1
|
Gavrielatou N, Fazeli P, Rimm DL. Touching (Proximity) as a Companion Diagnostic Test. J Thorac Oncol 2025; 20:546-548. [PMID: 40348478 DOI: 10.1016/j.jtho.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 05/14/2025]
Affiliation(s)
- Niki Gavrielatou
- Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Parmees Fazeli
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
2
|
Lindberg A, Muhl L, Yu H, Hellberg L, Artursson R, Friedrich J, Backman M, Hekmati N, Mattsson J, Lindskog C, Brunnström H, Botling J, Mezheyeuski A, Broström E, Gulyas M, Kärre K, Isaksson J, Micke P, Strell C. In Situ Detection of Programmed Cell Death Protein 1 and Programmed Death Ligand 1 Interactions as a Functional Predictor for Response to Immune Checkpoint Inhibition in NSCLC. J Thorac Oncol 2025; 20:625-640. [PMID: 39743139 DOI: 10.1016/j.jtho.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have transformed lung cancer treatment, yet their effectiveness seem restricted to certain patient subsets. Current clinical stratification on the basis of programmed death ligand 1 (PD-L1) expression offers limited predictive value. Given the mechanism of action, directly detecting spatial programmed cell death protein 1 (PD1)-PD-L1 interactions might yield more precise insights into immune responses and treatment outcomes. METHODS We applied a second-generation in situ proximity ligation assay to detect PD1-PD-L1 interactions in diagnostic tissue samples from 16 different cancer types, a tissue microarray with surgically resected early-stage NSCLC, and finally diagnostic biopsies from 140 patients with advanced NSCLC with and without ICI treatment. RNA sequencing analysis was used to identify potential resistance mechanisms. RESULTS In the early-stage NSCLC, only approximately half of the cases with detectable PD-L1 and PD1 expression exhibited PD1-PD-L1 interactions, with significantly lower levels in EGFR-mutated tumors. Interaction levels varied across cancer types, aligning with reported ICI response rates. In ICI-treated patients with NSCLC, higher PD1-PD-L1 interactions were linked to complete responses and longer survival, outperforming standard PD-L1 expression assays. Patients who did not respond to ICIs despite high PD1-PD-L1 interactions exhibited additional expression of stromal immune mediators (EOMES, HAVCR1/TIM-1, JAML, FCRL1). CONCLUSION Our study proposes a diagnostic shift from static biomarker quantification to assessing active immune pathways, providing more precise ICI treatment. This functional concept applies to tiny lung biopsies and can be extended to further immune checkpoints. Accordingly, our results indicate concerted ICI resistance mechanisms, highlighting the need for combination diagnostics and therapies.
Collapse
Affiliation(s)
- Amanda Lindberg
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Muhl
- Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden; Centre of Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hui Yu
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Louise Hellberg
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Rebecca Artursson
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Jakob Friedrich
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Max Backman
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Neda Hekmati
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Johanna Mattsson
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Johan Botling
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Artur Mezheyeuski
- Vall d'Hebron Institute of Oncology, Molecular Oncology Group, Barcelona, Spain; Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Erika Broström
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklos Gulyas
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Klas Kärre
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Isaksson
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Carina Strell
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden; Centre of Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
Li Y, Qian M, Cheng Y, Qiu X. Robust visualization of membrane protein by aptamer mediated proximity ligation assay and Förster resonance energy transfer. Colloids Surf B Biointerfaces 2025; 248:114486. [PMID: 39756158 DOI: 10.1016/j.colsurfb.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In situ cell imaging plays a crucial role in studying physiological and pathological processes of cells. Proximity ligation assay (PLA) and rolling circle amplification (RCA) are commonly used to study the abundance and interactions of biological macromolecules. The most frequently applied strategy to visualize the RCA products is with single-fluorophore probe, however, cellular auto-fluorescence and unbound fluorescent probes could interfere with RCA products, leading to non-specific signals. Here, we present a novel approach combining aptamer mediated PLA, RCA, and Förster Resonance Energy Transfer (FRET), namely Apt-PLA-RCA-FRET, for sensitive in situ imaging and analysis of the abundances and interactions of membrane proteins such as tetraspanin CD63 and human epidermal growth factor receptor 2 (HER2). Apt-RCA-FRET was initially designed to show its ability to assess the abundance of target proteins on different cells. Dual functional oligonucleotides served as both the aptamer for recognizing specific membrane proteins and the primer of circular DNA for following RCA process, and the resulting RCA products were subsequently imaged by FRET signals from Cy3 to Cy5 probes which hybridized sequentially on them. FRET was demonstrated to show its great potential to resist the interferences of nonspecific fluorescence compared to single-fluorophore strategies. PLA was then introduced to Apt-RCA-FRET to investigate the spatial localization of different proteins on cell membrane and their interactions. Our approach utilizing aptamer as membrane proteins recognition element simply converted the abundance of proteins into nucleic acid signals and facilitated the following signal amplification, thus it serves as an important alternative to methods typically based on antibody and presents a more robust and sensitive method for analyzing the abundances of different cell membrane proteins and their spatial localization, which offers valuable insights into physiological and pathological processes of cells.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meiqi Qian
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuping Cheng
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
4
|
Kang NR, Biondo JR, Sharpes CE, Rhea KA, Garden PM, Montezco JJJ, Ringaci A, Grinstaff MW, Phillips DA, Miklos AE, Green AA. A Rapid and Modular Nanobody Assay for Plug-and-Play Antigen Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640988. [PMID: 40093045 PMCID: PMC11908207 DOI: 10.1101/2025.03.01.640988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Rapid and portable antigen detection is essential for managing infectious diseases and responding to toxic exposures, yet current methods face significant limitations. Highly sensitive platforms like the Enzyme-Linked Immunosorbent Assay (ELISA) are time- and cost-prohibitive for point-of-need detection, while portable options like lateral flow assays (LFAs) require systemic overhauls for new targets. Furthermore, the complex infrastructure, high production costs, and extended timelines for assay development constrain manufacturing of traditional diagnostic platforms in low-resource settings. To address these challenges, we describe the Rapid and Modular Nanobody Assay (RAMONA) as a versatile antigen detection platform that leverages nanobody-coiled coil fusion proteins for modular integration with downstream readout methods. RAMONA merges the portability of LFAs with the benefits of nanobodies, such as their smaller size, improved solubility, and compatibility with cell-free protein synthesis systems, enabling on-demand biomanufacturing and rapid adaptation for diverse targets. We demonstrate assay generalizability through the detection of three distinct protein targets, robustness across various temperatures and incubation periods, and compatibility with saliva samples and cell-free synthesis. Detection occurs in under 30 minutes, with results strongly and positively correlating to ELISA data while requiring minimal resources. Moreover, RAMONA supports multiplexed detection of three antigens simultaneously using orthogonal capture probes. By overcoming several limitations of traditional immunoassays, RAMONA represents a significant advancement in rapid, adaptable, and field-deployable antigen detection technologies.
