1
|
Chen KY, Chen KY, Ho HP, Lin HH, Hsu BM, Chen YS, Hsu DW, Ren CY. Geographical and climatic contributions to melioidosis hotspot formation in Southern Taiwan. PLoS Negl Trop Dis 2025; 19:e0012958. [PMID: 40208873 DOI: 10.1371/journal.pntd.0012958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/03/2025] [Indexed: 04/12/2025] Open
Abstract
Melioidosis outbreaks in Taiwan frequently coincided with severe typhoons. Over a 20-year period, 782 cases of melioidosis were reported, with outbreaks often clustering in a specific hotspot area. We hypothesized that the unique hilly terrain in this hotspot trapped contaminated aerosols generated from northern to northwestern farming land within the area and restricted their spread beyond it. Across Taiwan, and particularly within the hotspot, weekly melioidosis incidence was significantly correlated with heavy rainfall and strong wind speed with time lags of 0, 1 and 2 weeks. When rainfall exceeded 200 mm and wind gust speeds reached over 20 m/sec, melioidosis outbreaks were frequently observed. Additionally, melioidosis incidence was associated with riverbank repair activities, indicating severe flooding caused by typhoons. Environmental confounding factors, such as CH₄, CO, NO, NO₂, NOx, O₃, particulate matter (PM)10, PM2.5, SO₂, and total hydrocarbon (THC), fluctuated seasonally but were not correlated with melioidosis cases. Aerosol sampling revealed that concentrations of contaminated aerosols were markedly higher north of the hill, where farming land was more prevalent, compared to the south, which had no farming land and was primarily residential. In addition to heavy rainfall and strong wind speed, shifts in wind direction from southwesterly to northwesterly during typhoons appeared to concentrate aerosols in the northern area but not in the south. Higher seropositive rates for Burkholderia pseudomallei antibodies in northern residents, compared to those in the south, further suggested increased exposure to pathogen-laden aerosols in the northern hotspot. This study demonstrated that heavy rainfall, combined with strong directional winds, generated high concentrations of contaminated aerosols from farming land in specific hilly terrains, leading to localized melioidosis outbreaks. It provided a valuable example of geographical, and climatic factors driving the formation of melioidosis hotspots in subtropical regions such as southern Taiwan.
Collapse
Affiliation(s)
- Kuang-Yueh Chen
- Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Kuang-Ying Chen
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Ping Ho
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Hsi-Hsun Lin
- Division of Infectious Diseases, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Yao-Shen Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Chung-Yuan Ren
- Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Vijayakumar D, Vikraman H, Baby P, Sathyapalan D, Sreekumar A, Abdulla A, Santhosh A, Sreekumar G, Biswas L, Subhagan H, Mukhopadhyay C, Kaur H, Ashiq M, Biswas R, Kumar A. Clinical and Microbiological Profile of Melioidosis in a Tertiary Care Hospital in Kerala, India. Am J Trop Med Hyg 2025; 112:849-853. [PMID: 39808830 PMCID: PMC11965727 DOI: 10.4269/ajtmh.24-0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025] Open
Abstract
Melioidosis is a neglected tropical infection caused by the Gram-negative bacterium Burkholderia pseudomallei, which is found in soil and water across tropical countries. The infection spectrum ranges from mild localized lesions to severe sepsis. The clinical presentation, severity, and outcome are influenced by the route of infection, bacterial load, strain virulence, and specific virulence genes of B. pseudomallei. This case series discusses nine melioidosis cases, highlighting the clinical and diagnostic challenges. It underscores the necessity for a high level of clinical suspicion to ensure a timely diagnosis and the prompt initiation of treatment.
Collapse
Affiliation(s)
- Divya Vijayakumar
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Hridya Vikraman
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Poornima Baby
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Dipu Sathyapalan
- Division of Infectious Diseases, Department of General Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Amritavarshini Sreekumar
- Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Abitha Abdulla
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Athira Santhosh
- Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Gautham Sreekumar
- Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lalitha Biswas
- Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Haritha Subhagan
- Division of Infectious Diseases, Department of General Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Harpreet Kaur
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, New Delhi, India
| | - Mohammed Ashiq
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Raja Biswas
- Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
3
|
Zheng S, Young JR, Khounsy S, Phommachanh P, Christensen P, Theppangna W, Hughes T, Temmerath A, Inthavong A, Inthapanya P, Panyasith S, Phommasone K, Limmathurotsakul D, Ashley EA, Blacksell SD, Ward MP. Geographical mapping and seroprevalence of Burkholderia pseudomallei amongst livestock species in Lao People's Democratic Republic. PLoS Negl Trop Dis 2025; 19:e0012711. [PMID: 39937783 PMCID: PMC11838892 DOI: 10.1371/journal.pntd.0012711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/19/2025] [Accepted: 11/19/2024] [Indexed: 02/14/2025] Open
Abstract
The Gram-negative bacterium Burkholderia pseudomallei causes a severe infectious disease known as melioidosis in humans and animals. It is considered endemic in tropical countries, including Thailand, Lao PDR (Laos), and Northern Australia. B. pseudomallei is a saprophyte found in contaminated soil and surface water. Humans and animals can become infected via direct exposure to contaminated water or soil and inhalation of dust or water droplets. Despite the high morbidity and mortality rates of melioidosis, there is a lack of knowledge of its geographical distribution and seroprevalence, even within endemic countries, raising a significant public health concern. For a better understanding of melioidosis in livestock in Laos, both as an animal health concern and as an indicator of human risk, we collected serum samples from an abattoir monitoring program for B. pseudomallei antibody testing using the Indirect Haemagglutination Assay (IHA). Out of the 917 sera collected, major findings included the identification of a significant cluster (p = 0.041) in the southwest border region adjoining northeastern Thailand, in the province of Savannakhet in Laos. Sera collected in January 2020 had the highest B. pseudomallei seroprevalence (17.0%), and cattle had the highest seroprevalence (22.8%), followed by buffalo (19.7%) and swine (4.0%). The B. pseudomallei seroprevalence results among the common livestock species and the maps generated can assist with future monitoring, prevention, and detection of melioidosis in Laos.
