1
|
Wang J, Shi H, Yang Y, Gong X. Crosstalk between ferroptosis and innate immune in diabetic kidney disease: mechanisms and therapeutic implications. Front Immunol 2025; 16:1505794. [PMID: 40092979 PMCID: PMC11906378 DOI: 10.3389/fimmu.2025.1505794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent complication of diabetes mellitus (DM), and its incidence is increasing alongside the number of diabetes cases. Effective treatment and long-term management of DKD present significant challenges; thus, a deeper understanding of its pathogenesis is essential to address this issue. Chronic inflammation and abnormal cell death in the kidney closely associate with DKD development. Recently, there has been considerable attention focused on immune cell infiltration into renal tissues and its inflammatory response's role in disease progression. Concurrently, ferroptosis-a novel form of cell death-has emerged as a critical factor in DKD pathogenesis, leading to increased glomerular filtration permeability, proteinuria, tubular injury, interstitial fibrosis, and other pathological processes. The cardiorenal benefits of SGLT2 inhibitors (SGLT2-i) in DKD patients have been demonstrated through numerous large clinical trials. Moreover, further exploratory experiments indicate these drugs may ameliorate serum and urinary markers of inflammation, such as TNF-α, and inhibit ferroptosis in DKD models. Consequently, investigating the interplay between ferroptosis and innate immune and inflammatory responses in DKD is essential for guiding future drug development. This review presents an overview of ferroptosis within the context of DKD, beginning with its core mechanisms and delving into its potential roles in DKD progression. We will also analyze how aberrant innate immune cells, molecules, and signaling pathways contribute to disease progression. Finally, we discuss the interactions between ferroptosis and immune responses, as well as targeted therapeutic agents, based on current evidence. By analyzing the interplay between ferroptosis and innate immunity alongside its inflammatory responses in DKD, we aim to provide insights for clinical management and drug development in this area.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Geriatric Integrative, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haonan Shi
- School of Medicine, Shanghai University, Shanghai, China
| | - Ye Yang
- Department of Geriatric Integrative, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xueli Gong
- Department of Pathophysiology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Datta S, Rahman MA, Koka S, Boini KM. High mobility group box 1 (HMGB1) mediates nicotine-induced podocyte injury. Front Pharmacol 2025; 15:1540639. [PMID: 39840112 PMCID: PMC11747285 DOI: 10.3389/fphar.2024.1540639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Cigarette smoking is a well-established risk factor for renal dysfunction. Smoking associated with renal damage bears distinct physiological correlations in conditions such as diabetic nephropathy and obesity-induced glomerulopathy. However, the cellular and molecular basis of such an association remains poorly understood. High mobility group box 1(HMGB1) is a highly conserved non-histone chromatin associated protein that largely contributes to the pathogenesis of chronic inflammatory and autoimmune diseases such as sepsis, atherosclerosis, and chronic kidney diseases. Hence, the present study tested whether HMGB1 contributes to nicotine-induced podocyte injury. Methods and Results Biochemical analysis showed that nicotine treatment significantly increased the HMGB1 expression and release compared to vehicle treated podocytes. However, prior treatment with glycyrrhizin (Gly), a HMGB1 binder, abolished the nicotine-induced HMGB1 expression and release in podocytes. Furthermore, immunofluorescent analysis showed that nicotine treatment significantly decreased the expression of podocyte functional proteins- podocin and nephrin as compared to control cells. However, prior treatment with Gly attenuated the nicotine-induced nephrin and podocin reduction. In addition, nicotine treatment significantly increased desmin expression and cell permeability compared to vehicle treated podocytes. However, prior treatment with Gly attenuated the nicotine-induced desmin expression and cell permeability. Mechanistic elucidation revealed that nicotine treatment augmented the expression of toll like receptor 4 (TLR4) and pre-treatment with Gly abolished nicotine induced TLR4 upregulation. Pharmacological inhibition of TLR4 with Resatorvid, a TLR4 specific inhibitor, also attenuated nicotine induced podocyte damage. Conclusion HMGB1 is one of the important mediators of nicotine-induced podocyte injury through TLR4 activation.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX, United States
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
Myette RL, Trentin-Sonoda M, Landry C, Holterman CE, Lin T, Burger D, Kennedy CR. Damage-Associated Molecular Patterns and Pattern Recognition Receptors in the Podocyte. J Am Soc Nephrol 2025; 36:136-143. [PMID: 39331471 PMCID: PMC11706563 DOI: 10.1681/asn.0000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
Podocytes possess immune system components allowing for a variety of innate responses to endogenous and exogenous stimuli. Recently, several groups have linked inappropriate innate immune signaling to podocyte injury, particularly chronic, sustained injury; however, the immune capabilities of podocytes have not been fully elucidated. Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from damaged cells, including podocytes, and can elicit an inflammatory response and recruit immune cells to areas of injury. This is performed through binding to pattern recognition receptors. Believed largely to be protective and responsive to injury or infection, recent evidence suggests signaling through DAMP pathways can aggravate and promote chronic diseases already associated with inflammation. The purpose of this narrative review was to highlight current knowledge with respect to specific podocyte DAMPs and pattern recognition receptors and to provide insight into ongoing work and possible future research avenues to advance our understanding of podocyte immune mechanisms.
Collapse
Affiliation(s)
- Robert L. Myette
- Division of Pediatric Nephrology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mayra Trentin-Sonoda
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Chloé Landry
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chet E. Holterman
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Tony Lin
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Burger
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher R.J. Kennedy
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Long W, Wang X, Lu L, Wei Z, Yang J. Development of a predictive model for the risk of microalbuminuria: comparison of 2 machine learning algorithms. J Diabetes Metab Disord 2024; 23:1899-1908. [PMID: 39610509 PMCID: PMC11599703 DOI: 10.1007/s40200-024-01440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/01/2024] [Indexed: 11/30/2024]
Abstract
Purpose To identify the independent risk variables that contribute to the emergence of microalbuminuria(MAU) in type 2 diabetes mellitus(T2DM), to develop two different prediction models, and to show the order of importance of the factors in the better prediction model combined with a SHAP(Shapley Additive exPlanations) plot. Methods Retrospective analysis of data from 981 patients with T2DM from March 2021 to March 2023. This dataset included socio-demographic characteristics, disease attributes, and clinical biochemical indicators. After preprocessing and variable screening, the dataset was randomly divided into training and testing sets at a 7:3 ratio. To address class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was applied to balance the training set. Subsequently, prediction models for MAU were constructed using two algorithms: Random Forest and BP neural network. The performance of these models was evaluated using k-fold cross-validation (k = 5), and metrics such as the area under the ROC curve (AUC), accuracy, precision, recall, specificity, and F1 score were utilized for assessment. Results The final variables selected through multifactorial logistic regression analysis were age, BMI, stroke, diabetic retinopathy(DR), diabetic peripheral vascular disease (DPVD), 25 hydroxyvitamin D (25(OH)D), LDL cholesterol, neutrophil-to-lymphocyte ratio (NLR), and glycated haemoglobin (HbA1c) were used to construct the risk prediction models of Random Forest and BP neural network, respectively, and the Random Forest model demonstrated superior overall performance (AUC = 0.87, Accuracy = 0.80, Precision = 0.79, Recall = 0.84, Specificity = 0.76, F1 Score = 0.81). The SHAP feature matrix plot revealed that HbA1c, NLR, and 25(OH)D were the three most significant factors in predicting the development of MAU in T2DM, with 25(OH)D acting as an independent protective factor. Conclusion Effective identification of MAU in T2DM, therapeutic strategies for controllable high-risk factors, and prevention or delay of diabetic kidney disease(DKD) can all be achieved with the help of the risk prediction model developed in this study.
