1
|
Sharma H, Jespersen N, Ehrenbolger K, Carlson LA, Barandun J. Ultrastructural insights into the microsporidian infection apparatus reveal the kinetics and morphological transitions of polar tube and cargo during host cell invasion. PLoS Biol 2024; 22:e3002533. [PMID: 38422169 DOI: 10.1371/journal.pbio.3002533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
During host cell invasion, microsporidian spores translocate their entire cytoplasmic content through a thin, hollow superstructure known as the polar tube. To achieve this, the polar tube transitions from a compact spring-like state inside the environmental spore to a long needle-like tube capable of long-range sporoplasm delivery. The unique mechanical properties of the building blocks of the polar tube allow for an explosive transition from compact to extended state and support the rapid cargo translocation process. The molecular and structural factors enabling this ultrafast process and the structural changes during cargo delivery are unknown. Here, we employ light microscopy and in situ cryo-electron tomography to visualize multiple ultrastructural states of the Vairimorpha necatrix polar tube, allowing us to evaluate the kinetics of its germination and characterize the underlying morphological transitions. We describe a cargo-filled state with a unique ordered arrangement of microsporidian ribosomes, which cluster along the thin tube wall, and an empty post-translocation state with a reduced diameter but a thicker wall. Together with a proteomic analysis of endogenously affinity-purified polar tubes, our work provides comprehensive data on the infection apparatus of microsporidia and uncovers new aspects of ribosome regulation and transport.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Nathan Jespersen
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Kai Ehrenbolger
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Warren DA, Burgess AL, Prati S, Bacela-Spychalska K, S J Rogers M, Bojko J. Histopathological screening of Pontogammarus robustoides (Amphipoda), an invader on route to the United Kingdom. J Invertebr Pathol 2023; 200:107970. [PMID: 37422088 DOI: 10.1016/j.jip.2023.107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Biological invasions may act as conduits for pathogen introduction. To determine which invasive non-native species pose the biggest threat, we must first determine the symbionts (pathogens, parasites, commensals, mutualists) they carry, via pathological surveys that can be conducted in multiple ways (i.e., molecular, pathological, and histological). Whole animal histopathology allows for the observation of pathogenic agents (virus to Metazoa), based on their pathological effect upon host tissue. Where the technique cannot accurately predict pathogen taxonomy, it does highlight pathogen groups of importance. This study provides a histopathological survey of Pontogammarus robustoides (invasive amphipod in Europe) as a baseline for symbiont groups that may translocate to other areas/hosts in future invasions. Pontogammarus robustoides (n = 1,141) collected throughout Poland (seven sites), were noted to include a total of 13 symbiotic groups: a putative gut epithelia virus (overall prevalence = 0.6%), a putative hepatopancreatic cytoplasmic virus (1.4%), a hepatopancreatic bacilliform virus (15.7%), systemic bacteria (0.7%), fouling ciliates (62.0%), gut gregarines (39.5%), hepatopancreatic gregarines (0.4%), haplosporidians (0.4%), muscle infecting microsporidians (6.4%), digeneans (3.5%), external rotifers (3.0%), an endoparasitic arthropod (putatively: Isopoda) (0.1%), and Gregarines with putative microsporidian infections (1.4%). Parasite assemblages partially differed across collection sites. Co-infection patterns revealed strong positive and negative associations between five parasites. Microsporidians were common across sites and could easily spread to other areas following the invasion of P. robustoides. By providing this initial histopathological survey, we hope to provide a concise list of symbiont groups for risk-assessment in the case of a novel invasion by this highly invasive amphipod.
Collapse
Affiliation(s)
- Daniel A Warren
- Animal and Plant Health Agency, Sand Hutton, York YO41 1LZ, England
| | - Amy L Burgess
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Sebastian Prati
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology & Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Martin S J Rogers
- Artifical Intelligence Laboratory, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Jamie Bojko
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom.
| |
Collapse
|
3
|
Bacela-Spychalska K, Wattier R, Teixeira M, Cordaux R, Quiles A, Grabowski M, Wroblewski P, Ovcharenko M, Grabner D, Weber D, Weigand AM, Rigaud T. Widespread infection, diversification and old host associations of Nosema Microsporidia in European freshwater gammarids (Amphipoda). PLoS Pathog 2023; 19:e1011560. [PMID: 37603557 PMCID: PMC10470943 DOI: 10.1371/journal.ppat.1011560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/31/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023] Open
Abstract
The microsporidian genus Nosema is primarily known to infect insects of economic importance stimulating high research interest, while other hosts remain understudied. Nosema granulosis is one of the formally described Nosema species infecting amphipod crustaceans, being known to infect only two host species. Our first aim was to characterize Nosema spp. infections in different amphipod species from various European localities using the small subunit ribosomal DNA (SSU) marker. Second, we aimed to assess the phylogenetic diversity, host specificity and to explore the evolutionary history that may explain the diversity of gammarid-infecting Nosema lineages by performing a phylogenetic reconstruction based on RNA polymerase II subunit B1 (RPB1) gene sequences. For the host species Gammarus balcanicus, we also analyzed whether parasites were in excess in females to test for sex ratio distortion in relation with Nosema infection. We identified Nosema spp. in 316 individuals from nine amphipod species being widespread in Europe. The RPB1-based phylogenetic reconstruction using newly reported sequences and available data from other invertebrates identified 39 haplogroups being associated with amphipods. These haplogroups clustered into five clades (A-E) that did not form a single amphipod-infecting monophyletic group. Closely related sister clades C and D correspond to Nosema granulosis. Clades A, B and E might represent unknown Nosema species infecting amphipods. Host specificity seemed to be variable with some clades being restricted to single hosts, and some that could be found in several host species. We show that Nosema parasite richness in gammarid hosts is much higher than expected, illustrating the advantage of the use of RPB1 marker over SSU. Finally, we found no hint of sex ratio distortion in Nosema clade A infecting G. balcanicus. This study shows that Nosema spp. are abundant, widespread and diverse in European gammarids. Thus, Nosema is as diverse in aquatic as in terrestrial hosts.