Collapse
Affiliation(s)
- Suwei Zheng
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
| | - James R. Young
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Syseng Khounsy
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- National Animal Health Laboratory, Vientiane, Lao People’s Democratic Republic
| | | | - Peter Christensen
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watthana Theppangna
- National Animal Health Laboratory, Vientiane, Lao People’s Democratic Republic
| | - Tom Hughes
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adisone Temmerath
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Alex Inthavong
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phoummavanh Inthapanya
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sivone Panyasith
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A. Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
4
|
Abrantes JFV, Cariño ZAP, Mercado HLS, Vicencio FN, Sosa GRS, Habaña MAM, Dagamac NHA. Identification of Environmental Determinants Involved in the Distribution of Burkholderia pseudomallei in Southeast Asia using MaxEnt software. PLoS Negl Trop Dis 2025; 19:e0012684. [PMID: 39775047 PMCID: PMC11741614 DOI: 10.1371/journal.pntd.0012684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2025] [Accepted: 11/07/2024] [Indexed: 01/11/2025] Open
Abstract
Burkholderia pseudomallei (Bp), causing melioidosis, is becoming a major global public health concern. It is highly endemic in Southeast Asia (SEA) and Northern Australia and is persisting beyond the established areas of endemicity. This study aimed to determine the environmental variables that would predict the most suitable ecological niche for this pathogenic bacterium in SEA by maximum entropy (MaxEnt) modeling. Systematic review and meta-analysis of data for melioidosis were obtained from public databases such as PubMed, Harmonized World Soil (HWSD) and WorldClim. The potential map showing the environmental layers was processed by ArcGIS, and the prediction for the probability of habitat suitability using MaxEnt software (version 3·4·4) and ENMeval R-based modeling tools was utilized to generate the distribution map with the best-fit model. Both bioclimatic and edaphic predictors were found to be the most important niche-determining environmental variables affecting the geographical distribution of Bp. The highest probability of suitability was predicted in areas with mean temperature of the wettest quarter at ≥26°C, annual precipitation of <2300 mm and Acrisol soil type. Combining those significantly influential variables, our predictive modeling generated a potential distribution map showing the concentration of areas and its location names with high suitability for Bp presence. The predicted distribution of Bp is extensive in the mainland part of SEA. This can be used to draw appropriate measures to safeguard public health and address the true disease burden of melioidosis in the region under the current climate scenario.
Collapse
Affiliation(s)
- Jose Francis V. Abrantes
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- The Graduate School, University of Santo Tomas, Manila, Philippines
| | - Zenn Ashley P. Cariño
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Hozeo Luis S. Mercado
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Fatima N. Vicencio
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Gio Ray S. Sosa
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Miguel Angelo M. Habaña
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Nikki Heherson A. Dagamac
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- The Graduate School, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
5
|
Wang Y, Li X, Li A, Chen C, Fang J, Luo N, Tian S, Chen L, Wu X, Song X, Tan J, Zhang Y, Zhu Q, Li Y, Xiong Y, Pei H, Xia Q. The genetic diversity and evolution analysis of the Hainan melioidosis outbreak strains. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105654. [PMID: 39111344 DOI: 10.1016/j.meegid.2024.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Melioidosis is a zoonotic disease, with its outbreaks being rare and indicative of an unusual concurrence of extreme climate and natural environmental factors. An outbreak of melioidosis cases emerged in Hainan following Typhoon "Dianmu" from October to December 2021, presenting an opportunity to identify the environmental sources of infection for these cases due to its nature as a well-defined point-source cluster. To investigate the relationship between the occurrence of these melioidosis cases and the environment, we extracted the entire genome of 25 clinical strains and conducted MLST typing, followed by whole genome sequencing and analysis of molecular genetic information for four ST46 genotypes from these strains. Phylogenetic and evolutionary relationships between Hainan sequence types (STs) and those found in other endemic regions were analyzed using IslandPath-DIMO, PHASTER, e-BURST, PHYLOViZ, and the maximum likelihood method. Notably, a total of 25 clinical strains were identified, encompassing 12 STs (ST46, ST1105, ST1991, ST30, ST1992, ST50, ST164, ST55, ST70, ST1993, ST1545, and ST58), with ST1991, ST1992, and ST1993 being newly discovered subtypes. PHYLOViZ clustering analysis divided the strains into two groups (A and B), both closely related to the Asian region. Phylogenetic tree analysis further revealed that most of the strains in this study were closely related to those found in Australia and Thailand. Analysis of patient information and visits to their residences suggested that contaminated water sources might be the primary source of infection during this outbreak. Our findings underscore that extreme weather events, such as typhoons, significantly increase the infection rate of B. pseudomallei, along with its genetic diversity, necessitating additional prevention strategies to control these B. pseudomallei infections.