Collapse
|
5
|
Witowski A, Palmowski L, Rahmel T, Nowak H, Ehrentraut SF, Putensen C, von Groote T, Zarbock A, Babel N, Anft M, Sitek B, Bracht T, Bayer M, Weber M, Weisheit C, Pfänder S, Eisenacher M, Adamzik M, Katharina R, Koos B, Ziehe D. Activation of the MAPK network provides a survival advantage during the course of COVID-19-induced sepsis: a real-world evidence analysis of a multicenter COVID-19 Sepsis Cohort. Infection 2025; 53:107-115. [PMID: 38896372 PMCID: PMC11825614 DOI: 10.1007/s15010-024-02325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE There is evidence that lower activity of the RAF/MEK/ERK network is associated with positive outcomes in mild and moderate courses of COVID-19. The effect of this cascade in COVID-19 sepsis is still undetermined. Therefore, we tested the hypothesis that activity of the RAF/MEK/ERK network in COVID-19-induced sepsis is associated with an impact on 30-day survival. METHODS We used biomaterial from 81 prospectively recruited patients from the multicentric CovidDataNet.NRW-study cohort (German clinical trial registry: DRKS00026184) with their collected medical history, vital signs, laboratory parameters, microbiological findings and patient outcome. ERK activity was measured by evaluating ERK phosphorylation using a Proximity Ligation Assay. RESULTS An increased ERK activity at 4 days after diagnosis of COVID-19-induced sepsis was associated with a more than threefold increased chance of survival in an adjusted Cox regression model. ERK activity was independent of other confounders such as Charlson Comorbidity Index or SOFA score (HR 0.28, 95% CI 0.10-0.84, p = 0.02). CONCLUSION High activity of the RAF/MEK/ERK network during the course of COVID-19 sepsis is a protective factor and may indicate recovery of the immune system. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Andrea Witowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Lars Palmowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Zentrum für Künstliche Intelligenz, Medizininformatik und Datenwissenschaften, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Stefan F Ehrentraut
- Klinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - Christian Putensen
- Klinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - Thilo von Groote
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Alexander Zarbock
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Nina Babel
- Centrum für Translationale Medizin, Medizinische Klinik I, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Herne, Germany
| | - Moritz Anft
- Centrum für Translationale Medizin, Medizinische Klinik I, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Herne, Germany
| | - Barbara Sitek
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
| | - Thilo Bracht
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
| | - Malte Bayer
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
| | - Maike Weber
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
- Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr Universität Bochum, Bochum, Germany
| | - Christina Weisheit
- Klinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Bonn, Bonn, Germany
| | - Stephanie Pfänder
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
- University of Lübeck, Lübeck, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr Universität Bochum, Medizinische Fakultät, Bochum, Germany
- Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr Universität Bochum, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Rump Katharina
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| | - Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| |
Collapse
|
6
|
Qiu Y, Liu Y, Zheng W, Chen J, Yang Y, He X, Lin C, Ke R. Visualization of Protein-Protein Interaction In Situ Using Hybridization-Enhanced Proximity Ligation Assay. Anal Chem 2024; 96:19863-19868. [PMID: 39644221 DOI: 10.1021/acs.analchem.4c04229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Understanding protein-protein interactions (PPIs) is critical for elucidating cellular functions and disease mechanisms. We present the hybridization-enhanced proximity ligation assay (HPLA), a novel approach incorporating a prehybridization step to improve the ligation efficiency of DNA probes on antibody-oligonucleotide conjugates. This step involves a splint probe hybridizing with complementary sequences on the DNA probes bound to interacting protein complexes, forming V-shaped overhangs that facilitate the circularization of two circle probes. These circularized DNA templates undergo localized rolling circle amplification, producing amplification products that can be visualized as fluorescent dots upon hybridization with dye-labeled detection probes. We demonstrated the utility of HPLA in various biological contexts, including cancer-associated protein interactions and signaling pathways, achieving clearer, more precise visualization of PPIs and enabling robust quantitative analysis.
Collapse
Affiliation(s)
- Yinghui Qiu
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, China
- School of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yanxiu Liu
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, China
| | - Weilin Zheng
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jiayu Chen
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yu Yang
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xiaojie He
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, China
| | - Chen Lin
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, China
| | - Rongqin Ke
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
7
|
Schulte S, Shin B, Rothenberg EV, Pierce NA. Multiplex, Quantitative, High-Resolution Imaging of Protein:Protein Complexes via Hybridization Chain Reaction. ACS Chem Biol 2024; 19:280-288. [PMID: 38232374 PMCID: PMC10877569 DOI: 10.1021/acschembio.3c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Signal amplification based on the mechanism of hybridization chain reaction (HCR) facilitates spatial exploration of gene regulatory networks by enabling multiplex, quantitative, high-resolution imaging of RNA and protein targets. Here, we extend these capabilities to the imaging of protein:protein complexes, using proximity-dependent cooperative probes to conditionally generate a single amplified signal if and only if two target proteins are colocalized within the sample. HCR probes and amplifiers combine to provide automatic background suppression throughout the protocol, ensuring that even if reagents bind nonspecifically in the sample, they will not generate amplified background. We demonstrate protein:protein imaging with a high signal-to-background ratio in human cells, mouse proT cells, and highly autofluorescent formalin-fixed paraffin-embedded (FFPE) human breast tissue sections. Further, we demonstrate multiplex imaging of three different protein:protein complexes simultaneously and validate that HCR enables accurate and precise relative quantitation of protein:protein complexes with subcellular resolution in an anatomical context. Moreover, we establish a unified framework for simultaneous multiplex, quantitative, high-resolution imaging of RNA, protein, and protein:protein targets, with one-step, isothermal, enzyme-free HCR signal amplification performed for all target classes simultaneously.