Collapse
Affiliation(s)
- Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Remi Wattier
- Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France
| | - Maria Teixeira
- Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Adrien Quiles
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France
| | - Michal Grabowski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Wroblewski
- Department of Ecology and Evolution of Parasitism, Witold Stefanski Institute of Parasitology, Polish Academy of Science, Warsaw, Poland
| | - Mykola Ovcharenko
- Department of Ecology and Evolution of Parasitism, Witold Stefanski Institute of Parasitology, Polish Academy of Science, Warsaw, Poland
- Institute of Biology and Earth Sciences, Pomeranian University in Slupsk, Slupsk, Poland
| | - Daniel Grabner
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Dieter Weber
- Senckenberg Deutsches Entomologisches Institut Müncheberg, Germany
- Musée National d’Histoire Naturelle Luxembourg, Luxembourg, Luxembourg
| | | | - Thierry Rigaud
- Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France
| |
Collapse
|
4
|
Prati S, Enß J, Grabner DS, Huesken A, Feld CK, Doliwa A, Sures B. Possible seasonal and diurnal modulation of Gammarus pulex (Crustacea, Amphipoda) drift by microsporidian parasites. Sci Rep 2023; 13:9474. [PMID: 37301923 PMCID: PMC10257654 DOI: 10.1038/s41598-023-36630-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
In lotic freshwater ecosystems, the drift or downstream movement of animals (e.g., macroinvertebrates) constitutes a key dispersal pathway, thus shaping ecological and evolutionary patterns. There is evidence that macroinvertebrate drift may be modulated by parasites. However, most studies on parasite modulation of host drifting behavior have focused on acanthocephalans, whereas other parasites, such as microsporidians, have been largely neglected. This study provides new insight into possible seasonal and diurnal modulation of amphipod (Crustacea: Gammaridae) drift by microsporidian parasites. Three 72 h drift experiments were deployed in a German lowland stream in October 2021, April, and July 2022. The prevalence and composition of ten microsporidian parasites in Gammarus pulex clade E varied seasonally, diurnally, and between drifting and stationary specimens of G. pulex. Prevalence was generally higher in drifting amphipods than in stationary ones, mainly due to differences in host size. However, for two parasites, the prevalence in drift samples was highest during daytime suggesting changes in host phototaxis likely related to the parasite's mode of transmission and site of infection. Alterations in drifting behavior may have important implications for G. pulex population dynamics and microsporidians' dispersal. The underlying mechanisms are more complex than previously thought.
Collapse
Affiliation(s)
- Sebastian Prati
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.
| | - Julian Enß
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Daniel S Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Annabell Huesken
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
| | - Christian K Feld
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Annemie Doliwa
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Sarabeev V, Balbuena J, Jarosiewicz A, Voronova N, Sueiro R, Leiro J, Ovcharenko M. Disentangling the determinants of symbiotic species richness in native and invasive gammarids (Crustacea, Amphipoda) of the Baltic region. Int J Parasitol 2023; 53:305-316. [PMID: 37004736 DOI: 10.1016/j.ijpara.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 04/03/2023]
Abstract
Dispersal of alien species is a global problem threatening native biodiversity. Co-introduction of non-native parasites and pathogens adds to the severity of this threat, but this indirect impact has received less attention. To shed light on the key factors determining the richness of microorganisms in native and invasive host species, we compared symbiotic (parasitic and epibiotic) communities of gammarids across different habitats and localities along the Baltic coast of Poland. Seven gammarid species, two native and five invasive, were sampled from 16 freshwater and brackish localities. Sixty symbiotic species of microorganisms of nine phyla were identified. This taxonomically diverse species assemblage of symbionts allowed us to assess the effect of host translocation and regional ecological determinants driving assembly richness in the gammarid hosts. Our results revealed that (i) the current assemblages of symbionts of gammarid hosts in the Baltic region are formed by native and co-introduced species; (ii) species richness of the symbiotic community was higher in the native Gammarus pulex than in the invasive hosts, probably reflecting a process of species loss by invasive gammarids in the new area and the distinct habitat conditions occupied by G. pulex and invasive hosts; (iii) both host species and locality were key drivers shaping assembly composition of symbionts, whereas habitat condition (freshwater versus brackish) was a stronger determinant of communities than geographic distance; (iv) the dispersion patterns of the individual species richness of symbiotic communities were best described by Poisson distributions; in the case of an invasive host, the dispersion of the rich species diversity may switch to a right-skewed negative binomial distribution, suggesting a host-mediated regulation process. We believe this is the first analysis of the symbiotic species richness in native and invasive gammarid hosts in European waters based on original field data and a broad range of taxonomic groups including Microsporidia, Choanozoa, Ciliophora, Apicomplexa, Platyhelminthes, Nematoda, Nematomorha, Acanthocephala and Rotifera, to document the patterns of species composition and distribution.
Collapse
|
6
|
Díaz-Morales DM, Khosravi M, Grabner DS, Nahar N, Bommarito C, Wahl M, Sures B. The trematode Podocotyle atomon modulates biochemical responses of Gammarus locusta to thermal stress but not its feeding rate or survival. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159946. [PMID: 36343811 DOI: 10.1016/j.scitotenv.2022.159946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Although parasitism is one of the most common species interactions in nature, the role of parasites in their hosts' thermal tolerance is often neglected. This study examined the ability of the trematode Podocotyle atomon to modulate the feeding and stress response of Gammarus locusta towards temperature. To accomplish this, infected and uninfected females and males of Gammarus locusta were exposed to temperatures (2, 6, 10, 14, 18, 22, 26, 30 °C) for six days. Shredding (change in food biomass) and defecation rates (as complementary measure to shredding rate) were measured as proxies for feeding activity. Lipid and glycogen concentrations (energy reserves), catalase (oxidative stress indicator), and phenoloxidase (an immunological response in invertebrates) were additionally measured. Gammarid survival was optimal at 10 °C as estimated by the linear model and was unaffected by trematode infection. Both temperature and sex influenced the direction of infection effect on phenoloxidase. Infected females presented lower phenoloxidase activity than uninfected females at 14 and 18 °C, while males remained unaffected by infection. Catalase activity increased at warmer temperatures for infected males and uninfected females. Higher activity of this enzyme at colder temperatures occurred only for infected females. Infection decreased lipid content in gammarids by 14 %. Infected males had significantly less glycogen than uninfected, while infected females showed the opposite trend. The largest infection effects were observed for catalase and phenoloxidase activity. An exacerbation of catalase activity in infected males at warmer temperatures might indicate (in the long-term) unsustainable, overwhelming, and perhaps lethal conditions in a warming sea. A decrease in phenoloxidase activity in infected females at warmer temperatures might indicate a reduction in the potential for fighting opportunistic infections. Results highlight the relevance of parasites and host sex in organismal homeostasis and provide useful insights into the organismal stability of a widespread amphipod in a warming sea.
Collapse
Affiliation(s)
- Dakeishla M Díaz-Morales
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany.
| | - Maral Khosravi
- GEOMAR Helmholtz Centre for Ocean Research, Benthic Ecology Department, Düsternbrooker Weg 20, Kiel 24105, Germany.
| | - Daniel S Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany.
| | - Nazmun Nahar
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany.
| | - Claudia Bommarito
- GEOMAR Helmholtz Centre for Ocean Research, Benthic Ecology Department, Düsternbrooker Weg 20, Kiel 24105, Germany.
| | - Martin Wahl
- GEOMAR Helmholtz Centre for Ocean Research, Benthic Ecology Department, Düsternbrooker Weg 20, Kiel 24105, Germany.