Collapse
Affiliation(s)
- Wenyan Long
- The Affiliated Hospital of Zunyi Medical University, Zunyi, 563099 China
| | - Xiaohua Wang
- The Affiliated Hospital of Zunyi Medical University, Zunyi, 563099 China
- School of Medical Information Engineering, ZunyiMedical University, Zunyi, 563006 China
| | - Liqin Lu
- The Affiliated Hospital of Zunyi Medical University, Zunyi, 563099 China
| | - Zhengang Wei
- The Affiliated Hospital of Zunyi Medical University, Zunyi, 563099 China
| | - Jijin Yang
- The Affiliated Hospital of Zunyi Medical University, Zunyi, 563099 China
| |
Collapse
|
5
|
Datta S, Rahman MA, Koka S, Boini KM. High Mobility Group Box 1 (HMGB1): Molecular Signaling and Potential Therapeutic Strategies. Cells 2024; 13:1946. [PMID: 39682695 PMCID: PMC11639863 DOI: 10.3390/cells13231946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone protein in the nucleus and as an inducer of inflammatory cytokines upon extracellular release. Pathophysiological insights reveal that HMGB1 plays a significant role in the onset and progression of a vast array of diseases, viz., atherosclerosis, kidney damage, cancer, and neurodegeneration. However, a clear mechanistic understanding of HMGB1 release, translocation, and associated signaling cascades in mediating such physiological dysfunctions remains obscure. This review presents a detailed outline of HMGB1 structure-function relationship and its regulatory role in disease onset and progression from a signaling perspective. This review also presents an insight into the status of HMGB1 druggability, potential limitations in understanding HMGB1 pathophysiology, and future perspective of studies that can be undertaken to address the existing scientific gap. Based on existing paradigm of various studies, HMGB1 is a critical regulator of inflammatory cascades and drives the onset and progression of a broad spectrum of dysfunctions. Studies focusing on HMGB1 druggability have enabled the development of biologics with potential clinical benefits. However, deeper understanding of post-translational modifications, redox states, translocation mechanisms, and mitochondrial interactions can potentially enable the development of better courses of therapy against HMGB1-mediated physiological dysfunctions.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA;
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Xu YY, Chen T, Ding H, Chen Q, Fan QL. Melatonin inhibits circadian gene DEC1 and TLR2/MyD88/NF-κB signaling pathway to alleviate renal injury in type 2 diabetic mice. Acta Diabetol 2024; 61:1455-1474. [PMID: 38896283 DOI: 10.1007/s00592-024-02312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Diabetic Kidney Disease (DKD) is a complex disease associated with circadian rhythm and biological clock regulation disorders. Melatonin (MT) is considered a hormone with renal protective effects, but its mechanism of action in DKD is unclear. METHODS We used the GSE151325 dataset from the GEO database for differential gene analysis and further explored related genes and pathways through GO and KEGG analysis and PPI network analysis. Additionally, this study used a type 2 diabetes db/db mouse model and investigated the role of melatonin in DKD and its relationship with clock genes through immunohistochemistry, Western blot, real-time PCR, ELISA, chromatin immunoprecipitation (ChIP), dual-luciferase reporter technology, and liposome transfection technology to study DEC1 siRNA. RESULTS Bioinformatics analysis revealed the central position of clock genes such as CLOCK, DEC1, Bhlhe41, CRY1, and RORB in DKD. Their interaction with key inflammatory regulators may reveal melatonin's potential mechanism in treating diabetic kidney disease. Further experimental results showed that melatonin significantly improved the renal pathological changes in db/db mice, reduced body weight and blood sugar, regulated clock genes in renal tissue, and downregulated the TLR2/MyD88/NF-κB signaling pathway. We found that the transcription factor DEC1 can bind to the TLR2 promoter and activate its transcription, while CLOCK's effect is unclear. Liposome transfection experiments further confirmed the effect of DEC1 on the TLR2/MyD88/NF-κB signaling pathway. CONCLUSION Melatonin shows significant renal protective effects by regulating clock genes and downregulating the TLR2/MyD88/NF-κB signaling pathway. The transcription factor DEC1 may become a key regulatory factor for renal inflammation and fibrosis by activating TLR2 promoter transcription. These findings provide new perspectives and directions for the potential application of melatonin in DKD treatment.
Collapse
Affiliation(s)
- Yan-Yan Xu
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Tong Chen
- Department of Nephrology, Shenyang Seventh People's Hospital, Shenyang, China
| | - Hong Ding
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Qiong Chen
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China.
| | - Qiu-Ling Fan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China.
| |
Collapse
|
7
|
Dash UK, Mazumdar D, Singh S. High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8188-8205. [PMID: 38478143 DOI: 10.1007/s12035-024-04081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
HMGB (high mobility group B) is one of the ubiquitous non-histone nuclear protein superfamilies that make up the HMG (high mobility group) protein group. HMGB1 is involved in a variety of physiological and pathological processes in the human body, including a structural role in the cell nucleus as well as replication, repair, DNA transcription, and assembly of nuclear proteins. It functions as a signaling regulator in the cytoplasm and a pro-inflammatory cytokine in the extracellular environment. Among several studies, HMGB1 protein is also emerging as a crucial factor involved in the development and progression of diabetic encephalopathy (DE) along with other factors such as hyperglycaemia-induced oxidative and nitrosative stress. Diabetes' chronic side effect is DE, which manifests as cognitive and psychoneurological dysfunction. The HMGB1 is released outside to the extracellular medium in diabetes condition through active or passive routes, where it functions as a damage-associated molecular pattern (DAMP) molecule to activate several signaling pathways by interacting with receptors for advanced glycosylation end-products (RAGE)/toll like receptors (TLR). HMGB1 reportedly activates inflammatory pathways, disrupts the blood-brain barrier, causes glutamate toxicity and oxidative stress, and promotes neuroinflammation, contributing to the development of cognitive impairment and neuronal damage which is suggestive of the involvement of HMGB1 in the enhancement of the diabetes-induced encephalopathic condition. Additionally, HMGB1 is reported to induce insulin resistance, further exacerbating the metabolic dysfunction associated with diabetes mellitus (DM). Thus, the present review explores the possible pathways associated with DM-induced hyperactivation of HMGB1 ultimately leading to DE.
Collapse
Affiliation(s)
- Udit Kumar Dash
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
8
|
姜 一, 李 小, 耿 嘉, 陈 永, 唐 碧, 康 品. [Quercetin ameliorates diabetic kidney injury in rats by inhibiting the HMGB1/RAGE/NF-κB signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1769-1775. [PMID: 39505345 PMCID: PMC11744097 DOI: 10.12122/j.issn.1673-4254.2024.09.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 11/08/2024]
Abstract
OBJECTIVE To explore the effect of quercetin on renal inflammation and cell apoptosis in diabetic rats and its possible mechanisms. METHODS Twenty-four adult male SD rats were randomized equally into normal control group, high-glucose and high-fat feeding group, streptozotocin (STZ) -induced diabetic model group, and quercetin treatment (daily dose 100 mg/kg) group. Pathological changes of the renal tissues of the rats were observed with HE staining, serum inflammatory factor levels were determined with ELISA, and renal expression of NF‑κB was observed by immunohistochemistry. Fast blood glucose (FBG), serum levels of triglyceride (TG), BUN, and Scr, and 24-h urine protein content of the rats were measured, and renal expressions of HMGB1, RAGE, NF‑κB, Bax, Bcl-2, and caspase-3 were detected with Western blotting. RESULTS The diabetic rats showed significantly increased levels of FBG, TG, BUN, and Scr, renal hypertrophy index, 24-h urinary protein content, serum IL-1β, IL-6 and TNF-α levels and renal expressions HMGB1, RAGE, NF‑κB, Bax, and caspase-3 with decreased renal expression of Bcl-2. All these changes were significantly alleviated by quercetin treatment of the rats. CONCLUSION Quercetin can ameliorate kidney injury in diabetic rats possibly by inhibiting the HMGB1/RAGE/NF-κB inflammatory signaling pathway to reduce renal inflammation and renal cell apoptosis.
Collapse
Affiliation(s)
- 一凡 姜
- 蚌埠医科大学临床医学院临床医学专业,安徽 蚌埠 233000School of Clinical Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 小荣 李
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 嘉逸 耿
- 蚌埠医科大学精神卫生学院精神医学专业,安徽 蚌埠 233000School of Psychiatric Medicine, School of Mental Health, Bengbu Medical University, Bengbu 233000, China
| | - 永锋 陈
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 碧 唐
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 品方 康
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Preclinical and Clinical Research of Cardiovascular and cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
9
|
Ngcobo NN, Sibiya NH. The role of high mobility group box-1 on the development of diabetes complications: A plausible pharmacological target. Diab Vasc Dis Res 2024; 21:14791641241271949. [PMID: 39271468 PMCID: PMC11406611 DOI: 10.1177/14791641241271949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diabetes mellitus has emerged as a pressing global concern, with a notable increase in recent years. Despite advancements in treatment, existing medications struggle to halt the progression of diabetes and its associated complications. Increasing evidence underscores inflammation as a significant driver in the onset of diabetes mellitus. Therefore, perspectives on new therapies must consider shifting focus from metabolic stress to inflammation. High mobility group box (HMGB-1), a nuclear protein regulating gene expression, gained attention as an endogenous danger signal capable of sparking inflammatory responses upon release into the extracellular environment in the late 1990s. PURPOSE Given the parallels between inflammatory responses and type 2 diabetes (T2D) development, this review paper explores HMGB-1's potential involvement in onset and progression of diabetes complications. Specifically, we will review and update the understanding of HMGB-1 and its inflammatory pathways in insulin resistance, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. CONCLUSIONS HMGB-1 and its receptors i.e. receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) present promising targets for antidiabetic interventions. Ongoing and future projects in this realm hold promise for innovative approaches targeting HMGB-1-mediated inflammation to ameliorate diabetes and its complications.
Collapse
Affiliation(s)
- Nokwanda N Ngcobo
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo H Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
10
|
Das S, Devi Rajeswari V, Venkatraman G, Elumalai R, Dhanasekaran S, Ramanathan G. Current updates on metabolites and its interlinked pathways as biomarkers for diabetic kidney disease: A systematic review. Transl Res 2024; 265:71-87. [PMID: 37952771 DOI: 10.1016/j.trsl.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) that poses a serious risk as it can lead to end-stage renal disease (ESRD). DKD is linked to changes in the diversity, composition, and functionality of the microbiota present in the gastrointestinal tract. The interplay between the gut microbiota and the host organism is primarily facilitated by metabolites generated by microbial metabolic processes from both dietary substrates and endogenous host compounds. The production of numerous metabolites by the gut microbiota is a crucial factor in the pathogenesis of DKD. However, a comprehensive understanding of the precise mechanisms by which gut microbiota and its metabolites contribute to the onset and progression of DKD remains incomplete. This review will provide a summary of the current scenario of metabolites in DKD and the impact of these metabolites on DKD progression. We will discuss in detail the primary and gut-derived metabolites in DKD, and the mechanisms of the metabolites involved in DKD progression. Further, we will address the importance of metabolomics in helping identify potential DKD markers. Furthermore, the possible therapeutic interventions and research gaps will be highlighted.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - V Devi Rajeswari
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ganesh Venkatraman
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramprasad Elumalai
- Department of Nephrology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat 382426, India
| | - Gnanasambandan Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
11
|
Peng R, Zuo S, Li X, Huang Y, Chen S, Zou X, Long H, Chen M, Yang Y, Yuan H, Zhao Q, Guo B, Liu L. Investigating HMGB1 as a potential serum biomarker for early diabetic nephropathy monitoring by quantitative proteomics. iScience 2024; 27:108834. [PMID: 38303703 PMCID: PMC10830865 DOI: 10.1016/j.isci.2024.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Current diagnostic methods for diabetic nephropathy (DN) lack precision, especially in early stages and monitoring progression. This study aims to find potential biomarkers for DN progression and evaluate their accuracy. Using serum samples from healthy controls (NC), diabetic patients (DM), early-medium stage DN (DN-EM), and late-stage DN (DN-L), researchers employed quantitative proteomics and Mfuzz clustering analysis revealed 15 proteins showing increased expression during DN progression, hinting at their biomarker potential. Combining Mfuzz clustering with weighted gene co-expression network analysis (WGCNA) highlighted five candidates (HMGB1, CD44, FBLN1, PTPRG, and ADAMTSL4). HMGB1 emerged as a promising biomarker, closely correlated with renal function changes. Experimental validation supported HMGB1's upregulation under high glucose conditions, reinforcing its potential as an early detection biomarker for DN. This research advances DN understanding and identifies five potential biomarkers, notably HMGB1, as a promising early monitoring target. These findings set the stage for future clinical diagnostic applications in DN.
