1
|
Xu S, Qi H, Gong W, Xu J, Jia X. The tumor-promoting role of methionyl-tRNA synthetase 1 in ovarian cancer and its potential mechanisms. Med Oncol 2025; 42:187. [PMID: 40301173 DOI: 10.1007/s12032-025-02741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
Methionyl-tRNA synthetase 1 (MARS) is an enzyme that belongs to the family of aminoacyl-tRNA synthetases. High levels of MARS have been shown to correlate with a poorer prognosis in a variety of tumor types. However, its specific role and the underlying mechanism in cancer, especially in ovarian cancer, are not well understood. This study aims to investigate the roles and potential mechanisms of MARS in ovarian cancer. Our findings reveal that MARS protein levels are elevated in ovarian cancer tissues, and that high MARS expression is associated with reduced overall survival and progression-free survival. Silencing of MARS significantly inhibited the proliferation, colony formation, migration, and invasion of ovarian cancer cells in vitro and mildly suppressed ovarian tumor growth in vivo. MARS silencing contributes to the upregulation of p53 protein. Moreover, RNA sequencing and subsequent in vitro and in vivo validation showed that the TP53-regulated cell cycle genes and immune-related cell surface receptor and cytokine-encoding genes were downregulated following MARS knockdown, suggesting a potential mechanism for the observed attenuation of tumor progression. Our results suggest MARS as a potential biomarker and therapeutic target in ovarian cancer, highlighting the need for further investigation into its multifaceted role in tumor biology and immune cell function.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Gynecology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, PR China
| | - Huizhi Qi
- Department of Gynecology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, PR China
| | - Weijian Gong
- Department of Gynecology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, PR China
| | - Juan Xu
- Nanjing Women and Children's Healthcare Institute, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, PR China.
- Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing, 210004, PR China.
| | - Xuemei Jia
- Department of Gynecology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, PR China.
- Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing, 210004, PR China.
| |
Collapse
|
2
|
Lemos I, Freitas-Dias C, Hipólito A, Ramalho J, Carteni F, Gonçalves LG, Mazzoleni S, Serpa J. Cell-Free DNA (cfDNA) Regulates Metabolic Remodeling in the ES-2 Ovarian Carcinoma Cell Line, Influencing Cell Proliferation, Quiescence, and Chemoresistance in a Cell-of-Origin-Specific Manner. Metabolites 2025; 15:244. [PMID: 40278372 PMCID: PMC12029194 DOI: 10.3390/metabo15040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The cell-free DNA (cfDNA) is an extracellular fragmented DNA found in body fluids in physiological and pathophysiological contexts. In cancer, cfDNA has been pointed out as a marker for disease diagnosis, staging, and prognosis; however, little is known about its biological role. Methods: The role of cfDNA released by ES-2 ovarian cancer cells was investigated, along with the impact of glucose bioavailability and culture duration in the cfDNA-induced phenotype. The effect of cfDNA on ES-2 cell proliferation was evaluated by proliferation curves, and cell migration was assessed through wound healing. We explored the impact of different cfDNA variants on ES-2 cells' metabolic profile using nuclear magnetic resonance (NMR) spectroscopy and cisplatin resistance through flow cytometry. Moreover, we assessed the protein levels of DNA-sensitive Toll-like receptor 9 (TLR9) by immunofluorescence and its colocalization with lysosome-associated membrane protein 1 (LAMP1). Results: This study demonstrated that despite inducing similar effects, different variants of cfDNA promote different effects on cells derived from the ES-2 cell line. We observed instant reactions of adopting the metabolic profile that brings back the cell functioning of more favorable culture conditions supporting proliferation and resembling the cell of origin of the cfDNA variant, as observed in unselected ES-2 cells. However, as a long-term selective factor, certain cfDNA variants induced quiescence that favors the chemoresistance of a subset of cancer cells. Conclusions: Therefore, different tumoral microenvironments may generate cfDNA variants that will impact cancer cells differently, orchestrating the disease fate.
Collapse
Affiliation(s)
- Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
| | - Fabrizio Carteni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli “Federico II”, Portici, 80055 Naples, Italy; (F.C.); (S.M.)
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal;
| | - Stefano Mazzoleni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli “Federico II”, Portici, 80055 Naples, Italy; (F.C.); (S.M.)
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| |
Collapse
|
3
|
Lemos I, Freitas-Dias C, Hipólito A, Ramalho J, Carteni F, Gonçalves LG, Mazzoleni S, Serpa J. Cell-Free DNA (cfDNA) Regulates Metabolic Remodeling, Sustaining Proliferation, Quiescence, and Migration in MDA-MB-231, a Triple-Negative Breast Carcinoma (TNBC) Cell Line. Metabolites 2025; 15:227. [PMID: 40278356 PMCID: PMC12029764 DOI: 10.3390/metabo15040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The clinical relevance of circulating cell-free DNA (cfDNA) in oncology has gained significant attention, with its potential as a biomarker for cancer diagnosis and monitoring. However, its precise role in cancer biology and progression remains unclear. cfDNA in cancer patients' blood has been shown to activate signaling pathways, such as those mediated by toll-like receptors (TLRs), suggesting its involvement in cancer cell adaptation to the tumor microenvironment. Methods: This impact of cfDNA released from MDA-MB-231, a triple-negative breast cancer (TNBC) cell line was assessed, focusing on glucose availability and culture duration. The impact of cfDNA on the proliferation of MDA-MB-231 cells was investigated using proliferation curves, while cellular migration was evaluated through wound healing assays. The metabolic alterations induced by distinct cfDNA variants in MDA-MB-231 cells were investigated through nuclear magnetic resonance (NMR) spectroscopy, and their effect on cisplatin resistance was evaluated using flow cytometry. Furthermore, the expression levels of DNA-sensitive Toll-like receptor 9 (TLR9) were quantified via immunofluorescence, alongside its colocalization with lysosome-associated membrane protein 1 (LAMP1). Results: This study indicates that cfDNA facilitates metabolic adaptation, particularly under metabolic stress, by modulating glucose and glutamine consumption, key pathways in tumor cell metabolism. Exposure to cfDNA induced distinct metabolic shifts, favoring energy production through oxidative phosphorylation. The anti-cancer activity of cfDNA isolated from conditioned media of cells cultured under stressful conditions is influenced by the culture duration, emphasizing the importance of adaptation and se-lection in releasing cfDNA that can drive pro-tumoral processes. Additionally, cfDNA exposure influenced cell proliferation, quiescence, and migration, processes linked to metastasis and treatment resistance. These findings underscore cfDNA as a key mediator of metabolic reprogramming and adaptive responses in cancer cells, contributing to tumor progression and therapy resistance. Furthermore, the activation of TLR9 signaling suggests a mechanistic basis for cfDNA-induced phenotypic changes. Conclusions: Overall, cfDNA serves as a crucial signaling molecule in the tumor microenvironment, orchestrating adaptive processes that enhance cancer cell survival and progression.
Collapse
Affiliation(s)
- Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
| | - Fabrizio Carteni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli “Federico II”, Portici, 80055 Naples, Italy; (F.C.); (S.M.)
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal;
| | - Stefano Mazzoleni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli “Federico II”, Portici, 80055 Naples, Italy; (F.C.); (S.M.)