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany.
| |
Collapse
|
7
|
Microsporidian diversity in the aquatic isopod Asellus aquaticus. Parasitology 2022; 149:1729-1736. [PMID: 36117283 PMCID: PMC10090770 DOI: 10.1017/s003118202200124x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We conducted a molecular survey on microsporidian diversity in different lineages (operational taxonomic units = OTUs) of Asellus aquaticus from 30 sites throughout Europe. Host body length was determined, and DNA was extracted from host tissue excluding the intestine and amplified by microsporidian-specific primers. In total, 247 A. aquaticus specimens were analysed from which 26.7% were PCR-positive for microsporidians, with significantly more infections in larger individuals. Prevalence ranged between 10 and 90%. At 9 sites, no microsporidians were detected. A significant relationship was found between the frequency of infected individuals and habitat type, as well as host OTU. The lowest proportion of infected individuals was detected in spring-habitats (8.7%, n = 46) and the highest in ponds (37.7%, n = 53). Proportion of infected individuals among host OTUs A, D and J was 31.7, 21.7 and 32.1%, respectively. No infections were detected in OTU F. Our results are, however, accompanied by a partially low sample size, as only a minimum of 5 individuals was available at a few locations. Overall, 17 different microsporidian molecular taxonomic units (MICMOTUs) were distinguished with 5 abundant isolates (found in 4–17 host individuals) while the remaining 12 MICMOTUs were “rare” and found only in 1–3 host individuals. No obvious spatio-genetic pattern could be observed. The MICMOTUs predominantly belonged to Nosematida and Enterocytozoonida. The present study shows that microsporidians in A. aquaticus are abundant and diverse but do not show obvious patterns related to host genetic lineages or geography.
Collapse
|
8
|
Warren DA, Burgess AL, Karemera F, Bacela-Spychalska K, Stentiford GD, Bojko J. Histopathological survey for parasite groups in Gammarus varsoviensis (Amphipoda). DISEASES OF AQUATIC ORGANISMS 2022; 149:47-51. [PMID: 35510820 DOI: 10.3354/dao03658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Invasive non-native amphipods (Crustacea) are becoming a model system in which to explore the impact and diversity of invasive parasites-parasites that are carried along an invasion route with their hosts. Gammarus varsoviensis is a freshwater amphipod species that has a recently explored invasion history. We provide a histopathological survey for a putatively invasive non-native population of this amphipod, identifying 8 symbiotic groups: Acanthocephala, Rotifera, Digenea, ciliated protozoa, Haplosporidia, Microsporidia, 'Candidatus Aquirickettsiella', and a putative nudivirus, at various prevalence. Our survey indicates that the parasites have no sex bias and that each has the potential to be carried in either sex along an invasion route. We discuss the pathology and prevalence of the above symbiotic groups and whether those that are parasitic may pose a risk if G. varsoviensis were to carry them to novel locations.
Collapse
Affiliation(s)
- Daniel A Warren
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | | | | | | | | | | |
Collapse
|
9
|
Prati S, Grabner DS, Pfeifer SM, Lorenz AW, Sures B. Generalist parasites persist in degraded environments: a lesson learned from microsporidian diversity in amphipods. Parasitology 2022; 149:1-10. [PMID: 35485747 PMCID: PMC10090640 DOI: 10.1017/s0031182022000452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 11/07/2022]
Abstract
The present study provides new insight into suitable microsporidian–host associations. It relates regional and continental-wide host specialization in microsporidians infecting amphipods to degraded and recovering habitats across 2 German river catchments. It provides a unique opportunity to infer the persistence of parasites following anthropogenic disturbance and their establishment in restored rivers. Amphipods were collected in 31 sampling sites with differing degradation and restoration gradients. Specimens were morphologically (hosts) and molecularly identified (host and parasites). Amphipod diversity and abundance, microsporidian diversity, host phylogenetic specificity and continental-wide β-specificity were investigated and related to each other and/or environmental variables. Fourteen microsporidian molecular operational taxonomic units (MOTUs), mainly generalist parasites, infecting 6 amphipod MOTUs were detected, expanding the current knowledge on the host range by 17 interactions. There was no difference in microsporidian diversity and host specificity among restored and near-natural streams (Boye) or between those located in urban and rural areas (Kinzig). Similarly, microsporidian diversity was generally not influenced by water parameters. In the Boye catchment, host densities did not influence microsporidian MOTU richness across restored and near-natural sites. High host turnover across the geographical range suggests that neither environmental conditions nor host diversity plays a significant role in the establishment into restored areas. Host diversity and environmental parameters do not indicate the persistence and dispersal of phylogenetic host generalist microsporidians in environments that experienced anthropogenic disturbance. Instead, these might depend on more complex mechanisms such as the production of resistant spores, host switching and host dispersal acting individually or conjointly.
Collapse
Affiliation(s)
- Sebastian Prati
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Daniel S. Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Svenja M. Pfeifer
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Armin W. Lorenz
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| |
Collapse
|
10
|
Willis AR, Reinke AW. Factors That Determine Microsporidia Infection and Host Specificity. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:91-114. [PMID: 35544000 DOI: 10.1007/978-3-030-93306-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microsporidia are a large phylum of obligate intracellular parasites that infect an extremely diverse range of animals and protists. In this chapter, we review what is currently known about microsporidia host specificity and what factors influence microsporidia infection. Extensive sampling in nature from related hosts has provided insight into the host range of many microsporidia species. These field studies have been supported by experiments conducted in controlled laboratory environments which have helped to demonstrate host specificity. Together, these approaches have revealed that, while examples of generalist species exist, microsporidia specificity is often narrow, and species typically infect one or several closely related hosts. For microsporidia to successfully infect and complete their life cycle within a compatible host, several steps must occur, including spore germination, host cell invasion, and proliferation of the parasite within the host tissue. Many factors influence infection, including temperature, seasonality, nutrient availability, and the presence or absence of microbes, as well as the developmental stage, sex, and genetics of the host. Several studies have identified host genomic regions that influence resistance to microsporidia, and future work is likely to uncover molecular mechanisms of microsporidia host specificity in more detail.
Collapse
Affiliation(s)
- Alexandra R Willis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Abstract
Around 57.1% of microsporidia occupy aquatic environments, excluding a further 25.7% that utilise both terrestrial and aquatic systems. The aquatic microsporidia therefore compose the most diverse elements of the Microsporidia phylum, boasting unique structural features, variable transmission pathways, and significant ecological influence. From deep oceans to tropical rivers, these parasites are present in most aquatic environments and have been shown to infect hosts from across the Protozoa and Animalia. The consequences of infection range from mortality to intricate behavioural change, and their presence in aquatic communities often alters the overall functioning of the ecosystem.In this chapter, we explore aquatic microsporidian diversity from the perspective of aquatic animal health. Examples of microsporidian parasitism of importance to an aquacultural ('One Health') context and ecosystem context are focussed upon. These include infection of commercially important penaeid shrimp by Enterocytozoon hepatopenaei and interesting hyperparasitic microsporidians of wild host groups.Out of ~1500 suggested microsporidian species, 202 have been adequately taxonomically described using a combination of ultrastructural and genetic techniques from aquatic and semi-aquatic hosts. These species are our primary focus, and we suggest that the remaining diversity have additional genetic or morphological data collected to formalise their underlying systematics.