Collapse
Affiliation(s)
- Yanshuang Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China; The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Xuemiao Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Anyang Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Chen Chen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China; Medical Laboratory Department, Traditional Chinese Medicine Hospital of Yaan, Sichuan, China
| | - Junde Fang
- The First Clinical College, Hainan Medical University, Haikou, China
| | - Nini Luo
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Shen Tian
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Lin Chen
- The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Xingyong Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xinyi Song
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jun Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yue Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Qiao Zhu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yanmei Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yu Xiong
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Hua Pei
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China; The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
6
|
Gasqué M, Guernier-Cambert V, Manuel G, Aaziz R, Terret J, Deshayes T, Baudrimont X, Breurec S, Rochelle-Newall E, Laroucau K. Reassessing the distribution of Burkholderia pseudomallei outside known endemic areas using animal serological screening combined with environmental surveys: The case of Les Saintes (Guadeloupe) and French Guiana. PLoS Negl Trop Dis 2024; 18:e0011977. [PMID: 39325817 PMCID: PMC11515966 DOI: 10.1371/journal.pntd.0011977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/28/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Melioidosis, an emerging infectious disease that affects both humans and animals, is caused by the soil-dwelling bacterium Burkholderia pseudomallei. It is endemic in South and Southeast Asia, and northern Australia, causing an estimated 165,000 human cases annually worldwide. Human cases have been reported in the French West Indies (Martinique and Guadeloupe) since the 1990s. Conversely, no human cases have been reported in French Guiana, a French territory in South America. Our study aimed to investigate whether B. pseudomallei is locally established in Guadeloupe and French Guiana using animals as a proxy. METHODOLOGY/PRINCIPAL FINDINGS Blood samples were collected from different animals from 56 farms in French Guiana (n = 670) and from two goat farms in Les Saintes (n = 31), part of the Guadeloupe archipelago and tested by enzyme-linked immunosorbent assay (ELISA). In Les Saintes, a serological follow-up was performed, and soil, water and goat rectal swabs were collected and analyzed by culture and PCR. The highest seroprevalence rates (39%) were observed in goats in Les Saintes, followed by horses (24%) and cattle (16%) in French Guiana. In the two goat farms, supplementary analyses detected B. pseudomallei from one goat rectal swab, and a B. pseudomallei strain was isolated from the soil. CONCLUSIONS/SIGNIFICANCE Our animal serological data suggest the presence of B. pseudomallei in Les Saintes and French Guiana. In Les Saintes, environmental surveys confirmed the endemicity of the bacteria, which is consistent with documented human cases of melioidosis on the island. We did not conduct an environmental survey in French Guiana. Nevertheless, our serological results call for local environmental surveys and a retrospective reassessment of human infections with melioidosis-like symptoms.
Collapse
Affiliation(s)
- Mégane Gasqué
- Animal health laboratory, Bacterial Zoonosis Laboratory, Anses, Paris, France
- Sorbonne Université, UPEC, IRD, CNRS, INRAE, Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Paris, France
| | - Vanina Guernier-Cambert
- Sorbonne Université, UPEC, IRD, CNRS, INRAE, Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Paris, France
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Gil Manuel
- Veterinary clinic of Carmel, Guadeloupe, France
| | - Rachid Aaziz
- Animal health laboratory, Bacterial Zoonosis Laboratory, Anses, Paris, France
| | - Jules Terret
- Animal health laboratory, Bacterial Zoonosis Laboratory, Anses, Paris, France
| | - Thomas Deshayes
- Animal health laboratory, Bacterial Zoonosis Laboratory, Anses, Paris, France
| | - Xavier Baudrimont
- Unit for Animal and Plant Health and Protection Environment (SPAVE), Directorate for Environment, Agriculture, Food and Forestry (DEAAF), Veterinary and Phytosanitary Inspection Service (SIVEP), French Guiana, France
| | - Sébastien Breurec
- Pasteur Institute of Guadeloupe, Morne Jolivière, Guadeloupe, France
| | - Emma Rochelle-Newall
- Sorbonne Université, UPEC, IRD, CNRS, INRAE, Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Paris, France
| | - Karine Laroucau
- Animal health laboratory, Bacterial Zoonosis Laboratory, Anses, Paris, France
| |
Collapse
|
7
|
Meumann EM, Limmathurotsakul D, Dunachie SJ, Wiersinga WJ, Currie BJ. Burkholderia pseudomallei and melioidosis. Nat Rev Microbiol 2024; 22:155-169. [PMID: 37794173 DOI: 10.1038/s41579-023-00972-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities.
Collapse
Affiliation(s)
- Ella M Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia.
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Willem J Wiersinga
- Division of Infectious Diseases, Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
8
|
Venkatesan T, Siritana V, Silisouk J, Roberts T, Robinson MT, Dance DAB. Burkholderia pseudomallei Bacteria in Ornamental Fish Tanks, Vientiane, Laos, 2023. Emerg Infect Dis 2024; 30:599-600. [PMID: 38407187 PMCID: PMC10902523 DOI: 10.3201/eid3003.231674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
In 2019, a melioidosis case in Maryland, USA, was shown to have been acquired from an ornamental fish tank contaminated with Burkholderia pseudomallei bacteria, likely derived from Southeast Asia. We investigated the presence of B. pseudomallei in ornamental fish tanks in the endemic area of Vientiane, Laos.
