1
|
Twomey JD, George S, Zhang B. Fc gamma receptor polymorphisms in antibody therapy: implications for bioassay development to enhance product quality. Antib Ther 2025; 8:87-98. [PMID: 40177643 PMCID: PMC11959696 DOI: 10.1093/abt/tbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 04/05/2025] Open
Abstract
The effectiveness of therapeutic antibodies is often associated with their Fc-mediated effector functions, such as antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. These functions rely on interactions between Fc gamma receptors (FcγRs) on immune cells and the Fc region of antibodies. Genetic variations in these receptors, known as FcγR polymorphisms, can influence therapeutic outcomes by altering receptor expression levels, affinity, and function. This review examines the impact of FcγR polymorphisms on antibody therapy, emphasizing their role in developing and optimizing functional bioassays to assess product quality. Understanding these polymorphisms is essential for refining bioassays, which are crucial for accurately characterizing antibody products and ensuring consistency in manufacturing processes.
Collapse
Affiliation(s)
- Julianne D Twomey
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Sasha George
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Baolin Zhang
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| |
Collapse
|
2
|
Pozdniakova NV, Lipengolts AA, Skribitsky VA, Shpakova KE, Finogenova YA, Smirnova AV, Shevelev AB, Grigorieva EY. Transplanted Murine Tumours SPECT Imaging with 99mTc Delivered with an Artificial Recombinant Protein. Int J Mol Sci 2024; 25:10197. [PMID: 39337680 PMCID: PMC11432708 DOI: 10.3390/ijms251810197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
99mTc is a well-known radionuclide that is widely used and readily available for SPECT/CT (Single-Photon Emission Computed Tomography) diagnosis. However, commercial isotope carriers are not specific enough to tumours, rapidly clear from the bloodstream, and are not safe. To overcome these limitations, we suggest immunologically compatible recombinant proteins containing a combination of metal binding sites as 99mTc chelators and several different tumour-specific ligands for early detection of tumours. E1b protein containing metal-binding centres and tumour-specific ligands targeting integrin αvβ3 and nucleolin, as well as a short Cys-rich sequence, was artificially constructed. It was produced in E. coli, purified by metal-chelate chromatography, and used to obtain a complex with 99mTc. This was administered intravenously to healthy Balb/C mice at an activity dose of about 80 MBq per mouse, and the biodistribution was studied by SPECT/CT for 24 h. Free sodium 99mTc-pertechnetate at the same dose was used as a reference. The selectivity of 99mTc-E1b and the kinetics of isotope retention in tumours were then investigated in experiments in C57Bl/6 and Balb/C mice with subcutaneously transplanted lung carcinoma (LLC) or mammary adenocarcinoma (Ca755, EMT6, or 4T1). The radionuclide distribution ratio in tumour and adjacent normal tissue (T/N) steadily increased over 24 h, reaching 15.7 ± 4.2 for EMT6, 16.5 ± 3.8 for Ca755, 6.7 ± 4.2 for LLC, and 7.5 ± 3.1 for 4T1.
Collapse
Affiliation(s)
- Natalia V. Pozdniakova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Public Health of the Russian Federation (N.N. Blokhin NMRCO), Kashirskoe Shosse, 23, 115478 Moscow, Russia; (A.A.L.); (V.A.S.); (K.E.S.); (Y.A.F.); (A.V.S.); (E.Y.G.)
- N.I. Vavilov Institute of General Genetics RAS, Gubkina Street, 3, GSP-1, 119991 Moscow, Russia;
| | - Alexey A. Lipengolts
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Public Health of the Russian Federation (N.N. Blokhin NMRCO), Kashirskoe Shosse, 23, 115478 Moscow, Russia; (A.A.L.); (V.A.S.); (K.E.S.); (Y.A.F.); (A.V.S.); (E.Y.G.)
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Kashirskoe Shosse, 31, 115409 Moscow, Russia
| | - Vsevolod A. Skribitsky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Public Health of the Russian Federation (N.N. Blokhin NMRCO), Kashirskoe Shosse, 23, 115478 Moscow, Russia; (A.A.L.); (V.A.S.); (K.E.S.); (Y.A.F.); (A.V.S.); (E.Y.G.)