Collapse
Affiliation(s)
- Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
- National Horizons Centre, Teesside University, Darlington, UK.
| | - Grant D Stentiford
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| |
Collapse
|
12
|
Pang KL, Hassett BT, Shaumi A, Guo SY, Sakayaroj J, Chiang MWL, Yang CH, Jones EG. Pathogenic fungi of marine animals: A taxonomic perspective. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Weng M, Xie D, Zhang Q, Li A, Zhang J. Morphological and phylogenetic characterization of a new microsporidium, Triwangia gracilipes n. sp. From the freshwater shrimp Caridina gracilipes (Decapoda: Atyidae) in China. J Invertebr Pathol 2021; 187:107691. [PMID: 34798135 DOI: 10.1016/j.jip.2021.107691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
A new microsporidian species was described from the freshwater shrimp Caridina gracilipes collected from Lake Luoma located in Northern Jiangsu province, East China. The infected shrimps appeared generally opaque due to the presence of white cysts located in the connective tissues of the surface of the hepatopancreas. The earliest developmental stages observed were diplokaryotic meronts which were in direct contact with the host cell cytoplasm. Multinucleate sporogonial plasmodia developed into uninucleate sporoblasts which were enclosed in sporophorous vesicles. The parasite developed synchronously within an individual sporophorous vesicle. Mature spores were pyriform and monokaryotic, measuring 5.45 ± 0.18 (5.12-5.82) µm long and 3.57 ± 0.17 (3.18-3.92) µm wide. Anisofilar polar filaments coiled 10-12 turns and arranged in one row. Phylogenetic analysis based on the obtained SSU rDNA sequence indicated that the present species clustered with Triwangia caridina with high support value to form an independent branch which was placed at the basal position of a large clade of containing microsporidia of fishes, crustaceans and amphipods. Based on the morphological characters and ultrastructural features, as well as SSU rDNA-inferred phylogenetic relationships, a new species was erected and named as Triwangia gracilipes n. sp. The taxonomic affiliation of Triwangia was also primarily explored.
Collapse
Affiliation(s)
- Meiqi Weng
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Derong Xie
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
14
|
Kobak J, Rachalewski M, Bącela-Spychalska K. What doesn’t kill you doesn’t make you stronger: Parasites modify interference competition between two invasive amphipods. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.73734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We used a freshwater amphipod-microsporidian model (Ponto-Caspian hosts: Dikerogammarus villosus and D. haemobaphes, parasite: Cucumispora dikerogammari) to check whether parasites affect biological invasions by modulating behaviour and intra- and interspecific interactions between the invaders. We tested competition for shelter in conspecific and heterospecific male pairs (one or both individuals infected or non-infected). In general, amphipods of both species increased their shelter occupancy time when accompanied by infected rather than non-infected conspecifics and heterospecifics. Infected amphipods faced lower aggression from non-infected conspecifics. Moreover, D. villosus was more aggressive than D. haemobaphes and more aggressive towards conspecifics vs. heterospecifics. In summary, infection reduced the intra- and interspecific competitivity of amphipods, which became less capable of defending their shelters, despite their unchanged need for shelter occupancy. Dikerogammarus haemobaphes, commonly considered as a weaker competitor, displaced by D. villosus from co-occupied locations, was able to compete efficiently for the shelter with D. villosus when microsporidian infections appeared on the scene. This suggests that parasites may be important mediators of biological invasions, facilitating the existence of large intra- and interspecific assemblages of invasive alien amphipods.
Collapse
|
15
|
Park E, Poulin R. Two parasites in one host: spatiotemporal dynamics and co-occurrence of Microsporidia and Rickettsia in an amphipod host. Parasitology 2021; 148:1099-1106. [PMID: 34024289 PMCID: PMC11010212 DOI: 10.1017/s0031182021000810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 11/07/2022]
Abstract
Biological interactions can greatly influence the abundance of species. This is also true for parasitic species that share the same host. Microsporidia and Rickettsia are widespread intracellular parasites in populations of Paracalliope fluviatilis, the most common freshwater amphipods in New Zealand. Although both parasites coexist in many populations, it is unclear whether they interact with each other. Here, we investigated spatial−temporal dynamics and co-occurrence of the two parasites, Microsporidia and Rickettsia in P. fluviatilis hosts, across one annual cycle and in three different locations. Prevalence of both Microsporidia and Rickettsia changed over time. However, while the prevalence of Rickettsia varied significantly between sampling times, that of Microsporidia did not change significantly and remained relatively low. The two parasites therefore followed different temporal patterns. Also, the prevalence of both parasites differed among locations, though the two species reached their highest prevalence in different locations. Lastly, there was no evidence for positive or negative associations between the two parasite species; the presence of one parasite in an individual host does not appear to influence the probability of infection by the other parasite. Their respective prevalence may follow different patterns among populations on a larger spatial scale due to environmental heterogeneity across locations.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
16
|
Dubuffet A, Chauvet M, Moné A, Debroas D, Lepère C. A phylogenetic framework to investigate the microsporidian communities through metabarcoding and its application to lake ecosystems. Environ Microbiol 2021; 23:4344-4359. [PMID: 34081807 DOI: 10.1111/1462-2920.15618] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/29/2022]
Abstract
Microsporidia are obligate intracellular eukaryotic parasites known to parasitize many species of the animal kingdom as well as some protists. However, their diversity is underestimated, in part as a consequence of the failure of 'universal' primers to detect them in metabarcoding studies. Besides, due to the inconsistency between taxonomy and phylogenetic data, available databases may assign incorrectly sequences obtained with high-throughput sequencing. In this work, we developed a comprehensive reference database which positions microsporidian SSU rRNA gene sequences within a coherent ranked phylogenetic framework. We used this phylogenetic framework to study the microsporidian diversity in lacustrine ecosystems, focusing on < 150 μm planktonic size fractions. Our analysis shows a high diversity of Microsporidia, with the identification of 1531 OTUs distributed within seven clades, of which 76% were affiliated to clade IV2 and 20% to clade I (nomenclature presented hereby). About a quarter of the obtained sequences shared less than 85% identity to the closest known species, which might represent undescribed genera or families infecting small hosts. Variations in the abundance of Microsporidia were recorded between the two lakes sampled and across the sampling period, which might be explained by spatio-temporal variations of their potential hosts such as microeukaryotes and metazooplankton.