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (I.L.); (C.F.-D.); (A.H.); (J.R.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| |
Collapse
|
4
|
Wang N, Chen M, Wu M, Liao Y, Xia Q, Cai Z, He C, Tang Q, Zhou Y, Zhao L, Zou Z, Chen Y, Han L. High-adhesion ovarian cancer cell resistance to ferroptosis: The activation of NRF2/FSP1 pathway by junctional adhesion molecule JAM3. Free Radic Biol Med 2025; 228:1-13. [PMID: 39706500 DOI: 10.1016/j.freeradbiomed.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Ovarian cancer remains a significant challenge due to the lack of effective treatment and the resistance to conventional therapies. Ferroptosis, a form of regulated cell death characterized by iron-depend and lipid peroxidation, has emerged as a potential therapeutic target in cancer. Ovarian cancer has been reported to exert an "iron addiction" phenotype which makes it is susceptible to ferroptosis inducers. However, we found here that high-adhesion ovarian cancer cells were resistant to ferroptosis. Mechanistically, by PCR array, we identified junctional adhesion molecule 3 (JAM3) as a key mediator of ferroptosis resistance in high-adhesion ovarian cancer cells. Knockdowning and blocking JAM3 sensitized cancer cells to ferroptosis inducers RSL3 and erastin, while JAM3 overexpression conferred resistance to these agents. In addition, JAM3 also promoted ovarian cancer cells resistance to chemotherapeutic agent cisplatin in vitro and in vivo by inhibiting ferroptosis. Furthermore, we demonstrated that JAM3 promoted ferroptosis resistance through NRF2-induced upregulation of FSP1, a critical suppressor of lipid peroxidation. Inhibition of the NRF2/FSP1 pathway eliminated high-adhesion, JAM3 overexpressed ovarian cancer cells resistance to ferroptosis, and decreased cancer cells resistance to cisplatin. Moreover, JAM3 high expression was associated with poor prognosis in patients with ovarian cancer. Altogether, this study provided novel insights into the molecular mechanisms underlying ferroptosis resistance and identify JAM3 as a potential therapeutic target for combating drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Ning Wang
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Min Chen
- The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511300, China
| | - Manting Wu
- The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511300, China
| | - Yuan Liao
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qing Xia
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zheyou Cai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Chengsi He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Yuan Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Lei Zhao
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| | - Yibing Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China.
| | - Liping Han
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
5
|
Woo HY, An JM, Park MY, Han A, Kim Y, Kang J, Ahn S, Min SK, Ha J, Kim D, Min S. Cysteine as an Innovative Biomarker for Kidney Injury. Transplantation 2025; 109:309-318. [PMID: 39049125 DOI: 10.1097/tp.0000000000005138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND Kidney transplantation is a widely used treatment for end-stage kidney disease. Nevertheless, the incidence of acute kidney injury (AKI) in deceased donors poses a potential hazard because it significantly increases the risk of delayed graft function and potentially exerts an influence on the kidney allograft outcome. It is crucial to develop a diagnostic model capable of assessing the existence and severity of AKI in renal grafts. However, no suitable kidney injury markers have been developed thus far. METHODS We evaluated the efficacy of the molecular probe NPO-B, which selectively responds to cysteine, as a new diagnostic tool for kidney injury. We used an in vitro model using ischemia/reperfusion injury human kidney-2 cells and an in vivo ischemia/reperfusion injury mouse model. Additionally, cysteine was investigated using urine samples from deceased donors and living donors to assess the applicability of detection techniques to humans. RESULTS This study confirmed that the NPO-B probe effectively identified and visualized the severity of kidney injury by detecting cysteine in both in vitro and in vivo models. We observed that the fluorescence intensity of urine samples measured using NPO-B from the deceased donors who are at a high risk of renal injury was significantly stronger than that of the living donors. CONCLUSIONS If implemented in clinical practice, this new diagnostic tool using NPO-B can potentially enhance the success rate of kidney transplantation by accurately determining the extent of AKI in renal grafts.
Collapse
Affiliation(s)
- Hye Young Woo
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Min An
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Min Young Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ahram Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngwoong Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jisoo Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sanghyun Ahn
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Kee Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
- UC San Diego Materials Research Science and Engineering Center, La Jolla, CA
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sangil Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Song F, Yi X, Zheng X, Zhang Z, Zhao L, Shen Y, Zhi Y, Liu T, Liu X, Xu T, Hu X, Zhang Y, Shou H, Huang P. Zebrafish patient-derived xenograft system for predicting carboplatin resistance and metastasis of ovarian cancer. Drug Resist Updat 2025; 78:101162. [PMID: 39571238 DOI: 10.1016/j.drup.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024]
Abstract
AIMS Ovarian cancer (OC) remains a significant challenge in oncology due to high rates of drug resistance and disease relapse following standard treatment with surgery and platinum-based chemotherapy. Despite the widespread use of these treatments, no effective biomarkers currently exist to identify which patients will respond favorably to therapy. This study introduces a zebrafish patient-derived xenograft (PDX) system, capable of replicating both the carboplatin response and metastatic behavior observed in OC patients, within a rapid 3-day assay period. METHODS Two OC cell lines: carboplatin-sensitive (A2780) and resistant (OVCAR8) were used to assess differential responses to treatment in murine and zebrafish xenograft models. Tumor tissues from 16 OC patients were implanted into zebrafish embryos to test carboplatin responses and predict metastasis. Additionally, eight clinical OC samples were directly implanted into zebrafish embryos as part of a proof-of-concept demonstration. RESULTS The zebrafish xenografts accurately reflected the carboplatin sensitivity and resistance patterns seen in in vitro and murine models. The zebrafish PDX model demonstrated a 67 % success rate for implantation and a 100 % success rate for engraftment. Notably, the model effectively distinguished between metastatic and non-metastatic disease, with an area under the ROC curve (AUC) of 0.818. Furthermore, the zebrafish PDX model showed a high concordance with patient-specific responses to carboplatin. CONCLUSIONS This zebrafish PDX model offers a fast, accurate, and clinically relevant platform for evaluating carboplatin response and predicting metastasis in OC patients. It holds significant potential for advancing personalized medicine, allowing for more precise therapeutic outcome predictions and individualized treatment strategies.
Collapse
Affiliation(s)
- Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaofen Yi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Zhentao Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Linqian Zhao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yan Shen
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Ye Zhi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Ting Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaozhen Liu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| | - Huafeng Shou
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| |
Collapse
|
7
|
Ji JX, Hoang LN, Cochrane DR, Lum A, Senz J, Farnell D, Tessier-Cloutier B, Huntsman DG, Klein Geltink RI. The unique metabolome of clear cell ovarian carcinoma. J Pathol 2024; 264:160-173. [PMID: 39096103 DOI: 10.1002/path.6329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/29/2024] [Accepted: 06/08/2024] [Indexed: 08/04/2024]
Abstract
Clear cell ovarian carcinoma (CCOC) is an aggressive malignancy affecting younger women. Despite ovarian cancer subtypes having diverse molecular and clinical characteristics, the mainstay of treatment for advanced stage disease remains cytotoxic chemotherapy. Late stage CCOC is resistant to conventional chemotherapy, which means a suboptimal outcome for patients affected. Despite detailed genomic, epigenomic, transcriptomic, and proteomic characterisation, subtype-specific treatment for CCOC has shown little progress. The unique glycogen accumulation defining CCOC suggests altered metabolic pathway activity and dependency. This study presents the first metabolomic landscape of ovarian cancer subtypes, including 42 CCOC, 20 high-grade serous and 21 endometrioid ovarian carcinomas, together comprising the three most common ovarian carcinoma subtypes. We describe a distinct metabolomic landscape of CCOC compared with other ovarian cancer subtypes, including alterations in energy utilisation and cysteine metabolism. In addition, we identify CCOC-specific alterations in metabolic pathways including serine biosynthesis and ROS-associated pathways that could serve as potential therapeutic targets. Our study provides the first in-depth study into the metabolome of ovarian cancers and a rich resource to support ongoing research efforts to identify subtype-specific therapeutic targets that could improve the dismal outcome for patients with this devastating malignancy. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennifer X Ji
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lien N Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Amy Lum
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Janine Senz
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - David Farnell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
8
|
Luo Y, Liu X, Chen Y, Tang Q, He C, Ding X, Hu J, Cai Z, Li X, Qiao H, Zou Z. Targeting PAX8 sensitizes ovarian cancer cells to ferroptosis by inhibiting glutathione synthesis. Apoptosis 2024; 29:1499-1514. [PMID: 38853202 DOI: 10.1007/s10495-024-01985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Ovarian cancer is a malignant tumor originating from the ovary, characterized by its high mortality rate and propensity for recurrence. In some patients, especially those with recurrent cancer, conventional treatments such as surgical resection or standard chemotherapy yield suboptimal results. Consequently, there is an urgent need for novel anti-cancer therapeutic strategies. Ferroptosis is a distinct form of cell death separate from apoptosis. Ferroptosis inducers have demonstrated promising potential in the treatment of ovarian cancer, with evidence indicating their ability to enhance ovarian cancer cell sensitivity to cisplatin. However, resistance of cancer cells to ferroptosis still remains an inevitable challenge. Here, we analyzed genome-scale CRISPR-Cas9 loss-of function screens and identified PAX8 as a ferroptosis resistance protein in ovarian cancer. We identified PAX8 as a susceptibility gene in GPX4-dependent ovarian cancer. Depletion of PAX8 rendered GPX4-dependent ovarian cancer cells significantly more sensitive to GPX4 inhibitors. Additionally, we found that PAX8 inhibited ferroptosis in ovarian cancer cells. Combined treatment with a PAX8 inhibitor and RSL3 suppressed ovarian cancer cell growth, induced ferroptosis, and was validated in a xenograft mouse model. Further exploration of the molecular mechanisms underlying PAX8 inhibition of ferroptosis mutations revealed upregulation of glutamate-cysteine ligase catalytic subunit (GCLC) expression. GCLC mediated the ferroptosis resistance induced by PAX8 in ovarian cancer. In conclusion, our study underscores the pivotal role of PAX8 as a therapeutic target in GPX4-dependent ovarian cancer. The combination of PAX8 inhibitors such as losartan and captopril with ferroptosis inducers represents a promising new approach for ovarian cancer therapy.