Collapse
Affiliation(s)
- Samuel
J. Schulte
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Boyoung Shin
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Ellen V. Rothenberg
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Niles A. Pierce
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Wenson L, Leino M, Jarvius M, Heldin J, Koos B, Söderberg O. The method developer's guide to oligonucleotide design. Expert Rev Proteomics 2024; 21:65-80. [PMID: 38363709 DOI: 10.1080/14789450.2024.2318565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
INTRODUCTION Development of new methods is essential to make great leaps in science, opening up new avenues for research, but the process behind method development is seldom described. AREAS COVERED Over the last twenty years we have been developing several new methods, such as in situ PLA, proxHCR, and MolBoolean, using oligonucleotide-conjugated antibodies to visualize protein-protein interactions. Herein, we describe the rationale behind the oligonucleotide systems of these methods. The main objective of this paper is to provide researchers with a description on how we thought when we designed those methods. We also describe in detail how the methods work and how one should interpret results. EXPERT OPINION Understanding how the methods work is important in selecting an appropriate method for your experiments. We also hope that this paper may be an inspiration for young researchers to enter the field of method development. Seeing a problem is a motivation to develop a solution.
Collapse
Affiliation(s)
- Leonie Wenson
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical center, Uppsala, Sweden
| | - Mattias Leino
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical center, Uppsala, Sweden
| | - Malin Jarvius
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical center, Uppsala, Sweden
| | - Johan Heldin
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical center, Uppsala, Sweden
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, Bochum, Germany
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical center, Uppsala, Sweden
| |
Collapse
|
9
|
Avallone M, Pardo J, Mergiya TF, Rájová J, Räsänen A, Davidsson M, Åkerblom M, Quintino L, Kumar D, Bramham CR, Björklund T. Visualizing Arc protein dynamics and localization in the mammalian brain using AAV-mediated in situ gene labeling. Front Mol Neurosci 2023; 16:1140785. [PMID: 37415832 PMCID: PMC10321715 DOI: 10.3389/fnmol.2023.1140785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/11/2023] [Indexed: 07/08/2023] Open
Abstract
The activity-regulated cytoskeleton-associated (Arc) protein is essential for synaptic plasticity and memory formation. The Arc gene, which contains remnants of a structural GAG retrotransposon sequence, produces a protein that self-assembles into capsid-like structures harboring Arc mRNA. Arc capsids, released from neurons, have been proposed as a novel intercellular mechanism for mRNA transmission. Nevertheless, evidence for intercellular transport of Arc in the mammalian brain is still lacking. To enable the tracking of Arc molecules from individual neurons in vivo, we devised an adeno-associated virus (AAV) mediated approach to tag the N-terminal of the mouse Arc protein with a fluorescent reporter using CRISPR/Cas9 homologous independent targeted integration (HITI). We show that a sequence coding for mCherry can successfully be knocked in at the 5' end of the Arc open reading frame. While nine spCas9 gene editing sites surround the Arc start codon, the accuracy of the editing was highly sequence-dependent, with only a single target resulting in an in-frame reporter integration. When inducing long-term potentiation (LTP) in the hippocampus, we observed an increase of Arc protein highly correlated with an increase in fluorescent intensity and the number of mCherry-positive cells. By proximity ligation assay (PLA), we demonstrated that the mCherry-Arc fusion protein retains the Arc function by interacting with the transmembrane protein stargazin in postsynaptic spines. Finally, we recorded mCherry-Arc interaction with presynaptic protein Bassoon in mCherry-negative surrounding neurons at close proximity to mCherry-positive spines of edited neurons. This is the first study to provide support for inter-neuronal in vivo transfer of Arc in the mammalian brain.
Collapse
Affiliation(s)
- Martino Avallone
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Joaquín Pardo
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner” (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Tadiwos F. Mergiya
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Jana Rájová
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Atte Räsänen
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Malin Åkerblom
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Luis Quintino
- CNS Gene Therapy, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | | | - Clive R. Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Wåhlén E, Olsson F, Raykova D, Söderberg O, Heldin J, Lennartsson J. Activated EGFR and PDGFR internalize in separate vesicles and downstream AKT and ERK1/2 signaling are differentially impacted by cholesterol depletion. Biochem Biophys Res Commun 2023; 665:195-201. [PMID: 37163940 DOI: 10.1016/j.bbrc.2023.04.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
The interplay between membrane subregions and receptor tyrosine kinases (RTK) will influence signaling in both normal and pathological RTK conditions. In this study, epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor β (PDGFR-β) internalizations were investigated by immunofluorescent microscopy following simultaneous treatment with EGF and PDGF-BB. We found that the two receptors utilize separate routes of internalization, which merges in a common perinuclear endosomal compartment after 45 min of stimulation. This is further strengthened when contrasting the recruitment of either EGFR or PDGFR-β to either clathrin or caveolin-1: PDGFR-β dissociates from caveolin-1 upon stimulation, and engages clathrin, whilst an increased recruitment of EGFR, to both clathrin and caveolin-1, was observed upon EGF stimulation. The association between EGFR and caveolin-1 is supported by the observation that EGFR was localized in lipid raft associated fractions, whereas PDGFR-β was not. We also found that disruption of lipid rafts using MβCD led to an increased EGFR dimerization and phosphorylation in response to ligand, as well as a dramatic decrease in AKT- and a smaller but robust decrease in ERK1/2 phosphorylation. This suggest that lipid rafts may be important to effectively connect the EGFR with downstream proteins to facilitate signaling. Our data implies that cholesterol depletion of the plasma membrane affect the signaling of EGFR and PDGFRβ differently.