Collapse
Affiliation(s)
- Aurore Dubuffet
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Marina Chauvet
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Anne Moné
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Didier Debroas
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Cécile Lepère
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| |
Collapse
|
17
|
Park E, Poulin R. Revisiting the phylogeny of microsporidia. Int J Parasitol 2021; 51:855-864. [PMID: 33891934 DOI: 10.1016/j.ijpara.2021.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
Canonical microsporidians are a group of obligate intracellular parasites of a wide range of hosts comprising ~1,300 species of >220 genera. Microsporidians are related to fungi, and many characterised and uncharacterized groups closely related to them have been discovered recently, filling the knowledge gaps between them. These groups assigned to the superphylum Opisthosporidia have provided several important insights into the evolution of diverse intracellular parasitic lineages within the tree of eukaryotes. The most studied among opisthosporidians, canonical microsporidians, were known to science more than 160 years ago, however, the classification of canonical Microsporidia has been challenging due to common morphological homoplasy, and accelerated evolutionary rates. Instead of morphological characters, ssrRNA sequences have been used as the primary data for the classification of canonical microsporidians. Previous studies have produced a useful backbone of the microsporidian phylogeny, but provided only some nodal support, causing some confusion. Here, we reconstructed phylogenetic trees of canonical microsporidians using Bayesian and Maximum Likelihood inferences. We included rRNA sequences of 126 described/named genera, by far the broadest taxon coverage to date. Overall, our trees show similar topology and recovered four of the five main clades demonstrated in previous studies (Clades 1, 3, 4 and 5). Family level clades were well resolved within each major clade, but many were discordant with the recently revised classification. Therefore, revision and some reshuffling, especially within and between Clades 1 and 3 are required. We also reconstructed phylogenetic trees of Opisthosporidia to better integrate the evolutionary history of canonical microsporidians in a broader context. We discuss several traits shared only by canonical microsporidians that may have contributed to their striking ecological success in diverse metazoans. More targeted studies on the neglected host groups will be of value for a better understanding of the evolutionary history of these interesting intracellular parasites.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand.
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
18
|
Quiles A, Rigaud T, Wattier RA, Grabowski M, Bacela Spychalska K. Wide geographic distribution of overlooked parasites: Rare Microsporidia in Gammarus balcanicus, a species complex with a high rate of endemism. Int J Parasitol Parasites Wildl 2021; 14:121-129. [PMID: 33604238 PMCID: PMC7876520 DOI: 10.1016/j.ijppaw.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 11/24/2022]
Abstract
Parasites and other symbionts deeply influence host organisms, and no living organism can be considered to have evolved independent of its symbionts. The first step towards understanding symbiotic influences upon host organisms is a strong supporting knowledge of parasite/symbiont diversity. Parasites of freshwater amphipods are diverse, with Microsporidia being a major group. These intracellular parasites impact gammarid fitness in different ways, ranging from reduced fitness to increased fecundity. Many Microsporidia have been recorded using molecular data, with multiple taxa pending formal taxonomic description. While some parasites are common, others are known only through sporadic records of single infections. In this study, we focus on rare/sporadic microsporidian infections within Gammarus balcanicus, a host species complex with a high level of endemism. In addition to enriching our knowledge on Microsporidia parasite diversity in amphipod hosts, we test whether these symbionts are specific to G. balcanicus or if they are the same taxa infecting other gammarid species. Of 2231 hosts from 87 sites, we catalogued 29 sequences of "rare" Microsporidia clustering into 19 haplogroups. These haplogroups cluster into 11 lineages: four pre-described taxa (Cucumispora roeselum, C. ornata, C. dikerogammari and Enterocytospora artemiae) and seven 'Molecular Operational Taxonomic Units', which are known from previously published studies to infect other European amphipod species. Our study significantly widens the geographic range of these Microsporidia and expands the known spectrum of hosts infected. Our results suggest that these parasites are ancient infections of European gammarids. For some host-parasite systems, we hypothesize that the common parasite ancestors that infected the hosts' common ancestors, diversified alongside host diversification. For others, we observe Microsporidia taxa with wide host ranges that do not follow host phylogeny.
Collapse
Affiliation(s)
- Adrien Quiles
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Thierry Rigaud
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Rémi A. Wattier
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Michal Grabowski
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Karolina Bacela Spychalska
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| |
Collapse
|
19
|
Arenas-Viveros D, Sánchez-Vendizú P, Giraldo A, Salazar-Bravo J. A new species of Cynomops (Chiroptera: Molossidae) from the northwestern slope of the Andes. MAMMALIA 2021. [DOI: 10.1515/mammalia-2020-0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
The systematics and taxonomy of the broadly distributed bats of the genus Cynomops has changed considerably in the last few years. Among the major changes, Cynomops abrasus was split into two species of large-bodied forms (Cynomops mastivus and C. abrasus) distributed east of the Andes. However, large Colombian specimens identified as C. abrasus from the western side of the Andes had yet to be included in any revisionary work. Phylogenetic analysis performed in this study, using mtDNA sequences (Cytochrome-b), revealed that these Colombian individuals are more closely related to Cynomops greenhalli. Morphological and molecular data allowed us to recognize populations from western Colombia, western Ecuador and northwestern Peru, as members of a new species of Cynomops. Characters that allow for its differentiation from C. greenhalli include a larger forearm, paler but more uniform ventral pelage, more globular braincase, and well-developed zygomatic processes of the maxilla (almost reaching the postorbital constriction). This study serves as another example of the importance of including multiple lines of evidence in the recognition of a new species. Given its rarity and the advanced transformation of its habitat, this new species is particularly important from a conservation perspective.