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Kashirskoe Shosse, 31, 115409 Moscow, Russia
| | - Kristina E. Shpakova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Public Health of the Russian Federation (N.N. Blokhin NMRCO), Kashirskoe Shosse, 23, 115478 Moscow, Russia; (A.A.L.); (V.A.S.); (K.E.S.); (Y.A.F.); (A.V.S.); (E.Y.G.)
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Kashirskoe Shosse, 31, 115409 Moscow, Russia
| | - Yulia A. Finogenova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Public Health of the Russian Federation (N.N. Blokhin NMRCO), Kashirskoe Shosse, 23, 115478 Moscow, Russia; (A.A.L.); (V.A.S.); (K.E.S.); (Y.A.F.); (A.V.S.); (E.Y.G.)
| | - Anna V. Smirnova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Public Health of the Russian Federation (N.N. Blokhin NMRCO), Kashirskoe Shosse, 23, 115478 Moscow, Russia; (A.A.L.); (V.A.S.); (K.E.S.); (Y.A.F.); (A.V.S.); (E.Y.G.)
| | - Alexei B. Shevelev
- N.I. Vavilov Institute of General Genetics RAS, Gubkina Street, 3, GSP-1, 119991 Moscow, Russia;
| | - Elena Y. Grigorieva
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Public Health of the Russian Federation (N.N. Blokhin NMRCO), Kashirskoe Shosse, 23, 115478 Moscow, Russia; (A.A.L.); (V.A.S.); (K.E.S.); (Y.A.F.); (A.V.S.); (E.Y.G.)
| |
Collapse
|
3
|
Maravelez Acosta VA, Crisóstomo Vázquez MDP, Eligio García L, Franco Sandoval LO, Castro Pérez D, Patiño López G, Medina Contreras O, Jiménez Cardoso E. Tumor-Suppressive Cross-Linking of Anti- T. cruzi Antibodies in Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:8307. [PMID: 39125875 PMCID: PMC11313589 DOI: 10.3390/ijms25158307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Parasites have been associated with possible anticancer activity, including Trypanosoma cruzi, which has been linked to inhibiting the growth of solid tumors. To better understand this antitumor effect, we investigated the association of anti-T. cruzi antibodies with B cells of the acute lymphoblastic leukemia (ALL) SUPB15 cell line. The antibodies were generated in rabbits. IgGs were purified by affinity chromatography. Two procedures (flow cytometry (CF) and Western blot(WB)) were employed to recognize anti-T. cruzi antibodies on SUPB15 cells. We also used CF to determine whether the anti-T. cruzi antibodies could suppress SUPB15 cells. The anti-T. cruzi antibodies recognized 35.5% of the surface antigens of SUPB15. The complement-dependent cytotoxicity (CDC) results demonstrate the cross-suppression of anti-T. cruzi antibodies on up to 8.4% of SUPB15 cells. For the WB analysis, a band at 100 kDa with high intensity was sequenced using mass spectrometry, identifying the protein as nucleolin. This protein may play a role in the antitumor effect on T. cruzi. The anti-T. cruzi antibodies represent promising polyclonal antibodies that have the effect of tumor-suppressive cross-linking on cancer cells, which should be further investigated.
Collapse
Affiliation(s)
- Víctor Alberto Maravelez Acosta
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| | - María del Pilar Crisóstomo Vázquez
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| | - Leticia Eligio García
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| | - Luz Ofelia Franco Sandoval
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| | - Denia Castro Pérez
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| | - Genaro Patiño López
- Unidad de Investigación en Inmunología y Proteomica, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico;
| | - Oscar Medina Contreras
- Unidad de Investigación Epidemiologica en Endocrinologia y Nutricion, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico;
| | - Enedina Jiménez Cardoso
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| |
Collapse
|
4
|
Ribeiro R, Moreira JN, Goncalves J. Development of a new affinity maturation protocol for the construction of an internalizing anti-nucleolin antibody library. Sci Rep 2024; 14:10608. [PMID: 38719911 PMCID: PMC11079059 DOI: 10.1038/s41598-024-61230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Over the last decades, monoclonal antibodies have substantially improved the treatment of several conditions. The continuous search for novel therapeutic targets and improvements in antibody's structure, demands for a constant optimization of their development. In this regard, modulation of an antibody's affinity to its target has been largely explored and culminated in the discovery and optimization of a variety of molecules. It involves the creation of antibody libraries and selection against the target of interest. In this work, we aimed at developing a novel protocol to be used for the affinity maturation of an antibody previously developed by our group. An antibody library was constructed using an in vivo random mutagenesis approach that, to our knowledge, has not been used before for antibody development. Then, a cell-based phage display selection protocol was designed to allow the fast and simple screening of antibody clones capable of being internalized by target cells. Next generation sequencing coupled with computer analysis provided an extensive characterization of the created library and post-selection pool, that can be used as a guide for future antibody development. With a single selection step, an enrichment in the mutated antibody library, given by a decrease in almost 50% in sequence diversity, was achieved, and structural information useful in the study of the antibody-target interaction in the future was obtained.