Collapse
Affiliation(s)
- Erik Wåhlén
- Department of Pharmaceutical Biosciences, Uppsala University, Husarg 3, SE-75124, Uppsala, Sweden
| | - Frida Olsson
- Department of Pharmaceutical Biosciences, Uppsala University, Husarg 3, SE-75124, Uppsala, Sweden
| | - Doroteya Raykova
- Department of Pharmaceutical Biosciences, Uppsala University, Husarg 3, SE-75124, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Husarg 3, SE-75124, Uppsala, Sweden
| | - Johan Heldin
- Department of Pharmaceutical Biosciences, Uppsala University, Husarg 3, SE-75124, Uppsala, Sweden.
| | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Uppsala University, Husarg 3, SE-75124, Uppsala, Sweden
| |
Collapse
|
11
|
Jones ME, Büchler J, Dufor T, Palomer E, Teo S, Martin-Flores N, Boroviak K, Metzakopian E, Gibb A, Salinas PC. A genetic variant of the Wnt receptor LRP6 accelerates synapse degeneration during aging and in Alzheimer's disease. SCIENCE ADVANCES 2023; 9:eabo7421. [PMID: 36638182 PMCID: PMC10624429 DOI: 10.1126/sciadv.abo7421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Synapse loss strongly correlates with cognitive decline in Alzheimer's disease (AD), but the underlying mechanisms are poorly understood. Deficient Wnt signaling contributes to synapse dysfunction and loss in AD. Consistently, a variant of the LRP6 receptor, (LRP6-Val), with reduced Wnt signaling, is linked to late-onset AD. However, the impact of LRP6-Val on the healthy and AD brain has not been examined. Knock-in mice, generated by gene editing, carrying this Lrp6 variant develop normally. However, neurons from Lrp6-val mice do not respond to Wnt7a, a ligand that promotes synaptic assembly through the Frizzled-5 receptor. Wnt7a stimulates the formation of the low-density lipoprotein receptor-related protein 6 (LRP6)-Frizzled-5 complex but not if LRP6-Val is present. Lrp6-val mice exhibit structural and functional synaptic defects that become pronounced with age. Lrp6-val mice present exacerbated synapse loss around plaques when crossed to the NL-G-F AD model. Our findings uncover a previously unidentified role for Lrp6-val in synapse vulnerability during aging and AD.
Collapse
Affiliation(s)
- Megan E. Jones
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Johanna Büchler
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ernest Palomer
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Samuel Teo
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Martin-Flores
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Katharina Boroviak
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0AH, UK
| | - Alasdair Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP. Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 2023; 75:1-34. [PMID: 36757898 PMCID: PMC9832379 DOI: 10.1124/pharmrev.120.000180] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Jochen M Schwenk
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Debbie L Hay
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| |
Collapse
|
13
|
King BC, Blom AM. Intracellular complement: Evidence, definitions, controversies, and solutions. Immunol Rev 2023; 313:104-119. [PMID: 36100972 PMCID: PMC10086947 DOI: 10.1111/imr.13135] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The term "intracellular complement" has been introduced recently as an umbrella term to distinguish functions of complement proteins that take place intracellularly, rather than in the extracellular environment. However, this rather undefined term leaves some confusion as to the classification of what intracellular complement really is, and as to which intracellular compartment(s) it should refer to. In this review, we will describe the evidence for both canonical and non-canonical functions of intracellular complement proteins, as well as the current controversies and unanswered questions as to the nature of the intracellular complement. We also suggest new terms to facilitate the accurate description and discussion of specific forms of intracellular complement and call for future experiments that will be required to provide more definitive evidence and a better understanding of the mechanisms of intracellular complement activity.
Collapse
Affiliation(s)
- Ben C King
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
14
|
PCNA regulates primary metabolism by scaffolding metabolic enzymes. Oncogene 2023; 42:613-624. [PMID: 36564470 PMCID: PMC9937922 DOI: 10.1038/s41388-022-02579-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The essential roles of proliferating cell nuclear antigen (PCNA) as a scaffold protein in DNA replication and repair are well established, while its cytosolic roles are less explored. Two metabolic enzymes, alpha-enolase (ENO1) and 6-phosphogluconate dehydrogenase (6PGD), both contain PCNA interacting motifs. Mutation of the PCNA interacting motif APIM in ENO1 (F423A) impaired its binding to PCNA and resulted in reduced cellular levels of ENO1 protein, reduced growth rate, reduced glucose consumption, and reduced activation of AKT. Metabolome and signalome analysis reveal large consequences of impairing the direct interaction between PCNA and ENO1. Metabolites above ENO1 in glycolysis accumulated while lower glycolytic and TCA cycle metabolite pools decreased in the APIM-mutated cells; however, their overall energetic status were similar to parental cells. Treating haematological cancer cells or activated primary monocytes with a PCNA targeting peptide drug containing APIM (ATX-101) also lead to a metabolic shift characterized by reduced glycolytic rate. In addition, we show that ATX-101 treatments reduced the ENO1 - PCNA interaction, the ENO1, GAPDH and 6PGD protein levels, as well as the 6PGD activity. Here we report for the first time that PCNA acts as a scaffold for metabolic enzymes, and thereby act as a direct regulator of primary metabolism.
Collapse
|
15
|
Heinzl N, Koziel K, Maritschnegg E, Berger A, Pechriggl E, Fiegl H, Zeimet AG, Marth C, Zeillinger R, Concin N. A comparison of four technologies for detecting p53 aggregates in ovarian cancer. Front Oncol 2022; 12:976725. [PMID: 36158680 PMCID: PMC9493009 DOI: 10.3389/fonc.2022.976725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor protein p53 is mutated in half of all cancers and has been described to form amyloid-like structures, commonly known from key proteins in neurodegenerative diseases. Still, the clinical relevance of p53 aggregates remains largely unknown, which may be due to the lack of sensitive and specific detection methods. The aim of the present study was to compare the suitability of four different methodologies to specifically detect p53 aggregates: co-immunofluorescence (co-IF), proximity ligation assay (PLA), co-immunoprecipitation (co-IP), and the p53-Seprion-ELISA in cancer cell lines and epithelial ovarian cancer tissue samples. In 7 out of 10 (70%) cell lines, all applied techniques showed concordance. For the analysis of the tissue samples co-IF, co-IP, and p53-Seprion-ELISA were compared, resulting in 100% concordance in 23 out of 30 (76.7%) tissue samples. However, Co-IF lacked specificity as there were samples, which did not show p53 staining but abundant staining of amyloid proteins, highlighting that this method demonstrates that proteins share the same subcellular space, but does not specifically detect p53 aggregates. Overall, the PLA and the p53-Seprion-ELISA are the only two methods that allow the quantitative measurement of p53 aggregates. On the one hand, the PLA represents the ideal method for p53 aggregate detection in FFPE tissue, which is the gold-standard preservation method of clinical samples. On the other hand, when fresh-frozen tissue is available the p53-Seprion-ELISA should be preferred because of the shorter turnaround time and the possibility for high-throughput analysis. These methods may add to the understanding of amyloid-like p53 in cancer and could help stratify patients in future clinical trials targeting p53 aggregation.