Collapse
Affiliation(s)
- Yanlin Luo
- Institute of Clinical Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, 450008, China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoli Liu
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chengsi He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xinyi Ding
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jiachun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zheyou Cai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
9
|
Vats R, Yadav P, Bano A, Wadhwa S, Narwal A, Bhardwaj R. Salivary cysteine levels as a potential biochemical indicator of oral cancer risk in tobacco consumers. Biomark Med 2024; 18:877-888. [PMID: 39344869 PMCID: PMC11508954 DOI: 10.1080/17520363.2024.2403327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Aim: Oral cancer is the leading cause of mortality, with a survival rate of less than 5 years, and is predominantly influenced by tobacco mutagens. Invasive diagnostic methods hinder early detection of oral cancer biomarkers. The present study performed salivary biochemical analysis for early oral cancer screening in tobacco consumers.Materials & methods: Three study groups included healthy controls (n = 25), tobacco users (n = 25) and oral cancer patients (n = 25). Salivary total protein, amylase, TNF-α and amino acid levels were evaluated using enzymatic tests, Enzyme linked Immunosorbent Assay (ELISA) and High-Performance Liquid Chromatography (HPLC).Results: Compared with healthy controls, salivary total protein and TNF-α levels were significantly (p = 0.04) higher in oral cancer patients. Salivary amylase levels were significantly lower in tobacco smokers (p = 0.02) and higher in oral cancer patients (p = 0.01). Interestingly, the amino acid cysteine concentration was significantly higher (p = 0.02) in tobacco consumers (62.5 ± 10) than in healthy controls (116.1 ± 28).Conclusion: In high-risk populations, such as tobacco users, salivary biochemical analysis can serve as a promising noninvasive diagnostic method for early oral cancer screening. As a salivary biomarker, the amino acid cysteine exhibits potential as a means of detecting the progression of oral cancer in individuals who consume tobacco.
Collapse
Affiliation(s)
- Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Sapna Wadhwa
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Anjali Narwal
- Dept. of Oral Pathology, Postgraduate Institute of Dental Sciences, Rohtak, Haryana, 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| |
Collapse
|
10
|
Chen K, Zhai Y, Wang Y, Xu Z, Chen X, Zhang Y, Zhou Z, Zheng X, Lin F. H 2O 2 promotes photodynamic efficacy of TMPyP4 against ovarian cancer in vitro by downregulating HIF-1α expression. Biomed Pharmacother 2024; 177:117110. [PMID: 39002439 DOI: 10.1016/j.biopha.2024.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
Photodynamic therapy (PDT), employing photosensitizers to induce formation of reactive oxygen species (ROS) for tumor elimination, is emerging as a promising treatment modality in oncology due to its unique benefits. However, the PDT application in ovarian cancer, the most prevalent and lethal type of gynecological malignancy with a severe hypoxic microenvironment, remains unknown. This study revealed that photosensitizer TMPyP4 exhibited enhanced efficacy under H2O2 stimulation, with minimal change in cytotoxicity compared to TMPyP4 alone. The results showed that H2O2 increased ROS production induced by TMPyP4, leading to exacerbated mitochondrial dysfunction and DNA damage, ultimately inhibiting proliferation and inducing apoptosis in ovarian cancer cells. Mechanistically, H2O2 primarily enhanced the therapeutic efficacy of PDT with TMPyP4 against ovarian cancer cells by degrading HIF-1α, which subsequently modulated the HIF-1 signaling pathway, thereby alleviating the hypoxic environment in ovarian cancer cells. Our findings underscore the therapeutic potential of targeting HIF-1α within the hypoxic microenvironment for PDT in ovarian cancer and propose a novel integrated strategy for PDT treatment of this malignancy in vitro.
Collapse
Affiliation(s)
- Kejie Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yihui Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanqiu Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zichuang Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yixin Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou Medical University Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhengyi Zhou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou Medical University Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
11
|
Mendes C, Lemos I, Hipólito A, Abreu B, Freitas-Dias C, Martins F, Pires R, Barros H, Bonifácio V, Gonçalves L, Serpa J. Metabolic profiling and combined therapeutic strategies unveil the cytotoxic potential of selenium-chrysin (SeChry) in NSCLC cells. Biosci Rep 2024; 44:BSR20240752. [PMID: 38990147 PMCID: PMC11292474 DOI: 10.1042/bsr20240752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/12/2024] Open
Abstract
Lung cancer ranks as the predominant cause of cancer-related mortalities on a global scale. Despite progress in therapeutic interventions, encompassing surgical procedures, radiation, chemotherapy, targeted therapies and immunotherapy, the overall prognosis remains unfavorable. Imbalances in redox equilibrium and disrupted redox signaling, common traits in tumors, play crucial roles in malignant progression and treatment resistance. Cancer cells, often characterized by persistent high levels of reactive oxygen species (ROS) resulting from genetic, metabolic, and microenvironmental alterations, counterbalance this by enhancing their antioxidant capacity. Cysteine availability emerges as a critical factor in chemoresistance, shaping the survival dynamics of non-small cell lung cancer (NSCLC) cells. Selenium-chrysin (SeChry) was disclosed as a modulator of cysteine intracellular availability. This study comprehensively characterizes the metabolism of SeChry and investigates its cytotoxic effects in NSCLC. SeChry treatment induces notable metabolic shifts, particularly in selenocompound metabolism, impacting crucial pathways such as glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid metabolism. Additionally, SeChry affects the levels of key metabolites such as acetate, lactate, glucose, and amino acids, contributing to disruptions in redox homeostasis and cellular biosynthesis. The combination of SeChry with other treatments, such as glycolysis inhibition and chemotherapy, results in greater efficacy. Furthermore, by exploiting NSCLC's capacity to consume lactate, the use of lactic acid-conjugated dendrimer nanoparticles for SeChry delivery is investigated, showing specificity to cancer cells expressing monocarboxylate transporters.