Collapse
Affiliation(s)
- Rita Ribeiro
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal
- Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
| | - João N Moreira
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal.
- Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal.
| | - João Goncalves
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
5
|
Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int J Mol Med 2023; 52:81. [PMID: 37477132 PMCID: PMC10555485 DOI: 10.3892/ijmm.2023.5284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta‑analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell‑based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL‑dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
6
|
Nucleolin Overexpression Predicts Patient Prognosis While Providing a Framework for Targeted Therapeutic Intervention in Lung Cancer. Cancers (Basel) 2022; 14:cancers14092217. [PMID: 35565346 PMCID: PMC9101044 DOI: 10.3390/cancers14092217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Despite the clinical benefit of new anticancer therapies, such as immune checkpoint inhibitors, lung cancer remains the most frequent cause of cancer-related death worldwide, thus supporting the need to develop novel anticancer treatments. Endothelial cells of the tumor-associated vasculature are easily accessible to drugs administered intravenously, besides having greater genetic stability than neoplastic cells and thus lowering the risk of developing drug resistance. In this respect, the identification of alternative targets, and therapeutic strategies, within the tumor vasculature is of high relevance. Accordingly, this work aimed at characterizing nucleolin expression in patient-derived pulmonary carcinomas and further validating nucleolin as a novel target to mediate successful therapeutic interventions against human lung cancers. The highlighted prognostic value of nucleolin points towards the applicability of nucleolin-based targeting strategies against nucleolinhigh pulmonary carcinomas, present in every disease stage, in a clinical trial setting. Abstract Notwithstanding the advances in the treatment of lung cancer with immune checkpoint inhibitors, the high percentage of non-responders supports the development of novel anticancer treatments. Herein, the expression of the onco-target nucleolin in patient-derived pulmonary carcinomas was characterized, along with the assessment of its potential as a therapeutic target. The clinical prognostic value of nucleolin for human pulmonary carcinomas was evaluated through data mining from the Cancer Genome Atlas project and immunohistochemical detection in human samples. Cell surface expression of nucleolin was evaluated by flow cytometry and subcellular fraction Western blotting in lung cancer cell lines. Nucleolin mRNA overexpression correlated with poor overall survival of lung adenocarcinoma cancer patients and further predicted the disease progression of both lung adenocarcinoma and squamous carcinoma. Furthermore, a third of the cases presented extra-nuclear expression, contrasting with the nucleolar pattern in non-malignant tissues. A two- to twelve-fold improvement in cytotoxicity, subsequent to internalization into the lung cancer cell lines of doxorubicin-loaded liposomes functionalized by the nucleolin-binding F3 peptide, was correlated with the nucleolin cell surface levels and the corresponding extent of cell binding. Overall, the results suggested nucleolin overexpression as a poor prognosis predictor and thus a target for therapeutic intervention in lung cancer.