Collapse
Affiliation(s)
- Daniela Arenas-Viveros
- Department of Biological Sciences , Texas Tech University , 2901 Main St , Lubbock , TX 79401 , USA
| | - Pamela Sánchez-Vendizú
- Departamento de Mastozoología , Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos , Lima , Peru
| | - Alan Giraldo
- Departamento de Biología , Universidad del Valle , Cali , Colombia
| | - Jorge Salazar-Bravo
- Department of Biological Sciences , Texas Tech University , 2901 Main St , Lubbock , TX 79401 , USA
- Instituto Nacional de Biodiversidad , Quito , Ecuador
| |
Collapse
|
20
|
Cormier A, Chebbi MA, Giraud I, Wattier R, Teixeira M, Gilbert C, Rigaud T, Cordaux R. Comparative Genomics of Strictly Vertically Transmitted, Feminizing Microsporidia Endosymbionts of Amphipod Crustaceans. Genome Biol Evol 2020; 13:5995313. [PMID: 33216144 DOI: 10.1093/gbe/evaa245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Microsporidia are obligate intracellular eukaryotic parasites of vertebrates and invertebrates. Microsporidia are usually pathogenic and undergo horizontal transmission or a mix of horizontal and vertical transmission. However, cases of nonpathogenic microsporidia, strictly vertically transmitted from mother to offspring, have been reported in amphipod crustaceans. Some of them further evolved the ability to feminize their nontransmitting male hosts into transmitting females. However, our understanding of the evolution of feminization in microsporidia is hindered by a lack of genomic resources. We report the sequencing and analysis of three strictly vertically transmitted microsporidia species for which feminization induction has been demonstrated (Nosema granulosis) or is strongly suspected (Dictyocoela muelleri and Dictyocoela roeselum), along with a draft genome assembly of their host Gammarus roeselii. Contrary to horizontally transmitted microsporidia that form environmental spores that can be purified, feminizing microsporidia cannot be easily isolated from their host cells. Therefore, we cosequenced symbiont and host genomic DNA and devised a computational strategy to obtain genome assemblies for the different partners. Genomic comparison with feminizing Wolbachia bacterial endosymbionts of isopod crustaceans indicated independent evolution of feminization in microsporidia and Wolbachia at the molecular genetic level. Feminization thus represents a remarkable evolutionary convergence of eukaryotic and prokaryotic microorganisms. Furthermore, a comparative genomics analysis of microsporidia allowed us to identify several candidate genes for feminization, involving functions such as DNA binding and membrane fusion. The genomic resources we generated contribute to establish Gammarus roeselii and its microsporidia symbionts as a new model to study the evolution of symbiont-mediated feminization.
Collapse
Affiliation(s)
- Alexandre Cormier
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, France
| | - Mohamed Amine Chebbi
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, France
| | - Rémi Wattier
- Laboratoire Biogéosciences, Université Bourgogne Franche-Comté, UMR CNRS 6282, Dijon, France
| | - Maria Teixeira
- Laboratoire Biogéosciences, Université Bourgogne Franche-Comté, UMR CNRS 6282, Dijon, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Thierry Rigaud
- Laboratoire Biogéosciences, Université Bourgogne Franche-Comté, UMR CNRS 6282, Dijon, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, France
| |
Collapse
|
21
|
Quiles A, Wattier RA, Bacela-Spychalska K, Grabowski M, Rigaud T. Dictyocoela microsporidia diversity and co-diversification with their host, a gammarid species complex (Crustacea, Amphipoda) with an old history of divergence and high endemic diversity. BMC Evol Biol 2020; 20:149. [PMID: 33176694 PMCID: PMC7659068 DOI: 10.1186/s12862-020-01719-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the processes of co-evolution between parasites and their hosts are well known, evidence of co-speciation remains scarce. Microsporidian intracellular parasites, due to intimate relationships with their hosts and mixed mode of transmission (horizontal but also vertical, from mother to offspring), may represent an interesting biological model for investigating co-speciation. Amphipod crustaceans, especially gammarids, are regular hosts of microsporidian parasites, in particular the Dictyocoela spp., which have so far been found limited to these amphipods and are known to use a vertical mode of transmission. The amphipod genus Gammarus has a diversification history spanning the last 50-60 Mya and an extensive cryptic diversity in most of the nominal species. Here, we investigated the degree of co-diversification between Dictyocoela and Gammarus balcanicus, an amphipod with high degrees of ancient cryptic diversification and lineage endemism, by examining the genetic diversity of these parasites over the entire geographic range of the host. We hypothesised that the strong host diversification and vertical transmission of Dictyocoela would promote co-diversification. RESULTS Using the parasite SSU rDNA as a molecular marker, analyzing 2225 host specimens from 88 sites covering whole host range, we found 31 haplogroups of Dictyocoela, 30 of which were novel, belonging to four Dictyocoela species already known to infect other Gammarus spp. The relationships between Dictyocoela and gammarids is therefore ancient, with the speciation in parasites preceding those of the hosts. Each novel haplogroup was nevertheless specific to G. balcanicus, leaving the possibility for subsequent co-diversification process during host diversification. A Procrustean Approach to Co-phylogeny (PACo) analysis revealed that diversification of Dictyocoela was not random with respect to that of the host. We found high degrees of congruence between the diversification of G. balcanicus and that of Dictyocoela roeselum and D. muelleri. However, we also found some incongruences between host and Dictyocoela phylogenies, e.g. in D. duebenum, probably due to host shifts between different G. balcanicus cryptic lineages. CONCLUSION The evolutionary history of Dictyocoela and Gammarus balcanicus represents an example of an overall host-parasite co-diversification, including cases of host shifts.
Collapse
Affiliation(s)
- Adrien Quiles
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 boulevard Gabriel, 21000, Dijon, France
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Rémi A Wattier
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 boulevard Gabriel, 21000, Dijon, France
| | - Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Michal Grabowski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Thierry Rigaud
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 boulevard Gabriel, 21000, Dijon, France.
| |
Collapse
|
22
|
The Ecological Importance of Amphipod–Parasite Associations for Aquatic Ecosystems. WATER 2020. [DOI: 10.3390/w12092429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amphipods are a key component of aquatic ecosystems due to their distribution, abundance and ecological role. They also serve as hosts for many micro- and macro-parasites. The importance of parasites and the necessity to include them in ecological studies has been increasingly recognized in the last two decades by ecologists and conservation biologists. Parasites are able to alter survival, growth, feeding, mobility, mating, fecundity and stressors’ response of their amphipod hosts. In addition to their modulating effects on host population size and dynamics, parasites affect community structure and food webs in different ways: by increasing the susceptibility of amphipods to predation, by quantitatively and qualitatively changing the host diet, and by modifying competitive interactions. Human-induced stressors such as climate change, pollution and species introduction that affect host–parasite equilibrium, may enhance or reduce the infection effects on hosts and ecosystems. The present review illustrates the importance of parasites for ecosystem processes using examples from aquatic environments and amphipods as a host group. As seen from the literature, amphipod–parasite systems are likely a key component of ecological processes, but more quantitative data from natural populations and field evidence are necessary to support the results obtained by experimental research.