Collapse
Affiliation(s)
- Rui Peng
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China
- Guizhou Precision Medicine Institute, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Siyang Zuo
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China
- Guizhou Precision Medicine Institute, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Xia Li
- Guizhou Precision Medicine Institute, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Center for Clinical Medical Research, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yun Huang
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Siyu Chen
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China
- Guizhou Precision Medicine Institute, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Xue Zou
- Center for Clinical Medical Research, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Hehua Long
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China
- Guizhou Precision Medicine Institute, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Min Chen
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China
- Guizhou Precision Medicine Institute, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yuan Yang
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China
- Guizhou Precision Medicine Institute, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Huixiong Yuan
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China
- Guizhou Precision Medicine Institute, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Qingqing Zhao
- Center for Clinical Medical Research, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, China
- Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Lirong Liu
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China
- Guizhou Precision Medicine Institute, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
12
|
Li D, Yuan S, Deng Y. Interference in the nutrient-sensing and inflammatory signaling pathways by renal autophagy activation in mice with late stage diabetic nephropathy. Int Urol Nephrol 2024; 56:303-311. [PMID: 37355515 DOI: 10.1007/s11255-023-03687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
PURPOSE Disturbance in metabolism and inflammation are the main causes of kidney injury in patients with late stage diabetic nephropathy (DN). Here, we explored whether autophagy was activated in mice with late stage DN and whether it was associated with disturbance in metabolism and inflammation. METHODS In total, mice were divided into the control group (db/m) and DN group (db/db). Mice were raised for 7 months, and their biochemical indices were measured. Subsequently, their kidneys were collected to detect autophagy and the related nutrient-sensing and inflammatory signaling pathways in late stage DN. RESULTS The expression levels of autophagy markers LC3-I and LC3-II were significantly increased in mice with late stage DN, whereas that of autophagy flux marker P62 was significantly decreased, indicating activation of autophagy. Concurrently, mechanistic target of rapamycin was highly expressed as a cellular nutrient-sensing and energy regulator in mice with late stage DN. Additionally, the expression levels of markers of nutrient-sensing signaling pathways adenosine monophosphate-activated protein kinase (AMPK) were increased markedly in mice with late stage DN. Additionally, the expression levels of the marker of nutrient-sensing signaling pathways silent information regulator T1 (SIRT1), the marker of inflammatory signaling pathways high mobility group box protein 1 (HMGB1), and interferon regulatory factor 3 (IRF3) were significantly increased in mice with late stage DN. CONCLUSIONS The findings of our study indicate that autophagy activation in late stage DN may interfere with nutrient-sensing and inflammatory signaling pathways involving AMPK, SIRT1, HMGB1, and IRF3.
Collapse
Affiliation(s)
- Delun Li
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Siyu Yuan
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
13
|
Ren H, Huang M, Ou L, Deng X, Wu X, Gong Q, Liu B. Autophagy inhibitor 3-methyladenine attenuates renal injury in streptozotocin-induced diabetic mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:793-800. [PMID: 38800022 PMCID: PMC11127078 DOI: 10.22038/ijbms.2024.71378.15518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 11/13/2023] [Indexed: 05/29/2024]
Abstract
Objectives To investigate whether 3-methyladenine (3-MA) can protect the kidney of streptozotocin (STZ) - induced diabetes mice, and explore its possible mechanism. Materials and Methods STZ was used to induce diabetes in C57BL/6J mice. The mice were divided into normal control group (NC), diabetes group (DM), and diabetes+3-MA intervention group (DM+3-MA). Blood glucose, water consumption, and body weight were recorded weekly. At the end of the 6th week of drug treatment, 24-hour urine was collected. Blood and kidneys were collected for PAS staining to evaluate the degree of renal injury. Sirius red staining was used to assess collagen deposition. Blood urea nitrogen (BUN), serum creatinine, and 24-hour urine albumin were used to evaluate renal function. Western blot was used to detect fibrosis-related protein, inflammatory mediators, high mobility group box 1 (HMGB1)/NF-κB signal pathway molecule, vascular endothelial growth factor (VEGF), and podocin, and immunohistochemistry (IHC) was used to detect the expression and localization of autophagy-related protein and fibronectin. Results Compared with the kidney of normal control mice, the kidney of diabetes control mice was more pale and hypertrophic. Hyperglycemia induces renal autophagy and activates the HMGB1/NF-κB signal pathway, leading to the increase of inflammatory mediators, extracellular matrix (ECM) deposition, and proteinuria in the kidney. In diabetic mice treated with 3-MA, blood glucose decreased, autophagy and HMGB1/NF-κB signaling pathways in the kidneys were inhibited, and proteinuria, renal hypertrophy, inflammation, and fibrosis were improved. Conclusion 3-MA can attenuate renal injury in STZ-induced diabetic mice through inhibition of autophagy and HMGB1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Haiwen Ren
- Department of Clinical Laboratory, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
- Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Mengxin Huang
- Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Liwen Ou
- Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xuan Deng
- Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xin Wu
- Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Quan Gong
- Department of Immunology, Medical School of Yangtze University, Jingzhou 434023, China
- Clinical Molecular Immunology Center, Medical School of Yangtze University, Jingzhou 434023, China
| | - Benju Liu
- Department of Human Anatomy, Medical School of Yangtze University, Jingzhou 434023, China
| |
Collapse
|
14
|
Xu C, Ha X, Yang S, Tian X, Jiang H. Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms. Front Endocrinol (Lausanne) 2023; 14:1232790. [PMID: 37859992 PMCID: PMC10583558 DOI: 10.3389/fendo.2023.1232790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes that can lead to end-stage kidney disease. Despite its significant impact, most research has concentrated on the glomerulus, with little attention paid to the tubulointerstitial region, which accounts for the majority of the kidney volume. DKD's tubulointerstitial lesions are characterized by inflammation, fibrosis, and loss of kidney function, and recent studies indicate that these lesions may occur earlier than glomerular lesions. Evidence has shown that inflammatory mechanisms in the tubulointerstitium play a critical role in the development and progression of these lesions. Apart from the renin-angiotensin-aldosterone blockade, Sodium-Glucose Linked Transporter-2(SGLT-2) inhibitors and new types of mineralocorticoid receptor antagonists have emerged as effective ways to treat DKD. Moreover, researchers have proposed potential targeted therapies, such as inhibiting pro-inflammatory cytokines and modulating T cells and macrophages, among others. These therapies have demonstrated promising results in preclinical studies and clinical trials, suggesting their potential to treat DKD-induced tubulointerstitial lesions effectively. Understanding the immune-inflammatory mechanisms underlying DKD-induced tubulointerstitial lesions and developing targeted therapies could significantly improve the treatment and management of DKD. This review summarizes the latest advances in this field, highlighting the importance of focusing on tubulointerstitial inflammation mechanisms to improve DKD outcomes.
Collapse
Affiliation(s)
- Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaowen Ha
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
15
|
Xu C, Chen Y, Liu Z, Fu X. Hedysarum polybotrys polysaccharide attenuates renal inflammatory infiltration and fibrosis in diabetic mice by inhibiting the HMGB1/RAGE/TLR4 pathway. Exp Ther Med 2023; 26:493. [PMID: 37771649 PMCID: PMC10523352 DOI: 10.3892/etm.2023.12192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/31/2023] [Indexed: 09/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of kidney failure. Previous studies demonstrated the therapeutic potential of Astragalus polysaccharide in treating diabetic nephropathy. Astragalus and Hongqi both come from the leguminous plant Astragalus, but their species and genera are different, belonging to the same family and different genera of traditional Chinese medicinal plants. However, the effects of Hedysarum polybotrys polysaccharide (HPS), a polysaccharide compound from Hongqi, on DKD, including its components and efficacy, have remained elusive. The present study utilized db/db mice as a DKD animal model administered with low (30 mg/kg) and high doses (60 mg/kg) of HPS, in addition to glyburide (7.2 mg/kg). Blood and urine samples were collected from mice and blood glucose, serum creatinine, urinary albumin excretion and urinary β2-microglobulin were measured. In addition, apoptosis and histological changes in kidney tissue were observed using TUNEL and HE staining, respectively, and the secretion and expression of inflammatory factors in kidney tissue were detected using EILSA and reverse transcription-quantitative PCR. Furthermore, we the expression of fibrosis-related proteins and NF-κB signaling pathway proteins was determined using western blot analysis. HPS was found to reduce the blood glucose concentration, serum creatinine levels, urinary albumin excretion rates and urinary β2-microglobulin in a dose-dependent manner. In addition, HPS treatment mitigated apoptosis and pathological damage in the kidney tissues of DKD mice. The expression levels of fibrosis-related proteins fibronectin, α-smooth muscle actin and TGF-β1 were observed to be decreased in kidney tissues of DKD mice following HPS treatment. The secretion levels of inflammatory factors (IL-6, TNF-α and IL-1β) were also reduced in kidney tissues, with high-dose HPS treatment found to be more effective, similar to the effects mediated by the glyburide. Further mechanistic analysis revealed that the therapeutic effects of HPS on DKD mice may be mediated by inhibiting the high mobility group box 1/receptor for advanced glycation end-products/toll-like receptor 4 pathway. In conclusion, the present findings could provide insight for the treatment of DKD.