Collapse
|
7
|
Xiong W, Guo Z, Zeng B, Wang T, Zeng X, Cao W, Lian D. Dacarbazine-Loaded Targeted Polymeric Nanoparticles for Enhancing Malignant Melanoma Therapy. Front Bioeng Biotechnol 2022; 10:847901. [PMID: 35252156 PMCID: PMC8892180 DOI: 10.3389/fbioe.2022.847901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Dacarbazine (DTIC) dominates chemotherapy for malignant melanoma (MM). However, the hydrophobicity, photosensitivity, instability, and toxicity to normal cells of DTIC limit its efficacy in treating MM. In the present study, we constructed star-shaped block polymers nanoparticles (NPs) based on Cholic acid -poly (lactide-co-glycolide)-b-polyethylene glycol (CA-PLGA-b-PEG) for DTIC encapsulation and MM targeted therapy. DTIC-loaded CA-PLGA-b-PEG NPs (DTIC-NPs) were employed to increase the drug loading and achieve control release of DTIC, followed by further modification with nucleic acid aptamer AS1411 (DTIC-NPs-Apt), which played an important role for active targeted therapy of MM. In vitro, DTIC-NPs-Apt showed good pH-responsive release and the strongest cytotoxicity to A875 cells compared with DTIC-NPs and free DTIC. In vivo results demonstrated that the versatile DTIC-NPs-Apt can actively target the site of MM and exhibited excellent anti-tumor effects with no obvious side effects. Overall, this research provided multi-functional NPs, which endow a new option for the treatment of MM.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Plastic and Burn Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- *Correspondence: Wei Xiong,
| | - Zhengdong Guo
- Department of Plastic and Burn Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Baoyan Zeng
- Department of Plastic and Burn Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Teng Wang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xiaowei Zeng
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wei Cao
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Daizheng Lian
- Department of Radiation Oncology, Shenzhen People’s Hospital The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Liu J, Hong H, Shi J, Xie Y, Lu Z, Liu Z, Zhou Z, Bian Z, Huang Z, Wu Z. Dinitrophenol-mediated modulation of an anti-PD-L1 VHH for Fc-dependent effector functions and prolonged serum half-life. Eur J Pharm Sci 2021; 165:105941. [PMID: 34256102 DOI: 10.1016/j.ejps.2021.105941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 06/20/2021] [Indexed: 01/11/2023]
Abstract
Single-domain antibodies, VHHs or nanobodies, represent a promising set of alternatives to conventional therapeutic antibodies, gaining substantial attention in the field of cancer immunotherapy. However, inherent drawbacks of nanobodies such as fast clearance from blood circulation and lack of immune effector functions often led to unsatisfactory therapeutic efficacy. We previously reported that dinitrophenyl modification of an anti-EGFR VHH conferred Fc-dependent immune effector functions and elongated serum half-life on it through recruiting of hapten antibodies, resulting in improved immunotherapy efficacy in vivo. In the present work, we further tested the versatility of this approach in the case of an anti-PD-L1 blockade VHH (KN035). Site-specific dinitrophenyl conjugation did not impair the binding capacity of KN035 portion to PD-L1, but indirectly restored its immune effector functions, manifested by the observed antibody dependent cell-mediated cytotoxicity, antibody-dependent cellular phagocytosis and complement-dependent cytotoxicity against PD-L1 positive tumor cells. Significant delay of blood clearance of dinitrophenylated KN035 was evidenced by the prolonged half-life of ca. 22 h. This approach, using small hapten molecule conjugation, loaded additional antibody-mediated tumor killing mechanisms to PD-L1 blockade VHH and therefore improved efficacy is anticipated in the future in vivo therapeutic studies. Thus, our results underscore the power of this versatile approach for achieving desirable properties of VHH-based or similar therapeutics.
Collapse
Affiliation(s)
- Jinlong Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yuntian Xie
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhongkai Lu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhicheng Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zehua Bian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
10
|
Yin J, Chen S, Song Y, Wang H. Fluorescent imaging of cytoplasmic nucleolin in live cells by a functionalized-engineered aptamer. Chem Commun (Camb) 2020; 56:14171-14174. [PMID: 33156312 DOI: 10.1039/d0cc06347a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Monitoring of over-expressed nucleolin in the cytoplasm facilitates early cancer diagnosis. Herein, we present a novel biosensing nanoscaffold based on anti-nucleolin aptamers and polymer-grafted graphene oxides for the fluorescent imaging of nucleolin in the cell cytoplasm, which can distinguish cancer cells from normal cells.