Collapse
|
9
|
Laklaeng SN, Phu DH, Songsri J, Wisessombat S, Mala W, Senghoi W, Phothaworn P, Nuinoon M, Wongtawan T, Klangbud WK. A systematic review and meta-analysis of the global prevalence and relationships among Burkholderia pseudomallei sequence types isolated from humans, animals, and the environment. Vet World 2024; 17:26-36. [PMID: 38406370 PMCID: PMC10884566 DOI: 10.14202/vetworld.2024.26-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/08/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Burkholderia pseudomallei, a highly pathogenic bacterium responsible for melioidosis, exhibits ecological ubiquity and thrives within soil and water reservoirs, posing significant infection risks to humans and animals through direct contact. The aim of this study was to elucidate the genetic diversity and prevalence patterns of B. pseudomallei sequence types (STs) across a global spectrum and to understand the relationships between strains isolated from different sources. Materials and Methods We performed a systematic review and meta-analysis in this study. Extensive research was carried out across three comprehensive databases, including PubMed, Scopus, and ScienceDirect with data collected from 1924 to 2023. Results A total of 40 carefully selected articles contributed 2737 B. pseudomallei isolates attributed to 729 distinct STs and were incorporated into the systematic review. Among these, ST46 emerged as the most prominent, featuring in 35% of the articles and demonstrating a dominant prevalence, particularly within Southeast Asia. Moreover, ST51 consistently appeared across human, animal, and environmental studies. Subsequently, we performed a meta-analysis, focusing on nine specific STs: ST46, ST51, ST54, ST70, ST84, ST109, ST289, ST325, and ST376. Surprisingly, no statistically significant differences in their pooled prevalence proportions were observed across these compartments for ST46, ST70, ST289, ST325, and ST376 (all p > 0.69). Conversely, the remaining STs, including ST51, ST54, ST84, and ST109, displayed notable variations in their prevalence among the three domains (all p < 0.04). Notably, the pooled prevalence of ST51 in animals and environmental samples surpassed that found in human isolates (p < 0.01). Conclusion To the best of our knowledge, this study is the first systematic review and meta-analysis to investigate the intricate relationships between STs and their sources and contributes significantly to our understanding of B. pseudomallei diversity within the One Health framework.
Collapse
Affiliation(s)
- Sa-ngob Laklaeng
- College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Doan Hoang Phu
- College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Vietnam
| | - Jirarat Songsri
- Center of Excellence in Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Sueptrakool Wisessombat
- Center of Excellence in Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Wanida Mala
- Center of Excellence in Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Wilaiwan Senghoi
- Center of Excellence in Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Preeda Phothaworn
- Center of Excellence in Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Manit Nuinoon
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Wiyada Kwanhian Klangbud
- Center of Excellence in Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
10
|
Currie BJ, Meumann EM, Kaestli M. The Expanding Global Footprint of Burkholderia pseudomallei and Melioidosis. Am J Trop Med Hyg 2023; 108:1081-1083. [PMID: 37160279 PMCID: PMC10540122 DOI: 10.4269/ajtmh.23-0223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Affiliation(s)
- Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Department, Royal Darwin Hospital and Northern Territory Medical Program, Darwin, Northern Territory, Australia
| | - Ella M. Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Department, Royal Darwin Hospital and Northern Territory Medical Program, Darwin, Northern Territory, Australia
- Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia
| | - Mirjam Kaestli
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
11
|
Jayasinghearachchi HS, Muthugama TA, Masakorala J, Kulasekara US, Jayaratne K, Jayatunga DADN, De Silva AD, Corea EM. Burkholderia pseudomallei in soil and natural water bodies in rural Sri Lanka: A hidden threat to public health. Front Vet Sci 2023; 9:1045088. [PMID: 36733425 PMCID: PMC9888492 DOI: 10.3389/fvets.2022.1045088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
Burkholderia pseudomallei is the causative agent of the potentially fatal infection, melioidosis. This study provides the first evidence for the presence of B. pseudomallei in soil and water in Sri Lanka. Targeted sampling of soil and natural water sources was done between November 2019 and October 2020 over eight field visits encompassing the neighborhood of 28 culture and/or antibody-positive melioidosis patients in northwestern, western and southern Sri Lanka. A total of eight environmental isolates of B. pseudomallei (BPs-env1 to BPs-env8) were cultured from 116 soil and 117 natural water samples collected from 72 locations. The presence of B. pseudomallei in soil and natural water in these areas poses a risk of melioidosis for populations cultivating crops in such soils and using untreated water from these sources for drinking, bathing, and other domestic purposes. Identifying sites positive for B. pseudomallei may help to mitigate risk by raising public awareness of contaminated environmental sources and allowing soil and water remediation.