Collapse
Affiliation(s)
- Changqing Xu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Yanxu Chen
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Zongmei Liu
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 710077, P.R. China
| | - Xiaoyan Fu
- Hyperbaric Oxygen Chamber, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
16
|
Liu T, Li Q, Jin Q, Yang L, Mao H, Qu P, Guo J, Zhang B, Ma F, Wang Y, Peng L, Li P, Zhan Y. Targeting HMGB1: A Potential Therapeutic Strategy for Chronic Kidney Disease. Int J Biol Sci 2023; 19:5020-5035. [PMID: 37781525 PMCID: PMC10539693 DOI: 10.7150/ijbs.87964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
High-mobility group protein box 1 (HMGB1) is a member of a highly conserved high-mobility group protein present in all cell types. HMGB1 plays multiple roles both inside and outside the cell, depending on its subcellular localization, context, and post-translational modifications. HMGB1 is also associated with the progression of various diseases. Particularly, HMGB1 plays a critical role in CKD progression and prognosis. HMGB1 participates in multiple key events in CKD progression by activating downstream signals, including renal inflammation, the onset of persistent fibrosis, renal aging, AKI-to-CKD transition, and important cardiovascular complications. More importantly, HMGB1 plays a distinct role in the chronic pathophysiology of kidney disease, which differs from that in acute lesions. This review describes the regulatory role of HMGB1 in renal homeostasis and summarizes how HMGB1 affects CKD progression and prognosis. Finally, some promising therapeutic strategies for the targeted inhibition of HMGB1 in improving CKD are summarized. Although the application of HMGB1 as a therapeutic target in CKD faces some challenges, a more in-depth understanding of the intracellular and extracellular regulatory mechanisms of HMGB1 that underly the occurrence and progression of CKD might render HMGB1 an attractive therapeutic target for CKD.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Qu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Zhang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Mengstie MA, Seid MA, Gebeyehu NA, Adella GA, Kassie GA, Bayih WA, Gesese MM, Anley DT, Feleke SF, Zemene MA, Dessie AM, Solomon Y, Bantie B, Dejenie TA, Teshome AA, Abebe EC. Ferroptosis in diabetic nephropathy: Mechanisms and therapeutic implications. Metabol Open 2023; 18:100243. [PMID: 37124126 PMCID: PMC10130620 DOI: 10.1016/j.metop.2023.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Diabetic Nephropathy (DN), the most common complication in diabetes mellitus, has been affecting the lives of people diabetic for a long time. Numerous studies have demonstrated the unbreakable connection between ferroptosis and kidney cell damage. Ferroptosis is a type of iron-dependent, non-apoptotic, regulated cell death, characterized by the buildup of intracellular lipid peroxides to lethal levels. Although the role of programmed cell deaths like apoptosis, autophagy, and necroptosis in the pathogenesis of DN has been demonstrated, the implication of ferroptosis in DN was least interrogated. Hence, the main aim of this review was to discuss the current understanding of ferroptosis focusing on its potential mechanisms, its involvement in DN, and emerging therapeutic opportunities.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- Corresponding author.
| | - Mohammed Abdu Seid
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Natnael Atnafu Gebeyehu
- Department of Midwifery, College of Medicine and Health Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Getachew Asmare Adella
- Department of Reproductive Health and Nutrition, School of Public Health, Woliata Sodo University, Sodo, Ethiopia
| | - Gizchew Ambaw Kassie
- Department of Epidemiology and Biostatistics, School of Public Health, Woliata Sodo University, Sodo, Ethiopia
| | - Wubet Alebachew Bayih
- Department of Epidemiology and preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Molalegn Mesele Gesese
- Department of Midwifery, College of Medicine and Health Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Denekew Tenaw Anley
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sefineh Fenta Feleke
- Department of Public Health, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Melkamu Aderajew Zemene
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anteneh Mengist Dessie
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yenealem Solomon
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Berihun Bantie
- Department of Comprehensive Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
18
|
Wang H, Liu D, Zheng B, Yang Y, Qiao Y, Li S, Pan S, Liu Y, Feng Q, Liu Z. Emerging Role of Ferroptosis in Diabetic Kidney Disease: Molecular Mechanisms and Therapeutic Opportunities. Int J Biol Sci 2023; 19:2678-2694. [PMID: 37324941 PMCID: PMC10266077 DOI: 10.7150/ijbs.81892] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common and severe microvascular complications of diabetes mellitus (DM), and has become the leading cause of end-stage renal disease (ESRD) worldwide. Although the exact pathogenic mechanism of DKD is still unclear, programmed cell death has been demonstrated to participate in the occurrence and development of diabetic kidney injury, including ferroptosis. Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, has been identified to play a vital role in the development and therapeutic responses of a variety of kidney diseases, such as acute kidney injury (AKI), renal cell carcinoma and DKD. In the past two years, ferroptosis has been well investigated in DKD patients and animal models, but the specific mechanisms and therapeutic effects have not been fully revealed. Herein, we reviewed the regulatory mechanisms of ferroptosis, summarized the recent findings associated with the involvement of ferroptosis in DKD, and discussed the potential of ferroptosis as a promising target for DKD treatment, thereby providing a valuable reference for basic study and clinical therapy of DKD.
Collapse
Affiliation(s)
- Hui Wang
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Bin Zheng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shiyang Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
19
|
Liu J, Jin Z, Wang X, Jakoš T, Zhu J, Yuan Y. RAGE pathways play an important role in regulation of organ fibrosis. Life Sci 2023; 323:121713. [PMID: 37088412 DOI: 10.1016/j.lfs.2023.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Organ fibrosis is a pathological process of fibroblast activation and excessive deposition of extracellular matrix after persistent tissue injury and therefore is a common endpoint of many organ pathologies. Multiple cellular types and soluble mediators, including chemokines, cytokines and non-peptidic factors, are implicated in fibrogenesis and the remodeling of tissue architecture. The molecular basis of the fibrotic process is complex and consists of closely intertwined signaling networks. Research has strived for a better understanding of these pathological mechanisms to potentially reveal novel therapeutic targets for fibrotic diseases. In light of new knowledge, the receptor for advanced glycation end products (RAGE) emerged as an important candidate for the regulation of a wide variety of cellular functions related to fibrosis, including inflammation, cell proliferation, apoptosis, and angiogenesis. RAGE is a pattern recognition receptor that binds a broad range of ligands such as advanced glycation end products, high mobility group box-1, S-100 calcium-binding protein and amyloid beta protein. Although the link between RAGE and fibrosis has been established, the exact mechanisms need be investigated in further studies. The aim of this review is to collect all available information about the intricate function of RAGE and its signaling cascades in the pathogenesis of fibrotic diseases within different organs. In addition, to the major ligands and signaling pathways, we discuss potential strategies for targeting RAGE in fibrosis. We emphasize the functional links between RAGE, inflammation and fibrosis that may guide further studies and the development of improved therapeutic drugs.
Collapse
Affiliation(s)
- Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Xiaolong Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| |
Collapse
|
20
|
Curran CS, Kopp JB. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front Med (Lausanne) 2022; 9:970423. [PMID: 36017003 PMCID: PMC9395689 DOI: 10.3389/fmed.2022.970423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
The multi-ligand receptor for advanced glycation end-products (RAGE) and its ligands are contributing factors in autoimmunity, cancers, and infectious disease. RAGE activation is increased in chronic kidney disease (CKD) and coronavirus disease 2019 (COVID-19). CKD may increase the risk of COVID-19 severity and may also develop in the form of long COVID. RAGE is expressed in essentially all kidney cell types. Increased production of RAGE isoforms and RAGE ligands during CKD and COVID-19 promotes RAGE activity. The downstream effects include cellular dysfunction, tissue injury, fibrosis, and inflammation, which in turn contribute to a decline in kidney function, hypertension, thrombotic disorders, and cognitive impairment. In this review, we discuss the forms and mechanisms of RAGE and RAGE ligands in the kidney and COVID-19. Because various small molecules antagonize RAGE activity in animal models, targeting RAGE, its co-receptors, or its ligands may offer novel therapeutic approaches to slowing or halting progressive kidney disease, for which current therapies are often inadequate.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
He J, Li Z, Xia P, Shi A, FuChen X, Zhang J, Yu P. Ferroptosis and ferritinophagy in diabetes complications. Mol Metab 2022; 60:101470. [PMID: 35304332 PMCID: PMC8980341 DOI: 10.1016/j.molmet.2022.101470] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND With long-term metabolic malfunction, diabetes can cause serious damage to whole-body tissue and organs, resulting in a variety of complications. Therefore, it is particularly important to further explore the pathogenesis of diabetes complications and develop drugs for prevention and treatment. In recent years, different from apoptosis and necrosis, ferroptosis has been recognized as a new regulatory mode of cell death and involves the regulation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy. Evidence shows that ferroptosis and ferritinophagy play a significant role in the occurrence and development of diabetes complications. SCOPE OF REVIEW we systematically review the current understanding of ferroptosis and ferritinophagy, focusing on their potential mechanisms, connection, and regulation, discuss their involvement in diabetes complications, and consider emerging therapeutic opportunities and the associated challenges with future prospects. MAJOR CONCLUSIONS In summary, ferroptosis and ferritinophagy are worthy targets for the treatment of diabetes complications, but their complete molecular mechanism and pathophysiological process still require further study.