Collapse
Affiliation(s)
- Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | | | | | | |
Collapse
|
11
|
Pesarrodona M, Sánchez-García L, Seras-Franzoso J, Sánchez-Chardi A, Baltá-Foix R, Cámara-Sánchez P, Gener P, Jara JJ, Pulido D, Serna N, Schwartz S, Royo M, Villaverde A, Abasolo I, Vazquez E. Engineering a Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5381-5388. [PMID: 31840972 DOI: 10.1021/acsami.9b15803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Five peptide ligands of four different cell surface receptors (nucleolin, CXCR1, CMKLR1, and CD44v6) have been evaluated as targeting moieties for triple-negative human breast cancers. Among them, the peptide F3, derived from phage display, promotes the fast and efficient internalization of a genetically fused green fluorescent protein (GFP) inside MDA-MB-231 cancer stem cells in a specific receptor-dependent fashion. The further engineering of this protein into the modular construct F3-RK-GFP-H6 and the subsequent construct F3-RK-PE24-H6 resulted in self-assembling polypeptides that organize as discrete and regular nanoparticles. These materials, 15-20 nm in size, show enhanced nucleolin-dependent cell penetrability. We show that the F3-RK-PE24-H6, based on the Pseudomonas aeruginosa exotoxin A (PE24) as a core functional domain, is highly cytotoxic over target cells. The combination of F3, the cationic peptide (RK)n, and the toxin domain PE24 in such unusual presentation appears as a promising approach to cell-targeted drug carriers in breast cancers and addresses selective drug delivery in otherwise difficult-to-treat triple-negative breast cancers.
Collapse
Affiliation(s)
- Mireia Pesarrodona
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | | | | | | | - Patricia Cámara-Sánchez
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Petra Gener
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - José Juan Jara
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Daniel Pulido
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
- Multivalent Systems for Nanomedicine , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Barcelona , 08034 , Spain
| | - Naroa Serna
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Simó Schwartz
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Miriam Royo
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
- Multivalent Systems for Nanomedicine , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Barcelona , 08034 , Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Ibane Abasolo
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Esther Vazquez
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| |
Collapse
|
12
|
Simplified monomeric VHH-Fc antibodies provide new opportunities for passive immunization. Curr Opin Biotechnol 2019; 61:96-101. [PMID: 31810049 DOI: 10.1016/j.copbio.2019.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
Abstract
Simplified monomeric monoclonal antibodies consisting of a single-domain VHH, derived from camelid heavy-chain only antibodies, fused with the Fc domain of either IgG (VHH-IgG) or IgA (VHH-IgA) antibodies, are promising therapeutic proteins. These simplified single-gene encoded antibodies are much easier to manufacture and can be produced in plants and in yeast for bulk applications. These merits enable novel passive immunization applications, such as in-feed oral delivery of VHH-IgAs, which have successfully provided protection against a gastrointestinal infection in the piglet model.
Collapse
|
13
|
Kabirian-Dehkordi S, Chalabi-Dchar M, Mertani HC, Le Guellec D, Verrier B, Diaz JJ, Mehrgardi MA, Bouvet P. AS1411-conjugated gold nanoparticles affect cell proliferation through a mechanism that seems independent of nucleolin. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102060. [PMID: 31336175 DOI: 10.1016/j.nano.2019.102060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
G-rich oligonucleotide, AS1411, has been shown to interact with nucleolin and to inhibit cancer cell proliferation and tumor growth. This antiproliferative action is increased when AS1411 is conjugated to different types of nanoparticles. However, the molecular mechanisms are not known. In this work, we show in several cell lines that optimized AS1411-conjugated gold nanoparticles (GNS-AS1411) inhibit nucleolin expression at the RNA and protein levels. We observed an alteration of the nucleolar structure with a decrease of ribosomal RNA accumulation comparable to what is observed upon nucleolin knock down. However, the expression of genes involved in cell cycle and the cell cycle blockage by GNS-AS1411 are not regulated in the same way as that in cells where nucleolin has been knocked down. These data suggest that the anti-proliferative activity of GNS-AS1411 is not the only consequence of nucleolin targeting and down-regulation.