Collapse
Affiliation(s)
- Nicole Heinzl
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Koziel
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Elisabeth Maritschnegg
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Astrid Berger
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Elisabeth Pechriggl
- Institute for Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria
| | - Heidi Fiegl
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Alain G. Zeimet
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Christian Marth
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
- *Correspondence: Nicole Concin, ; Robert Zeillinger,
| | - Nicole Concin
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
- *Correspondence: Nicole Concin, ; Robert Zeillinger,
| |
Collapse
|
16
|
Raykova D, Kermpatsou D, Malmqvist T, Harrison PJ, Sander MR, Stiller C, Heldin J, Leino M, Ricardo S, Klemm A, David L, Spjuth O, Vemuri K, Dimberg A, Sundqvist A, Norlin M, Klaesson A, Kampf C, Söderberg O. A method for Boolean analysis of protein interactions at a molecular level. Nat Commun 2022; 13:4755. [PMID: 35963857 PMCID: PMC9375095 DOI: 10.1038/s41467-022-32395-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2022] [Indexed: 12/12/2022] Open
Abstract
Determining the levels of protein-protein interactions is essential for the analysis of signaling within the cell, characterization of mutation effects, protein function and activation in health and disease, among others. Herein, we describe MolBoolean - a method to detect interactions between endogenous proteins in various subcellular compartments, utilizing antibody-DNA conjugates for identification and signal amplification. In contrast to proximity ligation assays, MolBoolean simultaneously indicates the relative abundances of protein A and B not interacting with each other, as well as the pool of A and B proteins that are proximal enough to be considered an AB complex. MolBoolean is applicable both in fixed cells and tissue sections. The specific and quantifiable data that the method generates provide opportunities for both diagnostic use and medical research.
Collapse
Affiliation(s)
- Doroteya Raykova
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden.
| | - Despoina Kermpatsou
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | | | - Philip J Harrison
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Christiane Stiller
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Johan Heldin
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Mattias Leino
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Sara Ricardo
- Faculty of Medicine, University of Porto, Porto, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Anna Klemm
- Vi2, Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Leonor David
- Faculty of Medicine, University of Porto, Porto, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anders Sundqvist
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | - Axel Klaesson
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden
| | | | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Biomedical center, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
17
|
Wåhlén E, Olsson F, Söderberg O, Lennartsson J, Heldin J. Differential impact of lipid raft depletion on platelet-derived growth factor (PDGF)-induced ERK1/2 MAP-kinase, SRC and AKT signaling. Cell Signal 2022; 96:110356. [DOI: 10.1016/j.cellsig.2022.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
|
18
|
Abstract
Proximity ligation assay (PLA), also referred to as Duolink® PLA technology, permits detection of protein-protein interactions in situ (<40 nm distance) at endogenous protein levels. It exploits specific antibodies identifying (either directly or indirectly) the two proteins of interest and takes advantage of specific DNA primers covalently linked to the antibodies. A hybridization step followed by a PCR amplification with fluorescent probes then permits visualization of spots of proximity by fluorescence microscopy.
Collapse
Affiliation(s)
- Muhammad S Alam
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
CXCR4-CCR7 Heterodimerization Is a Driver of Breast Cancer Progression. Life (Basel) 2021; 11:life11101049. [PMID: 34685420 PMCID: PMC8538406 DOI: 10.3390/life11101049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/11/2023] Open
Abstract
Metastatic breast cancer has one of the highest mortality rates among women in western society. Chemokine receptors CXCR4 and CCR7 have been shown to be linked to the metastatic spread of breast cancer, however, their precise function and underlying molecular pathways leading to the acquisition of the pro-metastatic properties remain poorly understood. We demonstrate here that the CXCR4 and CCR7 receptor ligands, CXCL12 and CCL19, cooperatively bind and selectively elicit synergistic signalling responses in invasive breast cancer cell lines as well as primary mammary human tumour cells. Furthermore, for the first time, we have documented the presence of CXCR4-CCR7 heterodimers in advanced primary mammary mouse and human tumours where number of CXCR4-CCR7 complexes directly correlate with the severity of the disease. The functional significance of the CXCR4-CCR7 association was also demonstrated when their forced heterodimerization led to the acquisition of invasive phenotype in non-metastatic breast cancer cells. Taken together, our data establish the CXCR4-CCR7 receptor complex as a new functional unit, which is responsible for the acquisition of breast cancer cell metastatic phenotype and which may serve as a novel biomarker for invasive mammary tumours.
Collapse
|
20
|
Hegazy M, Cohen-Barak E, Koetsier JL, Najor NA, Arvanitis C, Sprecher E, Green KJ, Godsel LM. Proximity Ligation Assay for Detecting Protein-Protein Interactions and Protein Modifications in Cells and Tissues in Situ. ACTA ACUST UNITED AC 2021; 89:e115. [PMID: 33044803 DOI: 10.1002/cpcb.115] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biochemical methods can reveal stable protein-protein interactions occurring within cells, but the ability to observe transient events and to visualize the subcellular localization of protein-protein interactions in cells and tissues in situ provides important additional information. The Proximity Ligation Assay® (PLA) offers the opportunity to visualize the subcellular location of such interactions at endogenous protein levels, provided that the probes that recognize the target proteins are within 40 nm. This sensitive technique not only elucidates protein-protein interactions, but also can reveal post-translational protein modifications. The technique is useful even in cases where material is limited, such as when paraffin-embedded clinical specimens are the only available material, as well as after experimental intervention in 2D and 3D model systems. Here we describe the basic protocol for using the commercially available Proximity Ligation Assay™ materials (Sigma-Aldrich, St. Louis, MO), and incorporate details to aid the researcher in successfully performing the experiments. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Proximity ligation assay Support Protocol 1: Antigen retrieval method for formalin-fixed, paraffin-embedded tissues Support Protocol 2: Creation of custom PLA probes using the Duolink™ In Situ Probemaker Kit when commercially available probes are not suitable Basic Protocol 2: Imaging, quantification, and analysis of PLA signals.