Collapse
Affiliation(s)
- Jiahui He
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK; School of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Xinxi FuChen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 30006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
22
|
Ramasamy R, Shekhtman A, Schmidt AM. The RAGE/DIAPH1 Signaling Axis & Implications for the Pathogenesis of Diabetic Complications. Int J Mol Sci 2022; 23:ijms23094579. [PMID: 35562970 PMCID: PMC9102165 DOI: 10.3390/ijms23094579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence links the RAGE (receptor for advanced glycation end products)/DIAPH1 (Diaphanous 1) signaling axis to the pathogenesis of diabetic complications. RAGE is a multi-ligand receptor and through these ligand-receptor interactions, extensive maladaptive effects are exerted on cell types and tissues targeted for dysfunction in hyperglycemia observed in both type 1 and type 2 diabetes. Recent evidence indicates that RAGE ligands, acting as damage-associated molecular patterns molecules, or DAMPs, through RAGE may impact interferon signaling pathways, specifically through upregulation of IRF7 (interferon regulatory factor 7), thereby heralding and evoking pro-inflammatory effects on vulnerable tissues. Although successful targeting of RAGE in the clinical milieu has, to date, not been met with success, recent approaches to target RAGE intracellular signaling may hold promise to fill this critical gap. This review focuses on recent examples of highlights and updates to the pathobiology of RAGE and DIAPH1 in diabetic complications.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY 12222, USA;
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Correspondence:
| |
Collapse
|
23
|
Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100047. [PMID: 36824160 PMCID: PMC9934479 DOI: 10.1016/j.bbiosy.2022.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022] Open
Abstract
In the diabetic kidneys, morbidities such as accelerated ageing, hypertension and hyperglycaemia create a pro-inflammatory microenvironment characterised by extensive fibrogenesis. Radiological techniques are not yet optimised generating inconsistent and non-reproducible data. The gold standard procedure to assess renal fibrosis is kidney biopsy, followed by histopathological assessment. However, this method is risky, invasive, subjective and examines less than 0.01% of kidney tissue resulting in diagnostic errors. As such, less than 10% of patients undergo kidney biopsy, limiting the accuracy of the current diabetic kidney disease (DKD) staging method. Standard treatments suppress the renin-angiotensin system to control hypertension and use of pharmaceuticals aimed at controlling diabetes have shown promise but can cause hypoglycaemia, diuresis and malnutrition as a result of low caloric intake. New approaches to both diagnosis and treatment are required. Nanoparticles (NPs) are an attractive candidate for managing DKD due to their ability to act as theranostic tools that can carry drugs and enhance image contrast. NP-based point-of-care systems can provide physiological information previously considered unattainable and provide control over the rate and location of drug release. Here we discuss the use of nanotechnology in renal disease, its application to both the treatment and diagnosis of DKD. Finally, we propose a new method of NP-based DKD classification that overcomes the current systems limitations.
Collapse
|
24
|
High Mobility Group Box 1: Biological Functions and Relevance in Oxidative Stress Related Chronic Diseases. Cells 2022; 11:cells11050849. [PMID: 35269471 PMCID: PMC8909428 DOI: 10.3390/cells11050849] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/03/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
In the early 1970s, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and named high-mobility group (HMG) proteins. High-mobility group box 1 (HMGB1) is the most studied HMG protein that detects and coordinates cellular stress response. The biological function of HMGB1 depends on its subcellular localization and expression. It plays a critical role in the nucleus and cytoplasm as DNA chaperone, chromosome gatekeeper, autophagy maintainer, and protector from apoptotic cell death. HMGB1 also functions as an extracellular alarmin acting as a damage-associated molecular pattern molecule (DAMP). Recent findings describe HMGB1 as a sophisticated signal of danger, with a pleiotropic function, which is useful as a clinical biomarker for several disorders. HMGB1 has emerged as a mediator in acute and chronic inflammation. Furthermore, HMGB1 targeting can induce beneficial effects on oxidative stress related diseases. This review focus on HMGB1 redox status, localization, mechanisms of release, binding with receptors, and its activities in different oxidative stress-related chronic diseases. Since a growing number of reports show the key role of HMGB1 in socially relevant pathological conditions, to our knowledge, for the first time, here we analyze the scientific literature, evaluating the number of publications focusing on HMGB1 in humans and animal models, per year, from 2006 to 2021 and the number of records published, yearly, per disease and category (studies on humans and animal models).
Collapse
|
25
|
Liu M, Zhao J. Circular RNAs in Diabetic Nephropathy: Updates and Perspectives. Aging Dis 2022; 13:1365-1380. [PMID: 36186139 PMCID: PMC9466972 DOI: 10.14336/ad.2022.0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Circular RNAs (circRNAs) are widespread endogenous transcripts lacking 5′-caps and 3′-polyadenylation tails. Their closed-loop structure confers exonuclease resistance and extreme stability. CircRNAs play essential roles in various diseases, including diabetes. Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease and is one of the most common complications of diabetes. CircRNAs are key in DN and therefore important for understanding DN pathophysiology and developing new therapeutic strategies. In the present review, we briefly introduce the characteristics and functions of circRNAs and summarize recent discoveries on how circRNAs participate in DN. Based on these advances, we suggest future perspectives for studying circRNAs in DN to improve DN treatment and management.
Collapse
Affiliation(s)
| | - Junli Zhao
- Correspondence should be addressed to: Dr. Junli Zhao, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China. E-mail: .
| |
Collapse
|
26
|
Abstract
Elderly individuals with chronic disorders tend to develop inflammaging, a condition associated with elevated levels of blood inflammatory markers, and increased susceptibility to chronic disease progression. Native and adaptive immunity are both involved in immune system senescence, kidney fibrosis and aging. The innate immune system is characterized by a limited number of receptors, constantly challenged by self and non-self stimuli. Circulating and kidney resident myeloid and lymphoid cells are all equipped with pattern recognition receptors (PRRs). Recent reports on PRRs show kidney overexpression of toll-like receptors (TLRs) in inflammaging autoimmune renal diseases, vasculitis, acute kidney injury and kidney transplant rejection. TLR upregulation leads to proinflammatory cytokine induction, fibrosis, and chronic kidney disease progression. TLR2 blockade in a murine model of renal ischemia reperfusion injury prevented the escape of natural killer cells and neutrophils by inflammaging kidney injury. Tumor necrosis factor-α blockade in endothelial cells with senescence-associated secretory phenotype significantly reduced interleukin-6 release. These findings should encourage experimental and translational clinical trials aimed at modulating renal inflammaging by native immunity blockade.
Collapse
|
27
|
Zglejc-Waszak K, Mukherjee K, Juranek JK. The cross-talk between RAGE and DIAPH1 in neurological complications of diabetes: A review. Eur J Neurosci 2021; 54:5982-5999. [PMID: 34449932 DOI: 10.1111/ejn.15433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023]
Abstract
Neuropathy, or dysfunction of peripheral nerve, is one of the most common neurological manifestation in patients with diabetes mellitus (DM). DM is typically associated with a hyperglycaemic milieu, which promotes non-enzymatic glycation of proteins. Proteins with advanced glycation are known to engage a cell-surface receptor called the receptor for advanced glycation end products (RAGE). Thus, it is reasonable to assume that RAGE and its associated molecule-mediated cellular signalling may contribute to DM-induced symmetrical axonal (length-dependent) neuropathy. Of particular interest is diaphanous related formin 1 (DIAPH1), a cytoskeletal organizing molecule, which interacts with the cytosolic domain of RAGE and whose dysfunction may precipitate axonopathy/neuropathy. Indeed, it has been demonstrated that both RAGE and DIAPH1 are expressed in the motor and sensory fibres of nerve harvested from DM animal models. Although the detailed molecular role of RAGE and DIAPH1 in diabetic neurological complications remains unclear, here we will discuss available evidence of their involvement in peripheral diabetic neuropathy. Specifically, we will discuss how a hyperglycaemic environment is not only likely to elevate advanced glycation end products (ligands of RAGE) and induce a pro-inflammatory environment but also alter signalling via RAGE and DIAPH1. Further, hyperglycaemia may regulate epigenetic mechanisms that interacts with RAGE signalling. We suggest the cumulative effect of hyperglycaemia on RAGE-DIAPH1-mediated signalling may be disruptive to axonal cytoskeletal organization and transport and is therefore likely to play a key role in pathogenesis of diabetic symmetrical axonal neuropathy.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech Roanoke, Roanoke, Virginia, USA
| | - Judyta Karolina Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
28
|
Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021; 22:ijms22168457. [PMID: 34445160 PMCID: PMC8395084 DOI: 10.3390/ijms22168457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Christina Mertens
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Natalie K. Horvat
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Collaboration for Joint PhD Degree between EMBL and the Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| |
Collapse
|
29
|
Su Z, Li Y, Lv H, Cui X, Liu M, Wang Z, Zhang Y, Zhen J, Tang W, Wang X, Yi F. CLEC14A protects against podocyte injury in mice with adriamycin nephropathy. FASEB J 2021; 35:e21711. [PMID: 34107098 DOI: 10.1096/fj.202100283r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Podocyte injury is a major determinant of focal segmental glomerular sclerosis (FSGS) and the identification of potential therapeutic targets for preventing podocyte injury has clinical importance for the treatment of FSGS. CLEC14A is a single-pass transmembrane glycoprotein belonging to the vascular expressed C-type lectin family. CLEC14A is found to be expressed in vascular endothelial cells during embryogenesis and is also implicated in tumor angiogenesis. However, the current understanding of the biological functions of CLEC14A in podocyte is very limited. In this study, we found that CLEC14A was expressed in podocyte and protected against podocyte injury in mice with Adriamycin (ADR)-induced FSGS. First, we observed that CLEC14A was downregulated in mice with ADR nephropathy and renal biopsies from individuals with FSGS and other forms of podocytopathies. Moreover, CLEC14A deficiency exacerbated podocyte injury and proteinuria in mice with ADR nephropathy accompanied by enhanced inflammatory cell infiltration and inflammatory responses. In vitro, overexpression of CLEC14A in podocyte had pleiotropic protective actions, including anti-inflammatory and anti-apoptosis effects. Mechanistically, CLEC14A inhibited high-mobility group box 1 protein (HMGB1) release, at least in part by directly binding HMGB1, and suppressed HMGB1-mediated signaling, including NF-κB signaling and early growth response protein 1 (EGR1) signaling. Taken together, our findings provide new insights into the pivotal role of CLEC14A in maintaining podocyte function, indicating that CLEC14A may be an innovative therapeutic target in FSGS.