Collapse
Affiliation(s)
- Cindy Mendes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Ana Hipólito
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Bruna Abreu
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Filipa Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| | - Rita F. Pires
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Hélio Barros
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vasco D.B. Bonifácio
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto 1099-023, Lisboa, Portugal
| |
Collapse
|
12
|
Berrell N, Sadeghirad H, Blick T, Bidgood C, Leggatt GR, O'Byrne K, Kulasinghe A. Metabolomics at the tumor microenvironment interface: Decoding cellular conversations. Med Res Rev 2024; 44:1121-1146. [PMID: 38146814 DOI: 10.1002/med.22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Cancer heterogeneity remains a significant challenge for effective cancer treatments. Altered energetics is one of the hallmarks of cancer and influences tumor growth and drug resistance. Studies have shown that heterogeneity exists within the metabolic profile of tumors, and personalized-combination therapy with relevant metabolic interventions could improve patient response. Metabolomic studies are identifying novel biomarkers and therapeutic targets that have improved treatment response. The spatial location of elements in the tumor microenvironment are becoming increasingly important for understanding disease progression. The evolution of spatial metabolomics analysis now allows scientists to deeply understand how metabolite distribution contributes to cancer biology. Recently, these techniques have spatially resolved metabolite distribution to a subcellular level. It has been proposed that metabolite mapping could improve patient outcomes by improving precision medicine, enabling earlier diagnosis and intraoperatively identifying tumor margins. This review will discuss how altered metabolic pathways contribute to cancer progression and drug resistance and will explore the current capabilities of spatial metabolomics technologies and how these could be integrated into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Naomi Berrell
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Charles Bidgood
- APCRC-Q, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Graham R Leggatt
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ken O'Byrne
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Muñoz-Galván S, Verdugo-Sivianes EM, Santos-Pereira JM, Estevez-García P, Carnero A. Essential role of PLD2 in hypoxia-induced stemness and therapy resistance in ovarian tumors. J Exp Clin Cancer Res 2024; 43:57. [PMID: 38403587 PMCID: PMC10895852 DOI: 10.1186/s13046-024-02988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Hypoxia in solid tumors is an important source of chemoresistance that can determine poor patient prognosis. Such chemoresistance relies on the presence of cancer stem cells (CSCs), and hypoxia promotes their generation through transcriptional activation by HIF transcription factors. METHODS We used ovarian cancer (OC) cell lines, xenograft models, OC patient samples, transcriptional databases, induced pluripotent stem cells (iPSCs) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). RESULTS Here, we show that hypoxia induces CSC formation and chemoresistance in ovarian cancer through transcriptional activation of the PLD2 gene. Mechanistically, HIF-1α activates PLD2 transcription through hypoxia response elements, and both hypoxia and PLD2 overexpression lead to increased accessibility around stemness genes, detected by ATAC-seq, at sites bound by AP-1 transcription factors. This in turn provokes a rewiring of stemness genes, including the overexpression of SOX2, SOX9 or NOTCH1. PLD2 overexpression also leads to decreased patient survival, enhanced tumor growth and CSC formation, and increased iPSCs reprograming, confirming its role in dedifferentiation to a stem-like phenotype. Importantly, hypoxia-induced stemness is dependent on PLD2 expression, demonstrating that PLD2 is a major determinant of de-differentiation of ovarian cancer cells to stem-like cells in hypoxic conditions. Finally, we demonstrate that high PLD2 expression increases chemoresistance to cisplatin and carboplatin treatments, both in vitro and in vivo, while its pharmacological inhibition restores sensitivity. CONCLUSIONS Altogether, our work highlights the importance of the HIF-1α-PLD2 axis for CSC generation and chemoresistance in OC and proposes an alternative treatment for patients with high PLD2 expression.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain.
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - José M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Purificación Estevez-García
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain.
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
14
|
Dyachenko EI, Bel’skaya LV. The Role of Amino Acids in Non-Enzymatic Antioxidant Mechanisms in Cancer: A Review. Metabolites 2023; 14:28. [PMID: 38248831 PMCID: PMC10818545 DOI: 10.3390/metabo14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Currently, the antioxidant properties of amino acids and their role in the physicochemical processes accompanying oxidative stress in cancer remain unclear. Cancer cells are known to extensively uptake amino acids, which are used as an energy source, antioxidant precursors that reduce oxidative stress in cancer, and as regulators of inhibiting or inducing tumor cell-associated gene expression. This review examines nine amino acids (Cys, His, Phe, Met, Trp, Tyr, Pro, Arg, Lys), which play a key role in the non-enzymatic oxidative process in various cancers. Conventionally, these amino acids can be divided into two groups, in one of which the activity increases (Cys, Phe, Met, Pro, Arg, Lys) in cancer, and in the other, it decreases (His, Trp, Tyr). The review examines changes in the metabolism of nine amino acids in eleven types of oncology. We have identified the main nonspecific mechanisms of changes in the metabolic activity of amino acids, and described direct and indirect effects on the redox homeostasis of cells. In the future, this will help to understand better the nature of life of a cancer cell and identify therapeutic targets more effectively.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, Omsk 644099, Russia;
| |
Collapse
|
15
|
Hipólito A, Mendes C, Martins F, Lemos I, Francisco I, Cunha F, Almodôvar T, Albuquerque C, Gonçalves LG, Bonifácio VDB, Vicente JB, Serpa J. H 2S-Synthesizing Enzymes Are Putative Determinants in Lung Cancer Management toward Personalized Medicine. Antioxidants (Basel) 2023; 13:51. [PMID: 38247476 PMCID: PMC10812562 DOI: 10.3390/antiox13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Lung cancer is a lethal disease with no truly efficient therapeutic management despite the progresses, and metabolic profiling can be a way of stratifying patients who may benefit from new therapies. The present study is dedicated to profiling cysteine metabolic pathways in NSCLC cell lines and tumor samples. This was carried out by analyzing hydrogen sulfide (H2S) and ATP levels, examining mRNA and protein expression patterns of cysteine catabolic enzymes and transporters, and conducting metabolomics analysis using nuclear magnetic resonance (NMR) spectroscopy. Selenium-chrysin (SeChry) was tested as a therapeutic alternative with the aim of having an effect on cysteine catabolism and showed promising results. NSCLC cell lines presented different cysteine metabolic patterns, with A549 and H292 presenting a higher reliance on cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) to maintain H2S levels, while the PC-9 cell line presented an adaptive behavior based on the use of mercaptopyruvate sulfurtransferase (MST) and cysteine dioxygenase (CDO1), both contributing to the role of cysteine as a pyruvate source. The analyses of human lung tumor samples corroborated this variability in profiles, meaning that the expression of certain genes may be informative in defining prognosis and new targets. Heterogeneity points out individual profiles, and the identification of new targets among metabolic players is a step forward in cancer management toward personalized medicine.
Collapse
Affiliation(s)
- Ana Hipólito
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Cindy Mendes
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Filipa Martins
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Isabel Lemos
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Inês Francisco
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Fernando Cunha
- Pathology Department, The Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal;
| | - Teresa Almodôvar
- Pneumology Department, The Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal;
| | - Cristina Albuquerque
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Luís G. Gonçalves
- Institute of Chemical and Biological Technology António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (L.G.G.); (J.B.V.)
| | - Vasco D. B. Bonifácio
- IBB-Institute for Bioengineering and Biosciences, Associate Laboratory i4HB-Institute for Health and Bioeconomy, IST-Lisbon University, 1049-001 Lisbon, Portugal;
- Bioengineering Department, IST-Lisbon University, 1049-001 Lisbon, Portugal
| | - João B. Vicente
- Institute of Chemical and Biological Technology António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (L.G.G.); (J.B.V.)