Collapse
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Jennifer L Koetsier
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Nicole A Najor
- Department of Biology, University of Detroit Mercy, Detroit, Michigan
| | - Constadina Arvanitis
- Center for Advanced Microscopy/Nikon Imaging Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa M Godsel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
21
|
Momenbeitollahi N, Cloet T, Li H. Pushing the detection limits: strategies towards highly sensitive optical-based protein detection. Anal Bioanal Chem 2021; 413:5995-6011. [PMID: 34363087 PMCID: PMC8346249 DOI: 10.1007/s00216-021-03566-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
Proteins are one of the main constituents of living cells. Studying the quantities of proteins under physiological and pathological conditions can give valuable insights into health status, since proteins are the functional molecules of life. To be able to detect and quantify low-abundance proteins in biofluids for applications such as early disease diagnostics, sensitive analytical techniques are desired. An example of this application is using proteins as biomarkers for detecting cancer or neurological diseases, which can provide early, lifesaving diagnoses. However, conventional methods for protein detection such as ELISA, mass spectrometry, and western blotting cannot offer enough sensitivity for certain applications. Recent advances in optical-based micro- and nano-biosensors have demonstrated promising results to detect proteins at low quantities down to the single-molecule level, shining lights on their capacities for ultrasensitive disease diagnosis and rare protein detection. However, to date, there is a lack of review articles synthesizing and comparing various optical micro- and nano-sensing methods of enhancing the limits of detections of the antibody-based protein assays. The purpose of this article is to critically review different strategies of improving assay sensitivity using miniaturized biosensors, such as assay miniaturization, improving antibody binding capacity, sample purification, and signal amplification. The pros and cons of different methods are compared, and the future perspectives of this research field are discussed.
Collapse
Affiliation(s)
| | - Teran Cloet
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
22
|
Liu R, Ota K, Iwama E, Yoneshima Y, Tanaka K, Inoue H, Tagawa T, Oda Y, Mori M, Nakanishi Y, Okamoto I. Quantification of HER family dimers by proximity ligation assay and its clinical evaluation in non-small cell lung cancer patients treated with osimertinib. Lung Cancer 2021; 158:156-161. [PMID: 34059353 DOI: 10.1016/j.lungcan.2021.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The epidermal growth factor receptor (EGFR, also known as Her1) is a member of the human epidermal growth factor receptor (HER) family of proteins and a target of tyrosine kinase inhibitors (TKIs) in the treatment of non-small cell lung cancer (NSCLC) positive for activating mutations ofEGFR. Signal transduction by HER family proteins is dependent on their homo- or heterodimerization, but little is known of the relation between the relative proportions of such dimers of Her1 and sensitivity to EGFR-TKIs. We here investigated the feasibility of assessing this relation with the in situ proximity ligation assay (PLA) technique, which is able to detect the interaction of two proteins of interest when they are in close proximity. MATERIALS AND METHODS In situ PLA was applied to detect Her1 homodimers and Her1 heterodimers in NSCLC cell lines and tissue specimens positive for EGFR activating mutations. RESULTS In situ PLA allowed visualization and quantitative assessment of Her1 homodimers as well as of Her1 heterodimers with Her2, Her3, or Her4 not only in NSCLC cell lines but also in NSCLC tissue specimens obtained from various anatomic sites and by different collection methods. Treatment of NSCLC cell lines with EGFR-TKIs resulted in a decrease in the number of Her1 dimers, with the effect on homodimers being greater than that on heterodimers. A high ratio of Her1 heterodimers to homodimers was associated with poor progression-free survival in NSCLC patients treated with osimertinib. CONCLUSION In situ PLA allows the detection of HER family dimers in NSCLC tissue, and quantitative assessment of Her1 homo- and heterodimers may prove informative for prediction of the response of NSCLC patients to EGFR-TKI treatment.
Collapse
Affiliation(s)
- Renpeng Liu
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keiichi Ota
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Eiji Iwama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasuto Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroyuki Inoue
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Respiratory Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoichi Nakanishi
- Kitakyushu City Hospital Organization, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, 802-8561, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
23
|
Yan S, Ahmad KZ, Li S, Warden AR, Su J, Zhang Y, Yu Y, Zhi X, Ding X. Pre-coated interface proximity extension reaction assay enables trace protein detection with single-digit accuracy. Biosens Bioelectron 2021; 183:113211. [PMID: 33857753 DOI: 10.1016/j.bios.2021.113211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022]
Abstract
Advances in trace protein detection contribute to the early diagnosis of diseases and exploration of stem cell development. The pre-coated interface proximity extension reaction (PIPER) assay enables target protein detection at trace levels and was developed based on protein biomarker recognition using sets of three specific antibodies and the extension of antibody-bound nucleic acid chains in proximity, accompanied by amplification and reading of protein signals via real-time quantitative polymerase chain reaction (qPCR). Noise generated in binding reactions and enzymatic steps was decreased by transferring the liquid-liquid reactions onto a liquid-solid interface in glutaraldehyde-treated tubes pre-coated with antibodies. Nucleic acid sequences of oligo-antibody-based probes were designed for extension and qPCR without pre-amplification when binding to a target molecule. As a proof of concept, the PIPER assay was used to profile slight variations in crucial biomarkers, high-sensitivity C-reactive protein, and cardiac troponin I. The detection sensitivity of the assay for the biomarkers was 0.05 pg/mL (1.25 fM) in 10% human serum. In phosphate-buffered saline, the PIPER assay detected fewer than 10 protein molecules per μL. The simple, widely applicable PIPER assay can detect trace protein biomarkers with single-digit accuracy, making it appropriate for the development of clinical hypersensitive protein detection and single-cell protein detection technology.