Collapse
Affiliation(s)
- Zeyu Su
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yujia Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hang Lv
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaoyang Cui
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Tang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
30
|
Role of Dendritic Cell in Diabetic Nephropathy. Int J Mol Sci 2021; 22:ijms22147554. [PMID: 34299173 PMCID: PMC8308035 DOI: 10.3390/ijms22147554] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most significant microvascular complications in diabetic patients. DN is the leading cause of end-stage renal disease, accounting for approximately 50% of incident cases. The current treatment options, such as optimal control of hyperglycemia and elevated blood pressure, are insufficient to prevent its progression. DN has been considered as a nonimmune, metabolic, or hemodynamic glomerular disease initiated by hyperglycemia. However, recent studies suggest that DN is an inflammatory disease, and immune cells related with innate and adaptive immunity, such as macrophage and T cells, might be involved in its development and progression. Although it has been revealed that kidney dendritic cells (DCs) accumulation in the renal tissue of human and animal models of DN require activated T cells in the kidney disease, little is known about the function of DCs in DN. In this review, we describe kidney DCs and their subsets, and the role in the pathogenesis of DN. We also suggest how to improve the kidney outcomes by modulating kidney DCs optimally in the patients with DN.
Collapse
|
31
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021; 9:701788. [PMID: 34307381 PMCID: PMC8299754 DOI: 10.3389/fcell.2021.701788] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is classified as an iron-dependent form of regulated cell death (RCD) attributed to the accumulation of lipid hydroperoxides and redox imbalance. In recent years, accumulating researches have suggested that ferroptosis may play a vital role in the development of diverse metabolic diseases, for example, diabetes and its complications (e.g., diabetic nephropathy, diabetic cardiomyopathy, diabetic myocardial ischemia/reperfusion injury and atherosclerosis [AS]), metabolic bone disease and adrenal injury. However, the specific physiopathological mechanism and precise therapeutic effect is still not clear. In this review, we summarized recent advances about the development of ferroptosis, focused on its potential character as the therapeutic target in metabolic diseases, and put forward our insights on this topic, largely to offer some help to forecast further directions.
Collapse
Affiliation(s)
- Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Okuma H, Mori K, Nakamura S, Sekine T, Ogawa Y, Tsuchiya K. Ipragliflozin Ameliorates Diabetic Nephropathy Associated with Perirenal Adipose Expansion in Mice. Int J Mol Sci 2021; 22:ijms22147329. [PMID: 34298949 PMCID: PMC8304702 DOI: 10.3390/ijms22147329] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Sodium glucose cotransporter-2 (SGLT2) inhibitors inhibit the development of diabetic nephropathy (DN). We determined whether changes in perirenal fat (PRAT) by a SGLT2 inhibitor ipragliflozin (Ipra) contribute to the suppression of DN development. High-fat diet (HFD)-fed mice were used as a DN model and were treated with or without Ipra for 6 weeks. Ipra treatment reduced urinary albumin excretion (UAE) and glomerular hypertrophy in HFD-fed mice. In the PRAT of Ipra-treated mice, adipocyte size was increased, and inflammation, fibrosis, and adipocyte death were suppressed. In conditioned medium made from PRAT (PRAT-CM) of Ipra-treated mice, the concentration of leptin was significantly lower than PRAT-CM of mice without Ipra treatment. Serum leptin concentration in renal vein positively correlated with UAE. PRAT-CM from HFD-fed mice showed greater cell proliferation signaling in mouse glomerular endothelial cells (GECs) than PRAT-CM from standard diet-fed mice via p38MAPK and leptin-dependent pathways, whose effects were significantly attenuated in PRAT-CM from Ipra-treated mice. These findings suggest that Ipra-induced PRAT expansion may play an important role in the improvement of DN in HFD-fed mice. In vitro experiments suggest that reduced PRAT-derived leptin by Ipra could inhibit GECs proliferation, possibly contributing to the suppression of DN development.
Collapse
Affiliation(s)
- Hideyuki Okuma
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (H.O.); (K.M.); (S.N.); (T.S.)
| | - Kentaro Mori
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (H.O.); (K.M.); (S.N.); (T.S.)
| | - Suguru Nakamura
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (H.O.); (K.M.); (S.N.); (T.S.)
| | - Tetsuo Sekine
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 4093898, Japan; (H.O.); (K.M.); (S.N.); (T.S.)
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8168580, Japan;
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Chuo 4093898, Japan
- Correspondence: ; Tel.: +81-55-273-9602
| |
Collapse
|
33
|
Bahadar GA, Shah ZA. Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology, and Cognitive Impairments. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:312-326. [PMID: 33622232 DOI: 10.2174/1871527320666210223145112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
There is a surge in diabetes incidence with an estimated 463 million individuals been diagnosed worldwide. Diabetes Mellitus (DM) is a major stroke-related comorbid condition that increases the susceptibility of disabling post-stroke outcomes. Although less common, intracerebral hemorrhage (ICH) is the most dramatic subtype of stroke that is associated with higher mortality, particularly in DM population. Previous studies have focused mainly on the impact of DM on ischemic stroke. Few studies have focused on impact of DM on ICH and discussed the blood-brain barrier disruption, brain edema, and hematoma formation. However, more recently, investigating the role of oxidative damage and reactive oxygen species (ROS) production in preclinical studies involving DM-ICH animal models has gained attention. But, little is known about the correlation between neuroinflammatory processes, glial cells activation, and peripheral immune cell invasion with DM-ICH injury. DM and ICH patients experience impaired abilities in multiple cognitive domains by relatively comparable mechanisms, which could get exacerbated in the setting of comorbidities. In this review, we discuss both the pathology of DM as a comorbid condition for ICH and the potential molecular therapeutic targets for the clinical management of the ICH and its recovery.
Collapse
Affiliation(s)
- Ghaith A Bahadar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| |
Collapse
|
34
|
HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose. Biosci Rep 2021; 41:227830. [PMID: 33565572 PMCID: PMC7897919 DOI: 10.1042/bsr20202924] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ferroptosis, a novel type of programmed cell death, is involved in inflammation and oxidation of various human diseases, including diabetic kidney disease. The present study explored the role of high-mobility group box-1 (HMGB1) on the regulation of ferroptosis in mesangial cells in response to high glucose. Compared with healthy control, levels of serum ferritin, lactate dehydrogenase (LDH), reactive oxygen species (ROS), malonaldehyde (MDA), and HMGB1 were significantly elevated in diabetic nephropathy (DN) patients, accompanied with deregulated ferroptosis-related molecules, including long-chain acyl-CoA synthetase 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (PTGS2), NADPH oxidase 1 (NOX1), and glutathione peroxidase 4 (GPX4). In vitro assay revealed that erastin and high glucose both induced ferroptosis in mesangial cells. Suppression of HMGB1 restored cellular proliferation, prevented ROS and LDH generation, decreased ACSL4, PTGS2, and NOX1, and increased GPX4 levels in mesangial cells. Furthermore, nuclear factor E2-related factor 2 (Nrf2) was decreased in DN patients and high glucose-mediated translocation of HMGB1 in mesangial cells. Knockdown of HMGB1 suppressed high glucose-induced activation of TLR4/NF-κB axis and promoted Nrf2 expression as well as its downstream targets including HO-1, NQO-1, GCLC, and GCLM. Collectively, these findings suggest that HMGB1 regulates glucose-induced ferroptosis via Nrf2 pathway in mesangial cells.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Macrophages play an important role in regulating homeostasis, kidney injury, repair, and tissue fibrogenesis. The present review will discuss recent advances that explore the novel subsets and functions of macrophage in the pathogenesis of kidney damage and hypertension. RECENT FINDINGS Macrophages differentiate into a variety of subsets in microenvironment-dependent manner. Although the M1/M2 nomenclature is still applied in considering the pro-inflammatory versus anti-inflammatory effects of macrophages in kidney injury, novel, and accurate macrophage phenotypes are defined by flow cytometric markers and single-cell RNA signatures. Studies exploring the crosstalk between macrophages and other cells are rapidly advancing with the additional recognition of exosome trafficking between cells. Using murine conditional mutants, actions of macrophage can be defined more precisely than in bone marrow transfer models. Some studies revealed the opposing effects of the same protein in renal parenchymal cells and macrophages, highlighting a need for the development of cell-specific immune therapies for translation. SUMMARY Macrophage-targeted therapies hold potential for limiting kidney injury and hypertension. To realize this potential, future studies will be required to understand precise mechanisms in macrophage polarization, crosstalk, proliferation, and maturation in the setting of renal disease.