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| |
Collapse
|
16
|
Wei Z, Xiong Q, Huang D, Wu Z, Chen Z. Causal relationship between blood metabolites and risk of five infections: a Mendelian randomization study. BMC Infect Dis 2023; 23:663. [PMID: 37805474 PMCID: PMC10559484 DOI: 10.1186/s12879-023-08662-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
OBJECTIVE Infectious diseases continue to pose a significant threat in the field of global public health, and our understanding of their metabolic pathogenesis remains limited. However, the advent of genome-wide association studies (GWAS) offers an unprecedented opportunity to unravel the relationship between metabolites and infections. METHODS Univariable and multivariable Mendelian randomization (MR) was commandeered to elucidate the causal relationship between blood metabolism and five high-frequency infection phenotypes: sepsis, pneumonia, upper respiratory tract infections (URTI), urinary tract infections (UTI), and skin and subcutaneous tissue infection (SSTI). GWAS data for infections were derived from UK Biobank and the FinnGen consortium. The primary analysis was conducted using the inverse variance weighted method on the UK Biobank data, along with a series of sensitivity analyses. Subsequently, replication and meta-analysis were performed on the FinnGen consortium data. RESULTS After primary analysis and a series of sensitivity analyses, 17 metabolites were identified from UK Biobank that have a causal relationship with five infections. Upon joint analysis with the FinGen cohort, 7 of these metabolites demonstrated consistent associations. Subsequently, we conducted a multivariable Mendelian randomization analysis to confirm the independent effects of these metabolites. Among known metabolites, genetically predicted 1-stearoylglycerol (1-SG) (odds ratio [OR] = 0.561, 95% confidence interval [CI]: 0.403-0.780, P < 0.001) and 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) (OR = 0.780, 95%CI: 0.689-0.883, P < 0.001) was causatively associated with a lower risk of sepsis, and genetically predicted phenylacetate (PA) (OR = 1.426, 95%CI: 1.152-1.765, P = 0.001) and cysteine (OR = 1.522, 95%CI: 1.170-1.980, P = 0.002) were associated with an increased risk of UTI. Ursodeoxycholate (UDCA) (OR = 0.906, 95%CI: 0.829-0.990, P = 0.029) is a protective factor against pneumonia. Two unknown metabolites, X-12407 (OR = 1.294, 95%CI: 1.131-1.481, P < 0.001), and X-12847 (OR = 1.344, 95%CI: 1.152-1.568, P < 0.001), were also identified as independent risk factors for sepsis. CONCLUSIONS In this MR study, we demonstrated a causal relationship between blood metabolites and the risk of developing sepsis, pneumonia, and UTI. However, there was no evidence of a causal connection between blood metabolites and the risk of URTI or SSTI, indicating a need for larger-scale studies to further investigate susceptibility to certain infection phenotypes.
Collapse
Affiliation(s)
- Zhengxiao Wei
- Department of Clinical Laboratory, Chengdu Public Health Clinical Medical Center & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, 377 Jingming Road, Jinjiang District, Chengdu, 610066, China.
| | - Qingqing Xiong
- Department of Scientific Research and Teaching, Chengdu Public Health Clinical Medical Center & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Dan Huang
- Department of Clinical Laboratory, Chengdu Public Health Clinical Medical Center & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Zhangjun Wu
- Department of Clinical Laboratory, Chengdu Public Health Clinical Medical Center & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Zhu Chen
- Department of Scientific Research and Teaching, Chengdu Public Health Clinical Medical Center & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| |
Collapse
|
17
|
Yan J, Xu F, Zhou D, Zhang S, Zhang B, Meng Q, Lv Q. Metabolic reprogramming of three major nutrients in platinum-resistant ovarian cancer. Front Oncol 2023; 13:1231460. [PMID: 37681030 PMCID: PMC10482409 DOI: 10.3389/fonc.2023.1231460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Metabolic reprogramming is a phenomenon in which cancer cells alter their metabolic pathways to support their uncontrolled growth and survival. Platinum-based chemotherapy resistance is associated with changes in glucose metabolism, amino acid metabolism, fatty acid metabolism, and tricarboxylic acid cycle. These changes lead to the creation of metabolic intermediates that can provide precursors for the biosynthesis of cellular components and help maintain cellular energy homeostasis. This article reviews the research progress of the metabolic reprogramming mechanism of platinumbased chemotherapy resistance caused by three major nutrients in ovarian cancer.
Collapse
Affiliation(s)
- Jinbowen Yan
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fangzhi Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Dan Zhou
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingwei Meng
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiubo Lv
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Wang W, Zhang N. Oridonin inhibits Hela cell proliferation via downregulation of glutathione metabolism: a new insight from metabolomics. J Pharm Pharmacol 2023:7087210. [DOI: 10.1093/jpp/rgad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
AbstractObjectivesThis study aims to elucidate Oridonin' s inhibitory mechanism to cervical cancer using metabolomics methods and pharmacological assays.MethodsNetwork pharmacology and KEGG pathway analysis are used to identify overlapped targets and involved metabolic pathways. UPLC-MS/MS metabolomics analysis is used to determine altered metabolites after Oridonin treatment. Other bioassays are also employed to uncover the changes in critical molecules that are highly related to altered metabolites.Key findingsSeventy-five overlapped targets are identified between Oridonin and cervical cancer. Twenty-one metabolites involved in tricarboxylic acid cycle glutathione metabolism, branched-chain amino acid metabolism and so on changes significantly after Oridonin treatment. Oridonin treatment significantly reduces the content of cysteine and inhibit the catalytic activity of glutamine–cysteine ligase subunit, a rate-limiting enzyme for the synthesis of glutathione. As a result, the content of glutathione is also reduced. The antioxidant enzyme glutathione peroxidase 4 which uses glutathione as a cofactor, is inactivated, resulting in a burst release of reactive oxygen species. The ATP content is also significantly reduced in Hela cells after Oridonin treatment.ConclusionsThis study finds that Oridonin treatment induces Hela cell apoptosis possibly via inhibition of the glutathione metabolism.
Collapse
|
19
|
Hypoxia, but Not Normoxia, Reduces Effects of Resveratrol on Cisplatin Treatment in A2780 Ovarian Cancer Cells: A Challenge for Resveratrol Use in Anticancer Adjuvant Cisplatin Therapy. Int J Mol Sci 2023; 24:ijms24065715. [PMID: 36982788 PMCID: PMC10051682 DOI: 10.3390/ijms24065715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Natural compounds, such as resveratrol (Res), are currently used as adjuvants for anticancer therapies. To evaluate the effectiveness of Res for the treatment of ovarian cancer (OC), we screened the response of various OC cell lines to the combined treatment with cisplatin (CisPt) and Res. We identified A2780 cells as the most synergistically responding, thus optimal for further analysis. Because hypoxia is the hallmark of the solid tumor microenvironment, we compared the effects of Res alone and in combination with CisPt in hypoxia (pO2 = 1%) vs. normoxia (pO2 = 19%). Hypoxia caused an increase (43.2 vs. 5.0%) in apoptosis and necrosis (14.2 vs. 2.5%), reactive oxygen species production, pro-angiogenic HIF-1α (hypoxia-inducible factor-1α) and VEGF (vascular endothelial growth factor), cell migration, and downregulated the expression of ZO1 (zonula occludens-1) protein in comparison to normoxia. Res was not cytotoxic under hypoxia in contrast to normoxia. In normoxia, Res alone or CisPt+Res caused apoptosis via caspase-3 cleavage and BAX, while in hypoxia, it reduced the accumulation of A2780 cells in the G2/M phase. CisPt+Res increased levels of vimentin under normoxia and upregulated SNAI1 expression under hypoxia. Thus, various effects of Res or CisPt+Res on A2780 cells observed in normoxia are eliminated or diminished in hypoxia. These findings indicate the limitations in using Res as an adjuvant with CisPt therapy in OC.
