: What We Already Know. J Fungi (Basel) 2018; 4:jof4030089. [PMID: 30065160 PMCID: PMC6162489 DOI: 10.3390/jof4030089] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022] Open
Abstract
Sporotrichosis is a subacute/chronic mycosis caused by dimorphic fungus of the genus Sporothrix. This mycosis may affect both human and domestic animals and in the last few years, the geographic dispersion and increase of sporotrichosis worldwide has been observed. The occurrence of cases related to scratching/bites of domestic felines have increased, characterizing the disease as predominantly a zoonosis. In humans, sporotrichosis mainly involves the cutaneous tegument of infected patients, but other tissues may also present the infection. The main forms of clinical presentation are lymphocutanous sporotrichosis (LC) and fixed sporotrichosis (F). Although less common, mucosal, cutaneous disseminated, and extracutaneous forms have also been described. Multiple factors from the fungus and host can play a role in driving the clinical evolution of sporotrichosis to benign or severe disease. In this review, we discuss the immunopathological aspects involved in human sporotrichosis. Putting together the two branches of knowledge—host immune response and fungal evading mechanisms—we may perceive new possibilities in understanding the fungus–host interaction in order to be in a position to go further in the control of sporotrichosis.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, IOC/Fiocruz, Avenida Brasil 4365 Pavilhão 26 sala 408-Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Fernanda Nazaré Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, IOC/Fiocruz, Avenida Brasil 4365 Pavilhão 26 sala 509-Manguinhos, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|