Collapse
|
23
|
Park E, Jorge F, Poulin R. Shared geographic histories and dispersal contribute to congruent phylogenies between amphipods and their microsporidian parasites at regional and global scales. Mol Ecol 2020; 29:3330-3345. [PMID: 32706932 DOI: 10.1111/mec.15562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
In parasites that strongly rely on a host for dispersal, geographic barriers that act on the host will simultaneously influence parasite distribution as well. If their association persists over macroevolutionary time it may result in congruent phylogenetic and phylogeographic patterns due to shared geographic histories. Here, we investigated the level of congruent evolutionary history at a regional and global scale in a highly specialised parasite taxon infecting hosts with limited dispersal abilities: the microsporidians Dictyocoela spp. and their amphipod hosts. Dictyocoela can be transmitted both vertically and horizontally and is the most common microsporidian genus occurring in amphipods in Eurasia. However, little is known about its distribution elsewhere. We started by conducting molecular screening to detect microsporidian parasites in endemic amphipod species in New Zealand; based on phylogenetic analyses, we identified nine species-level microsporidian taxa including six belonging to Dictyocoela. With a distance-based cophylogenetic analysis at the regional scale, we identified overall congruent phylogenies between Paracalliope, the most common New Zealand freshwater amphipod taxon, and their Dictyocoela parasites. Also, hosts and parasites showed similar phylogeographic patterns suggesting shared biogeographic histories. Similarly, at a global scale, phylogenies of amphipod hosts and their Dictyocoela parasites showed broadly congruent phylogenies. The observed patterns may have resulted from covicariance and/or codispersal, suggesting that the intimate association between amphipods and Dictyocoela may have persisted over macroevolutionary time. We highlight that shared biogeographic histories could play a role in the codiversification of hosts and parasites at a macroevolutionary scale.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Fátima Jorge
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Bojko J, Behringer DC, Moler P, Stratton CE, Reisinger L. A new lineage of crayfish-infecting Microsporidia: The Cambaraspora floridanus n. gen. n. sp. (Glugeida: Glugeidae) complex from Floridian freshwaters (USA). J Invertebr Pathol 2020; 171:107345. [DOI: 10.1016/j.jip.2020.107345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/26/2022]
|
25
|
Grabner D, Weber D, Weigand AM. Updates to the sporadic knowledge on microsporidian infections in groundwater amphipods (Crustacea, Amphipoda, Niphargidae). SUBTERRANEAN BIOLOGY 2020. [DOI: 10.3897/subtbiol.33.48633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A set of 69 specimens from 19 groundwater species of the genera Niphargus, Niphargellus, Microniphargus and Crangonyx was genetically screened for microsporidian infections. Samples mostly originated from groundwater-dependent spring environments (71%), natural caves (9%) and artificial caverns/tunnels (13%). Amphipod hosts were identified by morphology and/or molecular data, whereas microsporidian parasites were characterised by a genetic screening assay targeting a section of the small subunit rRNA gene.
Five microsporidian species (Dictyocoela duebenum; Nosema sp.; Hyperspora aquatica and two undescribed Microsporidium spp.) were revealed from 13 host specimens (Niphargus schellenbergi; N. aquilex lineages B, F and G; Niphargellus arndti). In particular N. schellenbergi was frequently infected with D. duebenum as well as a new and potentially niphargid-specific Nosema sp. identified in Niphargellus arndti.
Our results shed further light on the still largely unknown diversity and specificity of microsporidian parasites in groundwater amphipods and subterranean animals in general.
Collapse
|
26
|
Drozdova P, Madyarova E, Dimova M, Gurkov A, Vereshchagina K, Adelshin R, Timofeyev M. The diversity of microsporidian parasites infecting the Holarctic amphipod Gammarus lacustris from the Baikal region is dominated by the genus Dictyocoela. J Invertebr Pathol 2020; 170:107330. [PMID: 31978415 DOI: 10.1016/j.jip.2020.107330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 11/18/2022]
Abstract
Microsporidia are a highly diverse group of single-celled eukaryotic parasites related to fungi and infecting hosts belonging to all groups of eukaryotes, including some protists, invertebrate and vertebrate animals. We investigated the diversity of microsporidia in the Holarctic amphipod species Gammarus lacustris from mostly, but not limited to, water bodies in the Lake Baikal region. Ribosomal DNA sequencing and host transcriptome sequencing data from various works show that this species is predominantly infected by representatives of the genus Dictyocoela and probably has some features underlying this specific interaction.
Collapse
Affiliation(s)
- Polina Drozdova
- Irkutsk State University, Karl Marx str. 1, 664003 Irkutsk, Russia
| | - Ekaterina Madyarova
- Irkutsk State University, Karl Marx str. 1, 664003 Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, 664003 Irkutsk, Russia
| | - Mariya Dimova
- Irkutsk State University, Karl Marx str. 1, 664003 Irkutsk, Russia
| | - Anton Gurkov
- Irkutsk State University, Karl Marx str. 1, 664003 Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, 664003 Irkutsk, Russia
| | - Kseniya Vereshchagina
- Irkutsk State University, Karl Marx str. 1, 664003 Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, 664003 Irkutsk, Russia
| | - Renat Adelshin
- Irkutsk State University, Karl Marx str. 1, 664003 Irkutsk, Russia; Irkutsk Anti-Plague Research Institute of Siberia and Far East, Trilissera str. 78, 664047 Irkutsk, Russia
| | - Maxim Timofeyev
- Irkutsk State University, Karl Marx str. 1, 664003 Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, 664003 Irkutsk, Russia.
| |
Collapse
|
27
|
Bojko J. The mitochondrial genome of UK (non-native) Dikerogammarus haemobaphes (Amphipoda: Gammaridae) informs upon Dikerogammarus evolution, invasions and associated microparasites. HYDROBIOLOGIA 2019; 847:229-242. [PMID: 32226107 PMCID: PMC7100570 DOI: 10.1007/s10750-019-04084-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
The amphipod Dikerogammarus haemobaphes is a high-risk carrier of parasites that impact wildlife in its non-native range. Studies using the mitochondrial genes, Cytochrome Oxidase Sub-Unit 1 (cox1) and small-subunit ribosomal RNA gene (16S), provide some nucleotide detail for understanding the evolution and phylogeography of this species. Despite this, the origins of the invasion remain unknown, as do the origins of its parasites. This study provides the full annotated mitochondrial genome (15,460 bp) of D. haemobaphes, consisting of 2 rRNAs, 24 tRNAs and 14 protein coding genes. Mitochondrial genes from the UK isolate are compared to existing data on NCBI and are used in a concatenated phylogenetic approach and identify D. haemobaphes as an early member of the Gammaridae (Amphipoda). Viral, bacterial, protistan and microsporidian parasites are present across the Gammaridae, including D. haemobaphes, suggesting the ancestor of the Gammaridae harboured related diseases, and that further screening of amphipods is likely to reveal further microparasite diversity. This correlation suggests that other gammarid invaders have the potential to harbour a range of microparasites. The mitochondrial genome of this species will act a resource to facilitate our understanding of geneflow, disease epidemiology and evolutionary history in this invasion-disease model.