Collapse
|
20
|
Lin H, Yu Y, Zhu L, Lai N, Zhang L, Guo Y, Lin X, Yang D, Ren N, Zhu Z, Dong Q. Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies. Redox Biol 2023; 59:102601. [PMID: 36630819 PMCID: PMC9841368 DOI: 10.1016/j.redox.2023.102601] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule in colorectal cancer (CRC). It is produced in the colon by the catalytic synthesis of the colonocytes' enzymatic systems and the release of intestinal microbes, and is oxidatively metabolized in the colonocytes' mitochondria. Both endogenous H2S in colonic epithelial cells and exogenous H2S in intestinal lumen contribute to the onset and progression of CRC. The up-regulation of endogenous synthetases is thought to be the cause of the elevated H2S levels in CRC cells. Different diagnostic probes and combination therapies, as well as tumor treatment approaches through H2S modulation, have been developed in recent years and have become active area of investigation for the diagnosis and treatment of CRC. In this review, we focus on the specific mechanisms of H2S production and oxidative metabolism as well as the function of H2S in the occurrence, progression, diagnosis, and treatment of CRC. We also discuss the present challenges and provide insights into the future research of this burgeoning field.
Collapse
Affiliation(s)
- Hanchao Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Luming Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Yu Guo
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Xinxin Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, China.
| | - Ning Ren
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, And Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China.
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China.
| |
Collapse
|
21
|
Sundaresan A, Le Ngoc M, Wew MU, Ramkumar V, Raninga P, Sum R, Cheong I. A design of experiments screen reveals that Clostridium novyi-NT spore germinant sensing is stereoflexible for valine and its analogs. Commun Biol 2023; 6:118. [PMID: 36709236 PMCID: PMC9884283 DOI: 10.1038/s42003-023-04496-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
Although Clostridium novyi-NT is an anti-cancer bacterial therapeutic which germinates within hypoxic tumors to kill cancer cells, the actual germination triggers for C. novyi-NT are still unknown. In this study, we screen candidate germinants using combinatorial experimental designs and discover by serendipity that D-valine is a potent germinant, inducing 50% spore germination at 4.2 mM concentration. Further investigation revealed that five D-valine analogs are also germinants and four of these analogs are enantiomeric pairs. This stereoflexible effect of L- and D-amino acids shows that spore germination is a complex process where enantiomeric interactions can be confounders. This study also identifies L-cysteine as a germinant, and hypoxanthine and inosine as co-germinants. Several other amino acids promote (L-valine, L-histidine, L-threonine and L-alanine) or inhibit (L-arginine, L-glycine, L-lysine, L-tryptophan) germination in an interaction-dependent manner. D-alanine inhibits all germination, even in complex growth media. This work lays the foundation for improving the germination efficacy of C. novyi-NT spores in tumors.
Collapse
Affiliation(s)
- Ajitha Sundaresan
- grid.226688.00000 0004 0620 9198Temasek Life Sciences Laboratory, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mai Le Ngoc
- grid.4280.e0000 0001 2180 6431NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Marvell Ung Wew
- grid.4280.e0000 0001 2180 6431NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Varsha Ramkumar
- grid.4280.e0000 0001 2180 6431NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Prahlad Raninga
- grid.226688.00000 0004 0620 9198Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Rongji Sum
- grid.226688.00000 0004 0620 9198Temasek Life Sciences Laboratory, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ian Cheong
- grid.226688.00000 0004 0620 9198Temasek Life Sciences Laboratory, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Min JY, Chun KS, Kim DH. The versatile utility of cysteine as a target for cancer treatment. Front Oncol 2023; 12:997919. [PMID: 36741694 PMCID: PMC9893486 DOI: 10.3389/fonc.2022.997919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
Owing to its unique nucleophilicity, cysteine is an attractive sulfhydryl-containing proteinogenic amino acid. It is also utilized in various metabolic pathways and redox homeostasis, as it is used for the component of major endogenous antioxidant glutathione and the generation of sulfur-containing biomolecules. In addition, cysteine is the most nucleophilic amino acid of proteins and can react with endogenous or exogenous electrophiles which can result in the formation of covalent bonds, which can alter the cellular states and functions. Moreover, post-translational modifications of cysteines trigger redox signaling and affect the three-dimensional protein structure. Protein phosphorylation mediated by kinases and phosphatases play a key role in cellular signaling that regulates many physiological and pathological processes, and consequently, the modification of cysteine regulates its activities. The modification of cysteine residues in proteins is critically important for the design of novel types of pharmacological agents. Therefore, in cancer metabolism and cancer cell survival, cysteine plays an essential role in redox regulation of cellular status and protein function. This review summarizes the diverse regulatory mechanisms of cysteine bound to or free from proteins in cancer. Furthermore, it can enhance the comprehension of the role of cysteine in tumor biology which can help in the development of novel effective cancer therapies.
Collapse
Affiliation(s)
- Jin-Young Min
- Department of Chemistry, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea,*Correspondence: Do-Hee Kim,
| |
Collapse
|
23
|
Noei-Khesht Masjedi M, Asgari Y, Sadroddiny E. Differential expression analysis in epithelial ovarian cancer using functional genomics and integrated bioinformatics approaches. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
24
|
Exploring Metabolic Signatures of Ex Vivo Tumor Tissue Cultures for Prediction of Chemosensitivity in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14184460. [PMID: 36139619 PMCID: PMC9496731 DOI: 10.3390/cancers14184460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Women diagnosed with ovarian cancer have 5-year survival rates below 45%. Prediction of patient’s outcome and the onset of drug resistance are still major challenges. The patient’s drug response is influenced by the environment that surrounds the tumor cells. We previously showed that patient-derived tumor tissue can be kept in the lab, alive and retaining aspects of that environment. In this study, we exposed tumor tissue derived from ovarian cancer patients to the chemotherapy patients receive and identified metabolites released by the tumor tissue after treatment (metabolic footprint). Using machine learning, we uncovered metabolic signatures that discriminate tumor tissues with higher vs. lower drug sensitivity. We propose potential biomarkers involved in the production of specific building blocks of cells and energy generation processes. Overall, we established a platform to explore metabolic features of the complex environment of each patient’s tumor that can underpin the discovery of biomarkers of drug response. Abstract Predicting patient response to treatment and the onset of chemoresistance are still major challenges in oncology. Chemoresistance is deeply influenced by the complex cellular interactions occurring within the tumor microenvironment (TME), including metabolic crosstalk. We have previously shown that ex vivo tumor tissue cultures derived from ovarian carcinoma (OvC) resections retain the TME components for at least four weeks of culture and implemented assays for assessment of drug response. Here, we explored ex vivo patient-derived tumor tissue cultures to uncover metabolic signatures of chemosensitivity and/or resistance. Tissue cultures derived from nine OvC cases were challenged with carboplatin and paclitaxel, the standard-of-care chemotherapeutics, and the metabolic footprints were characterized by LC-MS. Partial least-squares discriminant analysis (PLS-DA) revealed metabolic signatures that discriminated high-responder from low-responder tissue cultures to ex vivo drug exposure. As a proof-of-concept, a set of potential metabolic biomarkers of drug response was identified based on the receiver operating characteristics (ROC) curve, comprising amino acids, fatty acids, pyrimidine, glutathione, and TCA cycle pathways. Overall, this work establishes an analytical and computational platform to explore metabolic features of the TME associated with response to treatment, which can leverage the discovery of biomarkers of drug response and resistance in OvC.
Collapse
|
25
|
Tan Z, Huang H, Sun W, Li Y, Jia Y. Current progress of ferroptosis study in ovarian cancer. Front Mol Biosci 2022; 9:966007. [PMID: 36090052 PMCID: PMC9458863 DOI: 10.3389/fmolb.2022.966007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Tumors are the leading cause of death all over the world, among which ovarian cancer ranks the third in gynecological malignancies. The current treatment for ovarian cancer is liable to develop chemotherapy resistance and high recurrence rate, in which a new strategy is demanded. Ferroptosis, a newly discovered manner of regulatory cell death, is shown to be induced by massive iron-dependent accumulation of lipid reactive oxygen species. With the in-depth study of ferroptosis, its associated mechanism with various tumors is gradually elucidated, including ovarian tumor, which probably promotes the application of ferroptosis in treating ovarian cancer. To this end, this review will focus on the history and current research progress of ferroptosis, especially its regulation mechanism, and its potential application as a novel treatment strategy for ovarian cancer.