Collapse
Affiliation(s)
- Himali S. Jayasinghearachchi
- Institute for Combinatorial Advanced Research and Education, General Sir John Kotelawala Defense University, Dehiwala-Mount Lavinia, Sri Lanka,*Correspondence: Himali S. Jayasinghearachchi ✉
| | - Thilini A. Muthugama
- Biomedical Laboratory 2, Faculty of Medicine, General Sir John Kotelawala Defense University, Dehiwala-Mount Lavinia, Sri Lanka
| | - Jayanthi Masakorala
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Upeksha S. Kulasekara
- Biomedical Laboratory 2, Faculty of Medicine, General Sir John Kotelawala Defense University, Dehiwala-Mount Lavinia, Sri Lanka
| | - Kumari Jayaratne
- Biomedical Laboratory 2, Faculty of Medicine, General Sir John Kotelawala Defense University, Dehiwala-Mount Lavinia, Sri Lanka
| | - D. A. Dasun N. Jayatunga
- Biomedical Laboratory 2, Faculty of Medicine, General Sir John Kotelawala Defense University, Dehiwala-Mount Lavinia, Sri Lanka
| | - Aruna D. De Silva
- Biomedical Laboratory 2, Faculty of Medicine, General Sir John Kotelawala Defense University, Dehiwala-Mount Lavinia, Sri Lanka
| | - Enoka M. Corea
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka,Enoka M. Corea ✉
| |
Collapse
|
12
|
Shaw T, Assig K, Tellapragada C, Wagner GE, Choudhary M, Göhler A, Eshwara VK, Steinmetz I, Mukhopadhyay C. Environmental Factors Associated With Soil Prevalence of the Melioidosis Pathogen Burkholderia pseudomallei: A Longitudinal Seasonal Study From South West India. Front Microbiol 2022; 13:902996. [PMID: 35847064 PMCID: PMC9283100 DOI: 10.3389/fmicb.2022.902996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Melioidosis is a seasonal infectious disease in tropical and subtropical areas caused by the soil bacterium Burkholderia pseudomallei. In many parts of the world, including South West India, most cases of human infections are reported during times of heavy rainfall, but the underlying causes of this phenomenon are not fully understood. India is among the countries with the highest predicted melioidosis burden globally, but there is very little information on the environmental distribution of B. pseudomallei and its determining factors. The present study aimed (i) to investigate the prevalence of B. pseudomallei in soil in South West India, (ii) determine geochemical factors associated with B. pseudomallei presence and (iii) look for potential seasonal patterns of B. pseudomallei soil abundance. Environmental samplings were performed in two regions during the monsoon and post-monsoon season and summer from July 2016 to November 2018. We applied direct quantitative real time PCR (qPCR) together with culture protocols to overcome the insufficient sensitivity of solely culture-based B. pseudomallei detection from soil. A total of 1,704 soil samples from 20 different agricultural sites were screened for the presence of B. pseudomallei. Direct qPCR detected B. pseudomallei in all 20 sites and in 30.2% (517/1,704) of all soil samples, whereas only two samples from two sites were culture-positive. B. pseudomallei DNA-positive samples were negatively associated with the concentration of iron, manganese and nitrogen in a binomial logistic regression model. The highest number of B. pseudomallei-positive samples (42.6%, p < 0.0001) and the highest B. pseudomallei loads in positive samples [median 4.45 × 103 genome equivalents (GE)/g, p < 0.0001] were observed during the monsoon season and eventually declined to 18.9% and a median of 1.47 × 103 GE/g in summer. In conclusion, our study from South West India shows a wide environmental distribution of B. pseudomallei, but also considerable differences in the abundance between sites and within single sites. Our results support the hypothesis that nutrient-depleted habitats promote the presence of B. pseudomallei. Most importantly, the highest B. pseudomallei abundance in soil is seen during the rainy season, when melioidosis cases occur.
Collapse
Affiliation(s)
- Tushar Shaw
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| | - Karoline Assig
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Chaitanya Tellapragada
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel E. Wagner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Madhu Choudhary
- ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, India
| | - André Göhler
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Vandana Kalwaje Eshwara
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Centre for Antimicrobial Resistance and Education, Manipal Academy of Higher Education, Manipal, India
| | - Ivo Steinmetz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- *Correspondence: Ivo Steinmetz,
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Centre for Emerging and Tropical Diseases, Manipal Academy of Higher Education, Manipal, India
- Chiranjay Mukhopadhyay,
| |
Collapse
|
13
|
Hodgetts K, Kleinecke M, Woerle C, Kaestli M, Budd R, Webb JR, Ward L, Mayo M, Currie BJ, Meumann EM. Melioidosis in the remote Katherine region of northern Australia. PLoS Negl Trop Dis 2022; 16:e0010486. [PMID: 35696415 PMCID: PMC9232150 DOI: 10.1371/journal.pntd.0010486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/24/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Melioidosis is endemic in the remote Katherine region of northern Australia. In a population with high rates of chronic disease, social inequities, and extreme remoteness, the impact of melioidosis is exacerbated by severe weather events and disproportionately affects First Nations Australians. All culture-confirmed melioidosis cases in the Katherine region of the Australian Top End between 1989–2021 were included in the study, and the clinical features and epidemiology were described. The diversity of Burkholderia pseudomallei strains in the region was investigated using genomic sequencing. From 1989–2021 there were 128 patients with melioidosis in the Katherine region. 96/128 (75%) patients were First Nations Australians, 72/128 (56%) were from a very remote region, 68/128 (53%) had diabetes, 57/128 (44%) had a history of hazardous alcohol consumption, and 11/128 (9%) died from melioidosis. There were 9 melioidosis cases attributable to the flooding of the Katherine River in January 1998; 7/9 flood-associated cases had cutaneous melioidosis, five of whom recalled an inoculating event injury sustained wading through flood waters or cleaning up after the flood. The 126 first-episode clinical B. pseudomallei isolates that underwent genomic sequencing belonged to 107 different sequence types and were highly diverse, reflecting the vast geographic area of the study region. In conclusion, melioidosis in the Katherine region disproportionately affects First Nations Australians with risk factors and is exacerbated by severe weather events. Diabetes management, public health intervention for hazardous alcohol consumption, provision of housing to address homelessness, and patient education on melioidosis prevention in First Nations languages should be prioritised. Melioidosis, caused by the environmental bacterium Burkholderia pseudomallei, disproportionately affects Australian First Nations peoples in the Northern Territory of Australia. The Katherine region has some of the highest rates of homelessness in Australia, and social inequity impacts health outcomes for First Nations people whose access to care is further complicated by remoteness. In this study, we describe the clinical features and epidemiology of melioidosis in the Katherine region over a 32-year period. Almost three quarters of melioidosis cases were First Nations Australians, over half lived in a very remote region, and diabetes and hazardous alcohol consumption were common risk factors. Following a severe flooding event in the region in 1998, a spike in cases of melioidosis was seen, the majority presenting as skin and soft tissue infections. The B. pseudomallei isolates in the study were extremely genetically diverse, reflecting the large geographic area of the Katherine region. With predicted climate change-driven increases in severe weather events and subsequent increases in melioidosis cases, public health priorities in the region should include addressing high rates of homelessness and hazardous alcohol consumption, optimisation of diabetes management, and ongoing education in First Nations languages regarding prevention of B. pseudomallei exposure.