Collapse
Affiliation(s)
- Sijia Yan
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Khan Zara Ahmad
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Sijie Li
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Antony R Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Youyi Yu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao Zhi
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
24
|
Francés-Soriano L, Leino M, Dos Santos MC, Kovacs D, Borbas KE, Söderberg O, Hildebrandt N. In Situ Rolling Circle Amplification Förster Resonance Energy Transfer (RCA-FRET) for Washing-Free Real-Time Single-Protein Imaging. Anal Chem 2021; 93:1842-1850. [PMID: 33356162 DOI: 10.1021/acs.analchem.0c04828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescence signal enhancement via isothermal nucleic acid amplification is an important approach for sensitive imaging of intra- or extracellular nucleic acid or protein biomarkers. Rolling circle amplification (RCA) is frequently applied for fluorescence in situ imaging but faces limitations concerning multiplexing, dynamic range, and the required multiple washing steps before imaging. Here, we show that Förster resonance energy transfer (FRET) between fluorescent dyes and between lanthanide (Ln) complexes and dyes that hybridize to β-actin-specific RCA products in HaCaT cells can afford washing-free imaging of single β-actin proteins. Proximity-dependent FRET could be monitored directly after or during (real-time monitoring) dye or Ln DNA probe incubation and could efficiently distinguish between photoluminescence from β-actin-specific RCA and DNA probes freely diffusing in solution or nonspecifically attached to cells. Moreover, time-gated FRET imaging with the Ln-dye FRET pairs efficiently suppressed sample autofluorescence and improved the signal-to-background ratio. Our results present an important proof of concept of RCA-FRET imaging with a strong potential to advance in situ RCA toward easier sample preparation, higher-order multiplexing, autofluorescence-free detection, and increased dynamic range by real-time monitoring of in situ RCA.
Collapse
Affiliation(s)
- Laura Francés-Soriano
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France.,Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| | - Mattias Leino
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, 75124 Uppsala, Sweden
| | - Marcelina Cardoso Dos Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| | - Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - K Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, 75124 Uppsala, Sweden
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France.,Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| |
Collapse
|
25
|
Xu L, Duan J, Chen J, Ding S, Cheng W. Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal Chim Acta 2020; 1148:238187. [PMID: 33516384 DOI: 10.1016/j.aca.2020.12.062] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023]
Abstract
Rolling circle amplification (RCA) is an efficient enzymatic isothermal reaction that using circular probe as a template to generate long tandem single-stranded DNA or RNA products under the initiation of short DNA or RNA primers. As a simplified derivative of natural rolling circle replication which synthesizes copies of circular nucleic acids molecules such as plasmids, RCA amplifies the circular template rapidly without thermal cycling and finds various applications in molecular biology. Compared with other amplification strategies, RCA has many obvious advantages. Firstly, because of the strict complementarity required in ligation of a padlock probe, it endows the RCA reaction with high specificity and can even be utilized to distinguish single base mismatches. Secondly, through the introduction of multiple primers, exponential amplification can be achieved easily and leads to a good sensitivity. Thirdly, RCA products can be customized by manipulating circular templates to generate functional nucleic acids such as aptamer, DNAzymes and restriction enzyme sites. Moreover, the RCA has good biocompatibility and is especially suitable for in situ detection. Therefore, RCA has attracted considerable attention as an efficient and potential tool for highly sensitive detection of biomarkers. Herein, we comprehensively introduce the fundamental principles of RCA technology, summarize it from three aspects including initiation mode, amplification mode and signal output mode, and discuss the recent application of RCA-based biosensor in this review.
Collapse
Affiliation(s)
- Lulu Xu
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiaxin Duan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
26
|
Karakostis K, López I, Peña-Balderas AM, Fåhareus R, Olivares-Illana V. Molecular and Biochemical Techniques for Deciphering p53-MDM2 Regulatory Mechanisms. Biomolecules 2020; 11:36. [PMID: 33396576 PMCID: PMC7824699 DOI: 10.3390/biom11010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The p53 and Mouse double minute 2 (MDM2) proteins are hubs in extensive networks of interactions with multiple partners and functions. Intrinsically disordered regions help to adopt function-specific structural conformations in response to ligand binding and post-translational modifications. Different techniques have been used to dissect interactions of the p53-MDM2 pathway, in vitro, in vivo, and in situ each having its own advantages and disadvantages. This review uses the p53-MDM2 to show how different techniques can be employed, illustrating how a combination of in vitro and in vivo techniques is highly recommended to study the spatio-temporal location and dynamics of interactions, and to address their regulation mechanisms and functions. By using well-established techniques in combination with more recent advances, it is possible to rapidly decipher complex mechanisms, such as the p53 regulatory pathway, and to demonstrate how protein and nucleotide ligands in combination with post-translational modifications, result in inter-allosteric and intra-allosteric interactions that govern the activity of the protein complexes and their specific roles in oncogenesis. This promotes elegant therapeutic strategies that exploit protein dynamics to target specific interactions.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France; (K.K.); (R.F.)
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay;
| | - Ana M. Peña-Balderas
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí 78290, Mexico;
| | - Robin Fåhareus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France; (K.K.); (R.F.)
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty Kopec 7, 65653 Brno, Czech Republic
- Department of Medical Biosciences, Building 6M, Umeå University, 90185 Umeå, Sweden
- International Center for Cancer Vaccine Science (ICCVS), University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí 78290, Mexico;
| |
Collapse
|
27
|
Abstract
Vimentin is one of the first cytoplasmic intermediate filaments to be expressed in mammalian cells during embryogenesis, but its role in cellular fitness has long been a mystery. Vimentin is acknowledged to play a role in cell stiffness, cell motility, and cytoplasmic organization, yet it is widely considered to be dispensable for cellular function and organismal development. Here, we show that Vimentin plays a role in cellular stress response in differentiating cells, by recruiting aggregates, stress granules, and RNA-binding proteins, directing their elimination and asymmetric partitioning. In the absence of Vimentin, pluripotent embryonic stem cells fail to differentiate properly, with a pronounced deficiency in neuronal differentiation. Our results uncover a novel function for Vimentin, with important implications for development, tissue homeostasis, and in particular, stress response.