Collapse
|
26
|
Wahab R, Khan F, Kaushik N, Kaushik NK, Nguyen LN, Choi EH, Siddiqui MA, Farshori NN, Saquib Q, Ahmad J, Al-Khedhairy AA. L-cysteine embedded core-shell ZnO microspheres composed of nanoclusters enhances anticancer activity against liver and breast cancer cells. Toxicol In Vitro 2022; 85:105460. [PMID: 35998759 DOI: 10.1016/j.tiv.2022.105460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Nano-based products have become an apparent and effective option to treat liver cancer, which is a deadly disease, and minimize or eradicate these problems. The Core-shell ZnO microspheres composed of nanoclusters (ZnOMS-NCs) have shown that it is very worthwhile to administer the proliferation rate in HepG2 and MCF-7 cancer cells even at a very low concentration (5 μg/mL). ZnOMS-NCs were prepared through hydrothermal solution process and well characterized. The MTT assay revealed that the cytotoxic effects were dose-dependent (2.5 μg/mL-100 μg/mL) on ZnOMS-NCs. The diminished activity in cell viability induces the cytotoxicity response to the ZnOMS-NCs treatment of human cultured cells. The qPCR data showed that the cells (HepG2 and MCF-7) were exposed to ZnOMS-NCs and exhibited up-and downregulated mRNA expression of apoptotic and anti-apoptotic genes, respectively. In conclusion, flow cytometric data exhibited significant apoptosis induction in both cancer cell lines at low concentrations. The possible mechanism also describes the role of ZnOMS-NCs against cancer cells and their responses.
Collapse
Affiliation(s)
- Rizwan Wahab
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Farheen Khan
- Chemistry Department, Faculty of Science, Taibah University, Medina (Yanbu), Saudi Arabia
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Maqsood A Siddiqui
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nida Nayyar Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Quaiser Saquib
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Ahmad
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Rickard BP, Tan X, Fenton SE, Rizvi I. Select Per- and Polyfluoroalkyl Substances (PFAS) Induce Resistance to Carboplatin in Ovarian Cancer Cell Lines. Int J Mol Sci 2022; 23:5176. [PMID: 35563566 PMCID: PMC9104343 DOI: 10.3390/ijms23095176] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants associated with adverse reproductive outcomes including reproductive cancers in women. PFAS can alter normal ovarian function, but the effects of PFAS on ovarian cancer progression and therapy response remain understudied. Ovarian cancer is the most lethal gynecologic malignancy, and a major barrier to effective treatment is resistance to platinum-based chemotherapy. Platinum resistance may arise from exposure to external stimuli such as environmental contaminants. This study evaluated PFAS and PFAS mixture exposures to two human ovarian cancer cell lines to evaluate the ability of PFAS exposure to affect survival fraction following treatment with carboplatin. This is the first study to demonstrate that, at sub-cytotoxic concentrations, select PFAS and PFAS mixtures increased survival fraction in ovarian cancer cells following carboplatin treatment, indicative of platinum resistance. A concomitant increase in mitochondrial membrane potential, measured by the JC-1 fluorescent probe, was observed in PFAS-exposed and PFAS + carboplatin-treated cells, suggesting a potential role for altered mitochondrial function that requires further investigation.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.P.R.); (S.E.F.)
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Suzanne E. Fenton
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.P.R.); (S.E.F.)
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.P.R.); (S.E.F.)
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
28
|
Wang R, Bu W, Yang Y. Identification of Metabolism-Related Genes Influencing Prognosis of Multiple Myeloma Patients. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6574491. [PMID: 34956573 PMCID: PMC8694996 DOI: 10.1155/2021/6574491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
Multiple myeloma (MM) is the second most commonly diagnosed hematological malignancy. Understanding the basic mechanisms of the metabolism in MM may lead to new therapies that benefit patients. We collected the gene expression profile data of GSE39754 and performed differential analysis. Furthermore, identify the candidate genes that affect the prognosis of the differentially expressed genes (DEGs) related to the metabolism. Enrichment analysis is used to identify the biological effects of candidate genes. Perform coexpression analysis on the verified DEGs. In addition, the candidate genes are used to cluster MM into different subtypes through consistent clustering. Use LASSO regression analysis to identify key genes, and use Cox regression analysis to evaluate the prognostic effects of key genes. Evaluation of immune cell infiltration in MM is by CIBERSORT. We identified 2821 DEGs, of which 348 genes were metabolic-related prognostic genes and were considered candidate genes. Enrichment analysis revealed that the candidate genes are mainly related to the proteasome, purine metabolism, and cysteine and methionine metabolism signaling pathways. According to the consensus clustering method, we identified the two subtypes of group 1 and group 2 that affect the prognosis of MM patients. Using the LASSO model, we have identified 10 key genes. The prognosis of the high-risk group identified by Cox regression analysis is worse than that of the low-risk group. Among them, PKLR has a greater impact on the prognosis of MM, and the prognosis of MM patients is poor when the expression is high. In addition, the level of immune cell infiltration in the high-risk group is higher than that in the low-risk group. In the summary, metabolism-related genes significantly affect the prognosis of MM patients through the metabolic process of MM patients. PKLR may be a prognostic risk factor for MM patients.
Collapse
Affiliation(s)
- Rui Wang
- Department of Hematology, People's Hospital of Lianshui, Lianshui 223400, Huai'an, China
| | - Wenxuan Bu
- Department of Hematology, People's Hospital of Lianshui, Lianshui 223400, Huai'an, China
| | - Yang Yang
- Department of Hematology, People's Hospital of Lianshui, Lianshui 223400, Huai'an, China
| |
Collapse
|
29
|
Shih HJ, Chang HF, Chen CL, Torng PL. Differential expression of hypoxia-inducible factors related to the invasiveness of epithelial ovarian cancer. Sci Rep 2021; 11:22925. [PMID: 34824343 PMCID: PMC8616920 DOI: 10.1038/s41598-021-02400-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, and it is frequently diagnosed at advanced stages, with recurrences after treatments. Treatment failure and resistance are due to hypoxia-inducible factors (HIFs) activated by cancer cells adapt to hypoxia. IGFBP3, which was previously identified as a growth/invasion/metastasis suppressor of ovarian cancer, plays a key role in inhibiting tumor angiogenesis. Although IGFBP3 can effectively downregulate tumor proliferation and vasculogenesis, its effects are only transient. Tumors enter a hypoxic state when they grow large and without blood vessels; then, the tumor cells activate HIFs to regulate cell metabolism, proliferation, and induce vasculogenesis to adapt to hypoxic stress. After IGFBP3 was transiently expressed in highly invasive ovarian cancer cell line and heterotransplant on mice, the xenograft tumors demonstrated a transient growth arrest with de-vascularization, causing tumor cell hypoxia. Tumor re-proliferation was associated with early HIF-1α and later HIF-2α activations. Both HIF-1α and HIF-2α were related to IGFBP3 expressions. In the down-expression of IGFBP3 in xenograft tumors and transfectants, HIF-2α was the major activated protein. This study suggests that HIF-2α presentation is crucial in the switching of epithelial ovarian cancer from dormancy to proliferation states. In highly invasive cells, the cancer hallmarks associated with aggressiveness could be activated to escape from the growth restriction state.