Collapse
Affiliation(s)
- Kay Hodgetts
- Department of Infectious Diseases, Wellington Regional Hospital, Wellington, New Zealand
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Mariana Kleinecke
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Celeste Woerle
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mirjam Kaestli
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Richard Budd
- Katherine District Hospital, Katherine, Northern Territory, Australia
| | - Jessica R. Webb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Linda Ward
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ella M. Meumann
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- * E-mail:
| |
Collapse
|
14
|
Birnie E, Biemond JJ, Wiersinga WJ. Drivers of melioidosis endemicity: epidemiological transition, zoonosis, and climate change. Curr Opin Infect Dis 2022; 35:196-204. [PMID: 35665713 PMCID: PMC10128909 DOI: 10.1097/qco.0000000000000827] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Melioidosis, caused by the soil-dwelling bacterium Burkholderia pseudomallei, is a tropical infection associated with high morbidity and mortality. This review summarizes current insights into melioidosis' endemicity, focusing on epidemiological transitions, zoonosis, and climate change. RECENT FINDINGS Estimates of the global burden of melioidosis affirm the significance of hot-spots in Australia and Thailand. However, it also highlights the paucity of systematic data from South Asia, The Americas, and Africa. Globally, the growing incidence of diabetes, chronic renal and (alcoholic) liver diseases further increase the susceptibility of individuals to B. pseudomallei infection. Recent outbreaks in nonendemic regions have further exposed the hazard from the trade of animals and products as potential reservoirs for B. pseudomallei. Lastly, global warming will increase precipitation, severe weather events, soil salinity and anthrosol, all associated with the occurrence of B. pseudomallei. SUMMARY Epidemiological transitions, zoonotic hazards, and climate change are all contributing to the emergence of novel melioidosis-endemic areas. The adoption of the One Health approach involving multidisciplinary collaboration is important in unraveling the real incidence of B. pseudomallei, as well as reducing the spread and associated mortality.
Collapse
Affiliation(s)
- Emma Birnie
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine
- Amsterdam UMC location University of Amsterdam, Division of Infectious Diseases, Meibergdreef 9, Amsterdam, Netherlands
| | - Jason J. Biemond
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine
| | - W. Joost Wiersinga
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine
- Amsterdam UMC location University of Amsterdam, Division of Infectious Diseases, Meibergdreef 9, Amsterdam, Netherlands
| |
Collapse
|
15
|
Meumann EM, Kaestli M, Mayo M, Ward L, Rachlin A, Webb JR, Kleinecke M, Price EP, Currie BJ. Emergence of Burkholderia pseudomallei Sequence Type 562, Northern Australia. Emerg Infect Dis 2021; 27:1057-1067. [PMID: 33754984 PMCID: PMC8007296 DOI: 10.3201/eid2704.202716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since 2005, the range of Burkholderia pseudomallei sequence type 562 (ST562) has expanded in northern Australia. During 2005–2019, ST562 caused melioidosis in 61 humans and 3 animals. Cases initially occurred in suburbs surrounding a creek before spreading across urban Darwin, Australia and a nearby island community. In urban Darwin, ST562 caused 12% (53/440) of melioidosis cases, a proportion that increased during the study period. We analyzed 2 clusters of cases with epidemiologic links and used genomic analysis to identify previously unassociated cases. We found that ST562 isolates from Hainan Province, China, and Pingtung County, Taiwan, were distantly related to ST562 strains from Australia. Temporal genomic analysis suggested a single ST562 introduction into the Darwin region in ≈1988. The origin and transmission mode of ST562 into Australia remain uncertain.
Collapse
|
16
|
Swe MMM, Win MM, Cohen J, Phyo AP, Lin HN, Soe K, Amorncha P, Wah TT, Win KKN, Ling C, Parker DM, Dance DAB, Ashley EA, Smithuis F. Geographical distribution of Burkholderia pseudomallei in soil in Myanmar. PLoS Negl Trop Dis 2021; 15:e0009372. [PMID: 34029325 PMCID: PMC8143414 DOI: 10.1371/journal.pntd.0009372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei is a Gram-negative bacterium found in soil and water in many tropical countries. It causes melioidosis, a potentially fatal infection first described in 1911 in Myanmar. Melioidosis is a common cause of sepsis and death in South and South-east Asia, but it is rarely diagnosed in Myanmar. We conducted a nationwide soil study to identify areas where B. pseudomallei is present. METHODOLOGY/PRINCIPAL FINDINGS We collected soil samples from 387 locations in all 15 states and regions of Myanmar between September 2017 and June 2019. At each site, three samples were taken at each of three different depths (30, 60 and 90 cm) and were cultured for B. pseudomallei separately, along with a pooled sample from each site (i.e. 10 cultures per site). We used a negative binomial regression model to assess associations between isolation of B. pseudomallei and environmental factors (season, soil depth, soil type, land use and climate zones). B. pseudomallei was isolated in 7 of 15 states and regions. Of the 387 sites, 31 (8%) had one or more positive samples and of the 3,870 samples cultured, 103 (2.7%) tested positive for B. pseudomallei. B. pseudomallei was isolated more frequently during the monsoon season [RR-2.28 (95% CI: 0.70-7.38)] and less in the hot dry season [RR-0.70 (95% CI: 0.19-2.56)] compared to the cool dry season, and in the tropical monsoon climate zone [RR-2.26; 95% CI (0.21-6.21)] compared to the tropical dry winter climate zone. However, these associations were not statistically significant. B. pseudomallei was detected at all three depths and from various soil types (clay, silt and sand). Isolation was higher in agricultural land (2.2%), pasture land (8.5%) and disused land (5.8%) than in residential land (0.4%), but these differences were also not significant. CONCLUSION/SIGNIFICANCE This study confirms a widespread distribution of B. pseudomallei in Myanmar. Clinical studies should follow to obtain a better picture of the burden of melioidosis in Myanmar.