Collapse
Affiliation(s)
- Jamie Bojko
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611 USA
- School of Forest Resource and Conservation, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
28
|
Bojko J, Ovcharenko M. Pathogens and other symbionts of the Amphipoda: taxonomic diversity and pathological significance. DISEASES OF AQUATIC ORGANISMS 2019; 136:3-36. [PMID: 31575832 DOI: 10.3354/dao03321] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With over 10000 species of Amphipoda currently described, this order is one of the most diverse groups of freshwater and marine Crustacea. Members of this group are globally distributed, and many are keystone species and ecosystem engineers within their respective ecologies. As with most organisms, disease is a key factor that can alter population size, behaviour, survival, invasion potential and physiology of amphipod hosts. This review explores symbiont diversity and pathology in amphipods by coalescing a range of current and historical literature to provide the first full review of our understanding of amphipod disease. The review is broken into 2 parts. The first half explores amphipod microparasites, which include data pertaining to viruses, bacteria, fungi, oomycetes, microsporidians, dinoflagellates, myxozoans, ascetosporeans, mesomycetozoeans, apicomplexans and ciliophorans. The second half reports the metazoan macroparasites of Amphipoda, including rotifers, trematodes, acanthocephalans, nematodes, cestodes and parasitic Crustacea. In all cases we have endeavoured to provide a complete list of known species that cause disease in amphipods, while also exploring the effects of parasitism. Although our understanding of disease in amphipods requires greater research efforts to better define taxonomic diversity and host effects of amphipod symbionts, research to date has made huge progress in cataloguing and experimentally determining the effects of disease upon amphipods. For the future, we suggest a greater focus on developing model systems that use readily available amphipods and diseases, which can be comparable to the diseases in other Crustacea that are endangered, economically important or difficult to house.
Collapse
Affiliation(s)
- Jamie Bojko
- University of Florida, School of Forest Resources and Conservation, Aquatic Pathobiology Laboratory, 2173 Mowry Road, Gainesville, Florida 32611, USA
| | | |
Collapse
|
29
|
Quiles A, Bacela-Spychalska K, Teixeira M, Lambin N, Grabowski M, Rigaud T, Wattier RA. Microsporidian infections in the species complex Gammarus roeselii (Amphipoda) over its geographical range: evidence for both host-parasite co-diversification and recent host shifts. Parasit Vectors 2019; 12:327. [PMID: 31253176 PMCID: PMC6599290 DOI: 10.1186/s13071-019-3571-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/19/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Microsporidians are obligate endoparasites infecting taxonomically diverse hosts. Both vertical (from mother to eggs) and horizontal (between conspecifics or between species) transmission routes are known. While the former may promote co-speciation and host-specificity, the latter may promote shifts between host species. Among aquatic arthropods, freshwater amphipod crustaceans are hosts for many microsporidian species. However, despite numerous studies, no general pattern emerged about host specificity and co-diversification. In south-eastern Europe, the gammarid Gammarus roeselii is composed of 13 cryptic lineages of Miocene to Pleistocene age but few genotypes of one lineage have spread postglacially throughout north-western Europe. Based on nearly 100 sampling sites covering its entire range, we aim to: (i) explore the microsporidian diversity present in G. roeselii and their phylogenetic relationships, especially in relation to the parasites infecting other Gammaridae; (ii) test if the host phylogeographical history might have impacted host-parasite association (e.g. co-diversifications or recent host shifts from local fauna). METHODS We used part of the small subunit rRNA gene as source of sequences to identify and determine the phylogenetic position of the microsporidian taxa infecting G. roeselii. RESULTS Microsporidian diversity was high in G. roeselii with 24 detected haplogroups, clustered into 18 species-level taxa. Ten microsporidian species were rare, infecting a few individual hosts in a few populations, and were mostly phylogenetically related to parasites from other amphipods or various crustaceans. Other microsporidians were represented by widespread genera with high prevalence: Nosema, Cucumispora and Dictyocoela. Two contrasting host association patterns could be observed. First, two vertically transmitted microsporidian species, Nosema granulosis and Dictyocoela roeselum, share the pattern of infecting G. roeselii over most of its range and are specific to this host suggesting the co-diversification scenario. This pattern contrasted with that of Dictyocoela muelleri, the three species of Cucumispora, and the rare parasites, present only in the recently colonised region by the host. These patterns suggest recent acquisitions from local host species, after the recent spread of G. roeselii. CONCLUSIONS Microsporidians infecting G. roeselii revealed two scenarios of host-parasite associations: (i) ancient associations with vertically transmitted parasites that probably co-diversified with their hosts, and (ii) host shifts from local host species, after the postglacial spread of G. roeselii.
Collapse
Affiliation(s)
- Adrien Quiles
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Maria Teixeira
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Nicolas Lambin
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Michal Grabowski
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Thierry Rigaud
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Rémi André Wattier
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
30
|
Dimova M, Madyarova E, Gurkov A, Drozdova P, Lubyaga Y, Kondrateva E, Adelshin R, Timofeyev M. Genetic diversity of Microsporidia in the circulatory system of endemic amphipods from different locations and depths of ancient Lake Baikal. PeerJ 2018; 6:e5329. [PMID: 30083461 PMCID: PMC6076988 DOI: 10.7717/peerj.5329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/06/2018] [Indexed: 01/03/2023] Open
Abstract
Endemic amphipods (Amphipoda, Crustacea) of the most ancient and large freshwater Lake Baikal (Siberia, Russia) are a highly diverse group comprising >15% of all known species of continental amphipods. The extensive endemic biodiversity of Baikal amphipods provides the unique opportunity to study interactions and possible coevolution of this group and their parasites, such as Microsporidia. In this study, we investigated microsporidian diversity in the circulatory system of 22 endemic species of amphipods inhabiting littoral, sublittoral and deep-water zones in all three basins of Lake Baikal. Using molecular genetic techniques, we found microsporidian DNA in two littoral (Eulimnogammarus verrucosus, Eulimnogammarus cyaneus), two littoral/sublittoral (Pallasea cancellus, Eulimnogammarus marituji) and two sublittoral/deep-water (Acanthogammarus lappaceus longispinus, Acanthogammarus victorii maculosus) endemic species. Twenty sequences of the small subunit ribosomal (SSU) rDNA were obtained from the haemolymph of the six endemic amphipod species sampled from 0–60 m depths at the Southern Lake Baikal’s basin (only the Western shore) and at the Central Baikal. They form clusters with similarity to Enterocytospora, Cucumispora, Dictyocoela, and several unassigned Microsporidia sequences, respectively. Our sequence data show similarity to previously identified microsporidian DNA from inhabitants of both Lake Baikal and other water reservoirs. The results of our study suggest that the genetic diversity of Microsporidia in haemolymph of endemic amphipods from Lake Baikal does not correlate with host species, geographic location or depth factors but is homogeneously diverse.
Collapse
Affiliation(s)
| | - Ekaterina Madyarova
- Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Anton Gurkov
- Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | | | - Yulia Lubyaga
- Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | | | - Renat Adelshin
- Irkutsk State University, Irkutsk, Russia.,Irkutsk Anti-Plague Research Institute of Siberia and Far East, Irkutsk, Russia
| | | |
Collapse
|