Collapse
|
36
|
Huang X, Hou X, Chuan L, Wei S, Wang J, Yang X, Ru J. miR-129-5p alleviates LPS-induced acute kidney injury via targeting HMGB1/TLRs/NF-kappaB pathway. Int Immunopharmacol 2020; 89:107016. [PMID: 33039954 DOI: 10.1016/j.intimp.2020.107016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The present study aimed to investigate whether miR-129-5p can regulate high-mobility group box protein 1 (HMGB1)-modulated TLRs/NF-kappaB inflammatory pathway that contributed to lipopolysaccharide (LPS)-induced podocyte apoptosis and acutekidneyinjury (AKI). MATERIAL AND METHODS In vitro and in vivo models of sepsis were simulated using LPS-administrated podocytes and mice, respectively. The effects of LPS, mR-129-5p mimics and short hairpin RNA of HMGB1 (sh-HMGB1) on podocyte apoptosis were monitored using TUNEL staining. Protein expression was measured using western blotting. Survival outcomes were analyzed in septic mice with agomir-mR-129-5p administration. RESULTS We observed that stimulation of podocytes with LPS significantly inhibits the expression of miR-129-5p, and overexpression of miR-129-5p protects against LPS-induced podocyte damage, over-activation of inflammatory response and apoptosis. In a mouse model, agomir-miR-129-5p administration significantly improves the survival outcomes in septic mice and LPS-induced AKI. Mechanically, LPS-induced the elevation of HMGB1, TLR2, TLR4 and nuclear NF-κB protein expression in vitro and in vivo are restrained by the overexpression of miR-129-5p. CONCLUSIONS Overexpression of miR-129-5p protects against LPS-induced podocyte apoptosis, inflammation and AKI in vivo and in vitro models of sepsis. The underlying molecular mechanism is mediated via attenuating HMGB1/TLRs/NF-κB signaling axis modulated inflammatory response.
Collapse
Affiliation(s)
- Xin Huang
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Xiangping Hou
- Department of Laboratory, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China.
| | - Libo Chuan
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Shutao Wei
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Jingrong Wang
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Xiaohua Yang
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Jin Ru
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| |
Collapse
|
37
|
Mertowski S, Lipa P, Morawska I, Niedźwiedzka-Rystwej P, Bębnowska D, Hrynkiewicz R, Grywalska E, Roliński J, Załuska W. Toll-Like Receptor as a Potential Biomarker in Renal Diseases. Int J Mol Sci 2020; 21:ijms21186712. [PMID: 32933213 PMCID: PMC7554805 DOI: 10.3390/ijms21186712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
One of the major challenges faced by modern nephrology is the identification of biomarkers associated with histopathological patterns or defined pathogenic mechanisms that may assist in the non-invasive diagnosis of kidney disease, particularly glomerulopathy. The identification of such molecules may allow prognostic subgroups to be established based on the type of disease, thereby predicting response to treatment or disease relapse. Advances in understanding the pathogenesis of diseases, such as membranous nephropathy, minimal change disease, focal segmental glomerulosclerosis, IgA (immunoglobulin A) nephropathy, and diabetic nephropathy, along with the progressive development and standardization of plasma and urine proteomics techniques, have facilitated the identification of an increasing number of molecules that may be useful for these purposes. The growing number of studies on the role of TLR (toll-like receptor) receptors in the pathogenesis of kidney disease forces contemporary researchers to reflect on these molecules, which may soon join the group of renal biomarkers and become a helpful tool in the diagnosis of glomerulopathy. In this article, we conducted a thorough review of the literature on the role of TLRs in the pathogenesis of glomerulopathy. The role of TLR receptors as potential marker molecules for the development of neoplastic diseases is emphasized more and more often, as prognostic factors in diseases on several epidemiological backgrounds.
Collapse
Affiliation(s)
- Sebastian Mertowski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (J.R.)
- Correspondence: (S.M.); (P.N.-R.); (E.G.)
| | - Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| | - Izabela Morawska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (J.R.)
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (D.B.); (R.H.)
- Correspondence: (S.M.); (P.N.-R.); (E.G.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (J.R.)
- Correspondence: (S.M.); (P.N.-R.); (E.G.)
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (J.R.)
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, 20-954 Lublin, Poland;
| |
Collapse
|
38
|
Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci 2020; 259:118203. [PMID: 32781069 DOI: 10.1016/j.lfs.2020.118203] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
High mobility group box 1 (HMGB1) is a highly conserved nucleoprotein involving in numerous biological processes, and well known to trigger immune responses as the damage-associated molecular pattern (DAMP) in the extracellular environment. The role of HMGB1 is distinct due to its multiple functions in different subcellular location. In the nucleus, HMGB1 acts as a chaperone to regulate DNA events including DNA replication, repair and nucleosome stability. While in the cytoplasm, it is engaged in regulating autophagy and apoptosis. A great deal of research has explored its function in the pathogenesis of renal diseases. This review mainly focuses on the role of HMGB1 and summarizes the pathway and treatment targeting HMGB1 in the various renal diseases which may open the windows of opportunities for the development of desirable therapeutic ends in these pathological conditions.
Collapse
Affiliation(s)
- Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| |
Collapse
|
39
|
HMGB1 Aggravates Pressure Overload-Induced Left Ventricular Dysfunction by Promoting Myocardial Fibrosis. Int J Hypertens 2020. [DOI: 10.1155/2020/7270351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aim. Fibrosis had important effects on pressure overload-induced left ventricular (LV) dysfunction. High-mobility group box 1 (HMGB1), which was closely associated with fibrosis, was involved in the pressure overload-induced cardiac injury. This study determines the role of HMGB1 in LV dysfunction under pressure overload. Methods. Transverse aortic constriction (TAC) operation was performed on male C57BL/6J mice to build the model of pressure overload, while HMGB1 or PBS was injected into the LV wall. Cardiac function, collagen volume, and relevant genes were detected. Results. Echocardiography demonstrated that the levels of LV ejection fraction (LVEF) were markedly decreased on day 28 after TAC, which was consistent with raised collagen in the myocardium. Moreover, we found that the exposure of mice to TAC + HMGB1 is associated with higher mortality, BNP, and collagen volume in the myocardium and lower LVEF. In addition, real-time PCR showed that the expression of collagen type I, TGF-β, and MMP2 markedly increased in the myocardium after TAC, while HMGB1 overexpression further raised the TGF-β expression but not collagen type I and MMP2 expressions. Conclusion. This study indicated that exogenous HMGB1 overexpression in the myocardium aggravated the pressure overload-induced LV dysfunction by promoting cardiac fibrosis, which may be mediated by increasing the TGF-β expression.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is the leading cause of kidney failure in the USA, representing ~ 44% of all cases of kidney failure. Advancements in both glucose management and inhibitors of the renin-angiotensin system have significantly improved prognosis for individuals with DKD, yet DKD continues to affect 30-40% of people with type 2 diabetes and is still a major predictor of mortality in this population. Thus, new interventions are required to address this significant health burden. RECENT FINDINGS One potential target for intervention is cellular senescence. Senescence permanently arrests cell division in response to genotoxic, oncogenic, or metabolic stresses-coupled to the secretion of inflammatory cytokines, chemokines, growth factors, proteases, and other molecules that can have potent local and systemic effects. This senescence-associated secretory phenotype (SASP) explains how a relatively small number of senescent cells can promote pathology, and a growing number of degenerative conditions have been found to be caused or aggravated by senescent cells. Many SASP factors are also associated with loss of kidney function. Targeted elimination of senescent cells prevents the development of several degenerative pathologies. Since senescent cells appear in the proximal tubules and podocytes of patients with DKD, they are an appealing target for intervention in these disorders. Here, we review the current literature linking senescence to DKD and speculate on the likely routes to intervention in a clinical setting.
Collapse
Affiliation(s)
- Christopher D Wiley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
41
|
Li YJ, Chen X, Kwan TK, Loh YW, Singer J, Liu Y, Ma J, Tan J, Macia L, Mackay CR, Chadban SJ, Wu H. Dietary Fiber Protects against Diabetic Nephropathy through Short-Chain Fatty Acid-Mediated Activation of G Protein-Coupled Receptors GPR43 and GPR109A. J Am Soc Nephrol 2020; 31:1267-1281. [PMID: 32358041 DOI: 10.1681/asn.2019101029] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Studies have reported "dysbiotic" changes to gut microbiota, such as depletion of gut bacteria that produce short-chain fatty acids (SCFAs) through gut fermentation of fiber, in CKD and diabetes. Dietary fiber is associated with decreased inflammation and mortality in CKD, and SCFAs have been proposed to mediate this effect. METHODS To explore dietary fiber's effect on development of experimental diabetic nephropathy, we used streptozotocin to induce diabetes in wild-type C57BL/6 and knockout mice lacking the genes encoding G protein-coupled receptors GPR43 or GPR109A. Diabetic mice were randomized to high-fiber, normal chow, or zero-fiber diets, or SCFAs in drinking water. We used proton nuclear magnetic resonance spectroscopy for metabolic profiling and 16S ribosomal RNA sequencing to assess the gut microbiome. RESULTS Diabetic mice fed a high-fiber diet were significantly less likely to develop diabetic nephropathy, exhibiting less albuminuria, glomerular hypertrophy, podocyte injury, and interstitial fibrosis compared with diabetic controls fed normal chow or a zero-fiber diet. Fiber beneficially reshaped gut microbial ecology and improved dysbiosis, promoting expansion of SCFA-producing bacteria of the genera Prevotella and Bifidobacterium, which increased fecal and systemic SCFA concentrations. Fiber reduced expression of genes encoding inflammatory cytokines, chemokines, and fibrosis-promoting proteins in diabetic kidneys. SCFA-treated diabetic mice were protected from nephropathy, but not in the absence of GPR43 or GPR109A. In vitro, SCFAs modulated inflammation in renal tubular cells and podocytes under hyperglycemic conditions. CONCLUSIONS Dietary fiber protects against diabetic nephropathy through modulation of the gut microbiota, enrichment of SCFA-producing bacteria, and increased SCFA production. GPR43 and GPR109A are critical to SCFA-mediated protection against this condition. Interventions targeting the gut microbiota warrant further investigation as a novel renoprotective therapy in diabetic nephropathy.