Collapse
Affiliation(s)
- Myo Maung Maung Swe
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Mo Mo Win
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Joshua Cohen
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | | | | | - Kyaw Soe
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Premjit Amorncha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University Bangkok, Thailand
| | - Thin Thin Wah
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Kyi Kyi Nyein Win
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Clare Ling
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Daniel M. Parker
- Department of Population Health and Disease Prevention Program in Public Health, University of California, Irvine, CA, United States of America
| | - David A. B. Dance
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao People’s Democratic Republic
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elizabeth A. Ashley
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao People’s Democratic Republic
| | - Frank Smithuis
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Using Land Runoff to Survey the Distribution and Genetic Diversity of Burkholderia pseudomallei in Vientiane, Laos. Appl Environ Microbiol 2021; 87:AEM.02112-20. [PMID: 33257313 PMCID: PMC7851688 DOI: 10.1128/aem.02112-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Melioidosis is a disease of significant public health importance that is being increasingly recognized globally. The majority of cases arise through direct percutaneous exposure to its etiological agent, Burkholderia pseudomallei In the Lao People's Democratic Republic (Laos), the presence and environmental distribution of B. pseudomallei are not well characterized, though recent epidemiological surveys of the bacterium have indicated that B. pseudomallei is widespread throughout the environment in the center and south of the country and that rivers can act as carriers and potential sentinels for the bacterium. The spatial and genetic distribution of B. pseudomallei within Vientiane Capital, from where the majority of cases diagnosed to date have originated, remains an important knowledge gap. We sampled surface runoff from drain catchment areas throughout urban Vientiane to determine the presence and local population structure of the bacterium. B. pseudomallei was detected in drainage areas throughout the capital, indicating it is widespread in the environment and that exposure rates in urban Vientiane are likely more frequent than previously thought. Whole-genome comparative analysis demonstrated that Lao B. pseudomallei isolates are highly genetically diverse, suggesting the bacterium is well-established and not a recent introduction. Despite the wide genome diversity, one environmental survey isolate was highly genetically related to a Lao melioidosis patient isolate collected 13 years prior to the study. Knowledge gained from this study will augment understanding of B. pseudomallei phylogeography in Asia and enhance public health awareness and future implementation of infection control measures within Laos.IMPORTANCE The environmental bacterium B. pseudomallei is the etiological agent of melioidosis, a tropical disease with one model estimating a global annual incidence of 165,000 cases and 89,000 deaths. In the Lao People's Democratic Republic (Laos), the environmental distribution and population structure of B. pseudomallei remain relatively undefined, particularly in Vientiane Capital from where most diagnosed cases have originated. We used surface runoff as a proxy for B. pseudomallei dispersal in the environment and performed whole-genome sequencing (WGS) to examine the local population structure. Our data confirmed that B. pseudomallei is widespread throughout Vientiane and that surface runoff might be useful for future environmental monitoring of the bacterium. B. pseudomallei isolates were also highly genetically diverse, suggesting the bacterium is well-established and endemic in Laos. These findings can be used to improve awareness of B. pseudomallei in the Lao environment and demonstrates the epidemiological and phylogeographical insights that can be gained from WGS.
Collapse
|
18
|
Whole-Genome Assemblies of 16 Burkholderia pseudomallei Isolates from Rivers in Laos. Microbiol Resour Announc 2021; 10:10/4/e01226-20. [PMID: 33509986 PMCID: PMC7844071 DOI: 10.1128/mra.01226-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We report 16 Burkholderia pseudomallei genomes, including 5 new multilocus sequence types, isolated from rivers in Laos. The environmental bacterium B. pseudomallei causes melioidosis, a serious infectious disease in tropical and subtropical regions. The isolates are geographically clustered in one clade from around Vientiane, Laos, and one clade from further south. We report 16 Burkholderia pseudomallei genomes, including 5 new multilocus sequence types, isolated from rivers in Laos. The environmental bacterium B. pseudomallei causes melioidosis, a serious infectious disease in tropical and subtropical regions. The isolates are geographically clustered in one clade from around Vientiane, Laos, and one clade from further south.