Collapse
Affiliation(s)
- Samaneh Kabirian-Dehkordi
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre, Léon Bérard, Lyon, France; Department of chemistry, University of Isfahan, Isfahan, Iran
| | - Mounira Chalabi-Dchar
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre, Léon Bérard, Lyon, France
| | - Hichem C Mertani
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre, Léon Bérard, Lyon, France
| | - Dominique Le Guellec
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Université Claude Bernard Lyon 1, Centre, National de la Recherche Scientifique (CNRS), Lyon, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Université Claude Bernard Lyon 1, Centre, National de la Recherche Scientifique (CNRS), Lyon, France
| | - Jean-Jacques Diaz
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre, Léon Bérard, Lyon, France
| | | | - Philippe Bouvet
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre, Léon Bérard, Lyon, France; Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
14
|
Romano S, Fonseca N, Simões S, Gonçalves J, Moreira JN. Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands. Drug Discov Today 2019; 24:1985-2001. [PMID: 31271738 DOI: 10.1016/j.drudis.2019.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/08/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
Abstract
Cancer is currently the second leading cause of death worldwide and current therapeutic approaches remain ineffective in several cases. Therefore, there is a need to develop more efficacious therapeutic agents, especially for subtypes of cancer lacking targeted therapies. Limited drug penetration into tumors impairs the efficacy of therapies targeting cancer cells. One of the strategies to overcome this problem is targeting the more accessible tumor vasculature via molecules such as nucleolin, which is expressed at the surface of cancer and angiogenic endothelial cells, thus enabling a dual cellular targeting strategy. In this review, we present and discuss nucleolin-based targeting strategies that have been developed for cancer therapy, with a special focus on recent antibody-based approaches.
Collapse
Affiliation(s)
- Sofia Romano
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Nuno Fonseca
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; TREAT U, SA, Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal
| | - João Gonçalves
- iMed. ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal.
| |
Collapse
|
15
|
Joo EJ, Wasik BR, Parrish C, Paz H, Mϋhlenhoff M, Abdel-Azim H, Groffen J, Heisterkamp N. Pre-B acute lymphoblastic leukemia expresses cell surface nucleolin as a 9-O-acetylated sialoglycoprotein. Sci Rep 2018; 8:17174. [PMID: 30464179 PMCID: PMC6249323 DOI: 10.1038/s41598-018-33873-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Precursor B acute lymphoblastic leukemias (pre-B ALLs) abnormally express a specific glycan structure, 9-O-acetylated sialic acid (9-O-Ac-Sia), on their cell surface, but glycoproteins that carry this modification have not been identified. Using three different lectins that specifically recognize this structure, we establish that nucleolin (NCL), a protein implicated in cancer, contains 9-O-Ac-Sia. Surprisingly, antibodies against the glycolipid 9-O-Ac-Sia GD3 also detected 9-O-Ac-Sia NCL. NCL is present on the surface of pre-B ALL cells as a sialoglycoprotein that is partly 9-O-acetylated and conversely, 9-O-Ac-Sia-containing structures other than NCL are present on these cells as well. Interestingly, NCL and the 9-O-Ac-Sia signal had less co-localization on normal pre-B cells. We also investigated regulation of NCL on the cell surface and found that sialidase treatment increased the percentage of cells positive for cell surface NCL, suggesting that sialylation of NCL promotes internalization. Treatment of pre-B ALL cells with the chemotherapy drug vincristine also increased the percentage of cells with surface NCL and correlated with increased 9-O-Ac-Sia expression. All tested leukemia cells including primary samples expressed NCL, suggesting it as a possible therapeutic target. We confirmed this by showing inhibition of cell proliferation in some pre-B ALLs by exposure to a NCL-specific aptamer AS1411.
Collapse
Affiliation(s)
- Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, USA
| | - Brian R Wasik
- Department of Microbiology and Immunology, Baker Institute for Animal Health and Feline Health Center, Cornell University, Ithaca, NY, USA
| | - Colin Parrish
- Department of Microbiology and Immunology, Baker Institute for Animal Health and Feline Health Center, Cornell University, Ithaca, NY, USA
| | - Helicia Paz
- Section of Molecular Carcinogenesis, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA
- University of California, Los Angeles, CA, 90095, USA
| | - Martina Mϋhlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - John Groffen
- Section of Molecular Carcinogenesis, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, USA.
- Division of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Zahavi D, AlDeghaither D, O'Connell A, Weiner LM. Enhancing antibody-dependent cell-mediated cytotoxicity: a strategy for improving antibody-based immunotherapy. Antib Ther 2018; 1:7-12. [PMID: 33928217 PMCID: PMC7990127 DOI: 10.1093/abt/tby002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
The targeting of surface antigens expressed on tumor cells by monoclonal antibodies (mAbs) has revolutionized cancer therapeutics. One mechanism of action of antibody-based immunotherapy is the activation of immune effector cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). This review will summarize the process of ADCC, its important role in the efficacy of mAb therapy, how to measure it, and finally future strategies for antibody design that can take advantage of it to improve clinical performance.
Collapse
Affiliation(s)
- David Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Dalal AlDeghaither
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Allison O'Connell
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|