Collapse
Affiliation(s)
- Yan Jun Li
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia .,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Xiaochen Chen
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tony K Kwan
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Yik Wen Loh
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Julian Singer
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yunzi Liu
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jin Ma
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jian Tan
- Nutritional Immunometabolism Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Nutritional Immunometabolism Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Steven J Chadban
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Renal Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Huiling Wu
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia .,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Renal Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
42
|
Haraguchi R, Kohara Y, Matsubayashi K, Kitazawa R, Kitazawa S. New Insights into the Pathogenesis of Diabetic Nephropathy: Proximal Renal Tubules Are Primary Target of Oxidative Stress in Diabetic Kidney. Acta Histochem Cytochem 2020; 53:21-31. [PMID: 32410750 PMCID: PMC7212204 DOI: 10.1267/ahc.20008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy is a major source of end-stage renal failure, affecting about one-third cases of diabetes mellitus. It has long been accepted that diabetic nephropathy is mainly characterized by glomerular defects, while clinical observations have implied that renal tubular damage is closely linked to kidney dysfunction at the early stages of diabetic nephropathy. In this study, we conducted pathohistological analyses focusing on renal tubular lesions in the early-stage diabetic kidney with the use of a streptozotocin (STZ)-induced diabetes mellitus mouse model. The results revealed that histological alterations in renal tubules, shown by a vacuolar nucleic structure, accumulations of PAS-positive substance, and accelerated restoration stress, occur initially without the presence of glomerular lesions in the early-stage diabetic kidney, and that these tubular defects are localized mainly in proximal renal tubules. Moreover, enhanced expression of RAGE, suggesting an aberrant activation of AGEs-RAGE signaling pathway, and accumulation of oxidative modified mitochondria through the impaired autophagy/lysosome system, were also seen in the damaged diabetic proximal renal tubules. Our findings indicate that proximal tubular defects are the initial pathological events increasingly linked to the progression of diabetic nephropathy, and that controlling renal tubular damage could be an effective therapeutic strategy for the clinical treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Yukihiro Kohara
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Kanako Matsubayashi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
- Department of Diagnostic Pathology, Ehime University Hospital
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| |
Collapse
|
43
|
Ashrafi Jigheh Z, Ghorbani Haghjo A, Argani H, Sanajou D. Sodium-glucose co-transporters and diabetic nephropathy: Is there a link with toll-like receptors? Clin Exp Pharmacol Physiol 2020; 47:919-926. [PMID: 31968131 DOI: 10.1111/1440-1681.13261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/08/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
Abstract
The incidence of diabetes mellitus (DM) has increased alarmingly over the last decades. Despite taking measures aimed at controlling hyperglycaemia and blood pressure, the rate of end-stage renal disease (ESRD) is continually growing. Upon increased amounts of advanced glycation end products (AGEs) and their correspondent receptors (RAGEs), AGE-RAGE axis is over-activated in DM, being the first step in the initiation and propagation of inflammatory cascades. Meanwhile, HMGB1, released from damaged cells in the diabetic kidneys, is the most notable ligand for the highly expressed toll-like receptors (TLRs) and RAGEs. TLRs play an indispensable role in the pathogenesis of diabetic nephropathy. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors are hypoglycaemic agents acting on the renal proximal tubules to prevent glucose reabsorption and therefore increase urinary glucose excretion. Besides improving glycaemic control, these hypoglycaemic agents possess direct renoprotective properties. Here, therefore, we review the most recent findings regarding interrelationship between SGLT2 inhibitors and HMGB1-TLR4 axis.
Collapse
Affiliation(s)
- Zahra Ashrafi Jigheh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbani Haghjo
- Biotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Argani
- Urology and Nephrology Research Centre, Beheshti University of Medical Sciences, Tehran, Iran
| | - Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Biscetti F, Rando MM, Nardella E, Cecchini AL, Pecorini G, Landolfi R, Flex A. High Mobility Group Box-1 and Diabetes Mellitus Complications: State of the Art and Future Perspectives. Int J Mol Sci 2019; 20:ijms20246258. [PMID: 31835864 PMCID: PMC6940913 DOI: 10.3390/ijms20246258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is an endemic disease, with growing health and social costs. The complications of diabetes can affect potentially all parts of the human body, from the heart to the kidneys, peripheral and central nervous system, and the vascular bed. Although many mechanisms have been studied, not all players responsible for these complications have been defined yet. High Mobility Group Box-1 (HMGB1) is a non-histone nuclear protein that has been implicated in many pathological processes, from sepsis to ischemia. The purpose of this review is to take stock of all the most recent data available on the role of HMGB1 in the complications of DM.
Collapse
Affiliation(s)
- Federico Biscetti
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-06-3015-4335; Fax: +39-06-3550-7232
| | | | - Elisabetta Nardella
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | | | - Giovanni Pecorini
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Raffaele Landolfi
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Andrea Flex
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| |
Collapse
|
45
|
Jin J, Gong J, Zhao L, Zhang H, He Q, Jiang X. Inhibition of high mobility group box 1 (HMGB1) attenuates podocyte apoptosis and epithelial-mesenchymal transition by regulating autophagy flux. J Diabetes 2019; 11:826-836. [PMID: 30864227 DOI: 10.1111/1753-0407.12914] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Podocyte injury, characterized by podocyte hypertrophy, apoptosis, and epithelial-mesenchymal transition (EMT), is the major causative factor of diabetic nephropathy (DN). Autophagy dysfunction is regarded as the major risk factor for podocyte injury including EMT and apoptosis. High mobility group box 1 (HMGB1) is involved in the progression of DN through the induction of autophagy. However, the underlying mechanism remains unknown. METHODS Plasma HMGB1 concentrations were determined in DN patients using ELISA. Apoptosis of DN serum-treated podocytes was evaluated by flow cytometry. Podocyte autophagy flux was measured using immunofluorescence. Western blotting analysis was used to investigate HMGB1 expression, EMT, and autophagy-related signaling pathways. RESULTS Upregulation of HMGB1 was found in DN patients and DN serum-treated podocytes. Removal of HMGB1 inhibited DN serum-mediated podocyte apoptosis by inhibiting autophagy and activating AKT/mammalian target of rapamycin (mTOR) signaling. In addition, HMGB1 depletion repressed the progression of podocyte EMT by inhibiting transforming growth factor (TGF)-β/smad1 signaling in vitro and in vivo. The combination of HMGB1 short interference (si) RNA and the autophagy activator rapamycin protected against podocyte apoptosis and EMT progression by inhibiting the AKT/mTOR and TGF-β/smad signaling pathway, respectively. CONCLUSIONS Although HMGB1 siRNA and rapamycin treatment had opposite effects on autophagy and AKT/mTOR signaling, there was no contradiction about the role of HMGB1 siRNA and rapamycin on AKT/mTOR pathway because autophagy and AKT/mTOR signaling play dual roles in intracellular biological processes. Based on the findings of this study, we may assume that HMGB1-initiated autophagy is harmful, whereas rapamycin is beneficial to podocyte survival. Possibly combined treatment with HMGB1 siRNA and rapamycin improved podocyte damage and EMT by regulating autophagy homeostasis.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Jianguang Gong
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Li Zhao
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Hongjuan Zhang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Xinxin Jiang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| |
Collapse
|
46
|
Abstract
The role of the pro-inflammatory cytokine IL-17 in the pathogenesis of numerous inflammatory disorders is well-documented, but conflicting results are reported for its role in diabetic nephropathy. Here we examined the role of IL-17 signalling in a model of streptozotocin-induced diabetic nephropathy through IL-17 knockout mice, administration of neutralising monoclonal anti-IL-17 antibody and in vitro examination of gene expression of renal tubular cells and podocytes under high glucose conditions with or without recombinant IL-17. IL-17 deficient mice were protected against progression of diabetic nephropathy, exhibiting reduced albuminuria, glomerular damage, macrophage accumulation and renal fibrosis at 12 weeks and 24 weeks. Administration of anti-IL-17 monoclonal antibody to diabetic wild-type mice was similarly protective. IL-17 deficiency also attenuated up-regulation of pro-inflammatory and pro-fibrotic genes including IL-6, TNF-α, CCL2, CXCL10 and TGF-β in diabetic kidneys. In vitro co-stimulation with recombinant IL-17 and high glucose were synergistic in increasing the expression of pro-inflammatory genes in both cultured renal tubular cells and podocytes. We conclude that absence of IL-17 signalling is protective against streptozotocin-induced diabetic nephropathy, thus implying a pro-inflammatory role of IL-17 in its pathogenesis. Targeting the IL-17 axis may represent a novel therapeutic approach in the treatment of this disorder.
Collapse
|