Collapse
|
19
|
Whole-genome sequencing of Burkholderia pseudomallei from an urban melioidosis hot spot reveals a fine-scale population structure and localised spatial clustering in the environment. Sci Rep 2020; 10:5443. [PMID: 32214186 PMCID: PMC7096523 DOI: 10.1038/s41598-020-62300-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/17/2019] [Indexed: 11/12/2022] Open
Abstract
Melioidosis is a severe disease caused by the environmental bacterium Burkholderia pseudomallei that affects both humans and animals throughout northern Australia, Southeast Asia and increasingly globally. While there is a considerable degree of genetic diversity amongst isolates, B. pseudomallei has a robust global biogeographic structure and genetic populations are spatially clustered in the environment. We examined the distribution and local spread of B. pseudomallei in Darwin, Northern Territory, Australia, which has the highest recorded urban incidence of melioidosis globally. We sampled soil and land runoff throughout the city centre and performed whole-genome sequencing (WGS) on B. pseudomallei isolates. By combining phylogenetic analyses, Bayesian clustering and spatial hot spot analysis our results demonstrate that some sequence types (STs) are widespread in the urban Darwin environment, while others are highly spatially clustered over a small geographic scale. This clustering matches the spatial distribution of clinical cases for one ST. Results also demonstrate a greater overall isolate diversity recovered from drains compared to park soils, further supporting the role drains may play in dispersal of B. pseudomallei STs in the environment. Collectively, knowledge gained from this study will allow for better understanding of B. pseudomallei phylogeography and melioidosis source attribution, particularly on a local level.
Collapse
|
20
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Kaestli M, O’Donnell M, Rose A, Webb JR, Mayo M, Currie BJ, Gibb K. Opportunistic pathogens and large microbial diversity detected in source-to-distribution drinking water of three remote communities in Northern Australia. PLoS Negl Trop Dis 2019; 13:e0007672. [PMID: 31487283 PMCID: PMC6728021 DOI: 10.1371/journal.pntd.0007672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
In the wet-dry tropics of Northern Australia, drinking water in remote communities is mostly sourced from bores accessing groundwater. Many aquifers contain naturally high levels of iron and some are shallow with surface water intrusion in the wet season. Therefore, environmental bacteria such as iron-cycling bacteria promoting biofilm formation in pipes or opportunistic pathogens can occur in these waters. An opportunistic pathogen endemic to northern Australia and Southeast Asia and emerging worldwide is Burkholderia pseudomallei. It causes the frequently fatal disease melioidosis in humans and animals. As we know very little about the microbial composition of drinking water in remote communities, this study aimed to provide a first snapshot of the microbiota and occurrence of opportunistic pathogens in bulk water and biofilms from the source and through the distribution system of three remote water supplies with varying iron levels. Using 16s-rRNA gene sequencing, we found that the geochemistry of the groundwater had a substantial impact on the untreated microbiota. Different iron-cycling bacteria reflected differences in redox status and nutrients. We cultured and sequenced B. pseudomallei from bores with elevated iron and from a multi-species biofilm which also contained iron-oxidizing Gallionella, nitrifying Nitrospira and amoebae. Gallionella are increasingly used in iron-removal filters in water supplies and more research is needed to examine these interactions. Similar to other opportunistic pathogens, B. pseudomallei occurred in water with low organic carbon levels and with low heterotrophic microbial growth. No B. pseudomallei were detected in treated water; however, abundant DNA of another opportunistic pathogen group, non-tuberculous mycobacteria was recovered from treated parts of one supply. Results from this study will inform future studies to ultimately improve management guidelines for water supplies in the wet-dry tropics.
Collapse
Affiliation(s)
- Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | | | - Alea Rose
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jessica R. Webb
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
22
|
Presence of Burkholderia pseudomallei in the 'Granary of Myanmar'. Trop Med Infect Dis 2019; 4:tropicalmed4010008. [PMID: 30621177 PMCID: PMC6473437 DOI: 10.3390/tropicalmed4010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
Melioidosis is a frequently fatal infectious disease caused by the Gram negative bacillus Burkholderia pseudomallei. Although it was originally discovered in Myanmar, the disease disappeared from sight for many decades. This study focuses on detection of B. pseudomallei in soil in selected sampling sites in an attempt to start to fill the gaps in the current status of our knowledge of the geographical distribution of B. pseudomallei in soil in Myanmar. This cross-sectional study consists of 400 soil samples from 10 selected study townships from two major paddy growing regions. Bacterial isolation was done using a simplified method for the isolation of Burkholderia pseudomallei from soil. In this study, only 1% (4/400) of soil samples were found to be positive; two of four were found at 90 cm depth and another two positive samples were found at 30 cm and 60 cm. This survey has confirmed the presence of environmental B. pseudomallei in Myanmar indicating that the conditions are in place for melioidosis acquisition.
Collapse
|
23
|
Melioidosis in the Lao People's Democratic Republic. Trop Med Infect Dis 2018; 3:tropicalmed3010021. [PMID: 30274419 PMCID: PMC6136615 DOI: 10.3390/tropicalmed3010021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 11/30/2022] Open
Abstract
Melioidosis is clearly highly endemic in Laos, although the disease has only been diagnosed regularly in humans (1359 cases) since 1999, and only a single animal case has been microbiologically confirmed. Burkholderia pseudomallei is extensively and abundantly present in soil and surface water in central and southern Laos, but the true distribution of the disease across the country remains to be determined. Surveillance is almost non-existent and diagnostic microbiology services are not yet well established, whilst awareness of melioidosis is low amongst policy-makers, healthcare providers, and the public. It is hoped that this situation will improve over the next decade as the country rapidly develops, especially as this is likely to be accompanied by a further increase in the prevalence of diabetes, meaning that more people in this predominantly agricultural population will be at risk of contracting melioidosis.
Collapse
|