Collapse
|
28
|
Björkesten J, Patil S, Fredolini C, Lönn P, Landegren U. A multiplex platform for digital measurement of circular DNA reaction products. Nucleic Acids Res 2020; 48:e73. [PMID: 32469060 PMCID: PMC7367203 DOI: 10.1093/nar/gkaa419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/03/2022] Open
Abstract
Digital PCR provides high sensitivity and unprecedented accuracy in DNA quantification, but current approaches require dedicated instrumentation and have limited opportunities for multiplexing. Here, we present an isothermal platform for digital enumeration of DNA reaction products in multiplex via standard fluorescence microscopy. Circular DNA strands, which may result from a wide range of molecular detection reactions, are captured on streptavidin-coated surfaces via hybridized biotinylated primers, followed by rolling circle amplification (RCA). The addition of 15% polyethylene glycol 4000 during RCA resulted in uniform, easily recorded reaction products. Immobilized DNA circles were visualized as RCA products with 100% efficiency, as determined by droplet digital PCR. We confirmed previous reports about the influence on RCA by sequence composition and size of RCA templates, and we developed an efficient one-step restaining procedure for sequential multiplexing using toehold-triggered DNA strand displacement. Finally, we exemplify applications of this digital readout platform by demonstrating more than three orders of magnitude improved sensitivity by digital measurement of prostate specific antigen (PSA) (detection threshold ∼100 pg/l), compared to a commercial enzyme-linked immunosorbent assay (ELISA) with analogue readout (detection threshold ∼500 ng/l), using the same antibody pair.
Collapse
Affiliation(s)
- Johan Björkesten
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Sourabh Patil
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Claudia Fredolini
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Peter Lönn
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Ulf Landegren
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| |
Collapse
|
29
|
Lindskog C, Backman M, Zieba A, Asplund A, Uhlén M, Landegren U, Pontén F. Proximity Ligation Assay as a Tool for Antibody Validation in Human Tissues. J Histochem Cytochem 2020; 68:515-529. [PMID: 32602410 DOI: 10.1369/0022155420936384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Immunohistochemistry (IHC) is the accepted standard for spatial analysis of protein expression in tissues. IHC is widely used for cancer diagnostics and in basic research. The development of new antibodies to proteins with unknown expression patterns has created a demand for thorough validation. We have applied resources from the Human Protein Atlas project and the Antibody Portal at National Cancer Institute to generate protein expression data for 12 proteins across 39 cancer cell lines and 37 normal human tissue types. The outcome of IHC on consecutive sections from both cell and tissue microarrays using two independent antibodies for each protein was compared with in situ proximity ligation (isPLA), where binding by both antibodies is required to generate detection signals. Semi-quantitative scores from IHC and isPLA were compared with expression of the corresponding 12 transcripts across all cell lines and tissue types. Our results show a more consistent correlation between mRNA levels and isPLA as compared to IHC. The main benefits of isPLA include increased detection specificity and decreased unspecific staining compared to IHC. We conclude that implementing isPLA as a complement to IHC for analysis of protein expression and in antibody validation pipelines can lead to more accurate localization of proteins in tissue.
Collapse
Affiliation(s)
- Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Max Backman
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Agata Zieba
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Ticli G, Prosperi E. In Situ Analysis of DNA-Protein Complex Formation upon Radiation-Induced DNA Damage. Int J Mol Sci 2019; 20:ijms20225736. [PMID: 31731696 PMCID: PMC6888283 DOI: 10.3390/ijms20225736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023] Open
Abstract
The importance of determining at the cellular level the formation of DNA–protein complexes after radiation-induced lesions to DNA is outlined by the evidence that such interactions represent one of the first steps of the cellular response to DNA damage. These complexes are formed through recruitment at the sites of the lesion, of proteins deputed to signal the presence of DNA damage, and of DNA repair factors necessary to remove it. Investigating the formation of such complexes has provided, and will probably continue to, relevant information about molecular mechanisms and spatiotemporal dynamics of the processes that constitute the first barrier of cell defense against genome instability and related diseases. In this review, we will summarize and discuss the use of in situ procedures to detect the formation of DNA-protein complexes after radiation-induced DNA damage. This type of analysis provides important information on the spatial localization and temporal resolution of the formation of such complexes, at the single-cell level, allowing the study of heterogeneous cell populations.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luca Cavalli Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luca Cavalli Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy;
- Correspondence:
| |
Collapse
|
31
|
An S, Jeon M, Kennedy EL, Kyoung M. Phase-separated condensates of metabolic complexes in living cells: Purinosome and glucosome. Methods Enzymol 2019; 628:1-17. [PMID: 31668224 DOI: 10.1016/bs.mie.2019.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sequential metabolic enzymes have long been hypothesized to form multienzyme metabolic complexes to regulate metabolic flux in cells. Although in vitro biochemistry has not been fruitful to support the hypothesis, advanced biophysical technologies have successfully resurrected the hypothesis with compelling experimental evidence. As biochemistry has always evolved along with technological advancement over the century (e.g., recombinant protein expression, site-directed mutagenesis, advanced spectroscopy and structural biology techniques, etc.), there has been growing interest in advanced imaging-based biophysical methods to explore enzymes inside living cells. In this work, we describe how we visualize two phase-separated biomolecular condensates of multienzyme metabolic complexes that are associated with de novo purine biosynthesis and glucose metabolism in living human cells and how imaging-based data are quantitatively analyzed to advance our knowledge of enzymes and their assemblies in living cells. Therefore, we envision that the framework we describe here would be the starting point to investigate other metabolic enzymes and their assemblies in various cell types with an unprecedented potential to comprehend enzymes and their network in native habitats.
Collapse
Affiliation(s)
- Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD, United States.
| | - Miji Jeon
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD, United States
| | - Erin L Kennedy
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD, United States
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD, United States.
| |
Collapse
|