Collapse
Affiliation(s)
- Ho-Jun Shih
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fang Chang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Ling Torng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Obstetrics and Gynecology, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan.
| |
Collapse
|
30
|
Nunes SC, Ramos C, Santos I, Mendes C, Silva F, Vicente JB, Pereira SA, Félix A, Gonçalves LG, Serpa J. Cysteine Boosts Fitness Under Hypoxia-Mimicked Conditions in Ovarian Cancer by Metabolic Reprogramming. Front Cell Dev Biol 2021; 9:722412. [PMID: 34458274 PMCID: PMC8386479 DOI: 10.3389/fcell.2021.722412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023] Open
Abstract
Among gynecologic malignancies, ovarian cancer is the third most prevalent and the most common cause of death, especially due to diagnosis at an advanced stage together with resistance to therapy. As a solid tumor grows, cancer cells in the microenvironment are exposed to regions of hypoxia, a selective pressure prompting tumor progression and chemoresistance. We have previously shown that cysteine contributes to the adaptation to this hypoxic microenvironment, but the mechanisms by which cysteine protects ovarian cancer cells from hypoxia-induced death are still to be unveiled. Herein, we hypothesized that cysteine contribution relies on cellular metabolism reprogramming and energy production, being cysteine itself a metabolic source. Our results strongly supported a role of xCT symporter in energy production that requires cysteine metabolism instead of hydrogen sulfide (H2S) per se. Cysteine degradation depends on the action of the H2S-synthesizing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and/or 3-mercaptopyruvate sulfurtransferase (MpST; together with cysteine aminotransferase, CAT). In normoxia, CBS and CSE inhibition had a mild impact on cysteine-sustained ATP production, pointing out the relevance of CAT + MpST pathway. However, in hypoxia, the concomitant inhibition of CBS and CSE had a stronger impact on ATP synthesis, thus also supporting a role of their hydrogen sulfide and/or cysteine persulfide-synthesizing activity in this stressful condition. However, the relative contributions of each of these enzymes (CBS/CSE/MpST) on cysteine-derived ATP synthesis under hypoxia remains unclear, due to the lack of specific inhibitors. Strikingly, NMR analysis strongly supported a role of cysteine in the whole cellular metabolism rewiring under hypoxia. Additionally, the use of cysteine to supply biosynthesis and bioenergetics was reinforced, bringing cysteine to the plateau of a main carbon sources in cancer. Collectively, this work supports that sulfur and carbon metabolism reprogramming underlies the adaptation to hypoxic microenvironment promoted by cysteine in ovarian cancer.
Collapse
Affiliation(s)
- Sofia C. Nunes
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Cristiano Ramos
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Inês Santos
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Cindy Mendes
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Fernanda Silva
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia A. Pereira
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Félix
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
31
|
Molina AM, Abril N, Lora AJ, Huertas-Abril PV, Ayala N, Blanco C, Moyano MR. Proteomic profile of the effects of low-dose bisphenol A on zebrafish ovaries. Food Chem Toxicol 2021; 156:112435. [PMID: 34302887 DOI: 10.1016/j.fct.2021.112435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/27/2022]
Abstract
Human exposure to bisphenol-A (BPA) is largely unavoidable because BPA is an environmental contaminant found in soil, water, food and indoor dust. The safety of authorized BPA amounts in consumer products is under question because new studies have reported adverse effects of BPA at doses far below that previously established by the NOAEL (50 μg/kg per day). To protect public health, the consequences of low-dose BPA exposure in different organs and organismal functions must be further studied to generate relevant data. This study attempted to investigate the effects and potential molecular mechanisms of short-term exposure to 1 μg/L BPA on zebrafish ovarian follicular development. We observed only minor changes at the histopathological level with a small (3 %) increase in follicular atresia. However, a shotgun proteomics approach indicated deep alterations in BPA-exposed ovarian cells, including induction of the oxidative stress response, metabolic shifts and degradome perturbations, which could drive oocytes towards premature maturation. Based on these results, it could be suggested that inadvertent exposure to small concentrations of BPA on a continuous basis causes alteration in biological processes that are essential for healthy reproduction.
Collapse
Affiliation(s)
- Ana M Molina
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain.
| | - Antonio J Lora
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain.
| | - Paula V Huertas-Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain
| | - Nahum Ayala
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| | - Carmen Blanco
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| | - M Rosario Moyano
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| |
Collapse
|
32
|
The Protective Effect of Aspirin Eugenol Ester on Oxidative Stress to PC12 Cells Stimulated with H 2O 2 through Regulating PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527475. [PMID: 34257805 PMCID: PMC8249132 DOI: 10.1155/2021/5527475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
33
|
Wu J, Yeung SCJ, Liu S, Qdaisat A, Jiang D, Liu W, Cheng Z, Liu W, Wang H, Li L, Zhou Z, Liu R, Yang C, Chen C, Yang R. Cyst(e)ine in nutrition formulation promotes colon cancer growth and chemoresistance by activating mTORC1 and scavenging ROS. Signal Transduct Target Ther 2021; 6:188. [PMID: 34045438 PMCID: PMC8160199 DOI: 10.1038/s41392-021-00581-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
Weight loss and cachexia are common problems in colorectal cancer patients; thus, parenteral and enteral nutrition support play important roles in cancer care. However, the impact of nonessential amino acid components of nutritional intake on cancer progression has not been fully studied. In this study, we discovered that gastrointestinal cancer patients who received cysteine as part of the parenteral nutrition had shorter overall survival (P < 0.001) than those who did not. Cystine indeed robustly promotes colon cancer cell growth in vitro and in immunodeficient mice, predominately by inhibiting SESN2 transcription via the GCN2-ATF4 axis, resulting in mTORC1 activation. mTORC1 inhibitors Rapamycin and Everolimus block cystine-induced cancer cell proliferation. In addition, cystine confers resistance to oxaliplatin and irinotecan chemotherapy by quenching chemotherapy-induced reactive oxygen species via synthesizing glutathione. We demonstrated that dietary deprivation of cystine suppressed colon cancer xenograft growth without weight loss in mice and boosted the antitumor effect of oxaliplatin. These findings indicate that cyst(e)ine, as part of supplemental nutrition, plays an important role in colorectal cancer and manipulation of cyst(e)ine content in nutritional formulations may optimize colorectal cancer patient survival.
Collapse
Affiliation(s)
- Jiao Wu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sicheng Liu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Aiham Qdaisat
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenli Liu
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenjing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Haixia Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lu Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Institute of Translation Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Runxiang Yang
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
34
|
Lopes-Coelho F, Martins F, Hipólito A, Mendes C, Sequeira CO, Pires RF, Almeida AM, Bonifácio VDB, Pereira SA, Serpa J. The Activation of Endothelial Cells Relies on a Ferroptosis-Like Mechanism: Novel Perspectives in Management of Angiogenesis and Cancer Therapy. Front Oncol 2021; 11:656229. [PMID: 34041026 PMCID: PMC8141735 DOI: 10.3389/fonc.2021.656229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of endothelial cells (ECs) is a crucial step on the road map of tumor angiogenesis and expanding evidence indicates that a pro-oxidant tumor microenvironment, conditioned by cancer metabolic rewiring, is a relevant controller of this process. Herein, we investigated the contribution of oxidative stress-induced ferroptosis to ECs activation. Moreover, we also addressed the anti-angiogenic effect of Propranolol. We observed that a ferroptosis-like mechanism, induced by xCT inhibition with Erastin, at a non-lethal level, promoted features of ECs activation, such as proliferation, migration and vessel-like structures formation, concomitantly with the depletion of reduced glutathione (GSH) and increased levels of oxidative stress and lipid peroxides. Additionally, this ferroptosis-like mechanism promoted vascular endothelial cadherin (VE-cadherin) junctional gaps and potentiated cancer cell adhesion to ECs and transendothelial migration. Propranolol was able to revert Erastin-dependent activation of ECs and increased levels of hydrogen sulfide (H2S) underlie the mechanism of action of Propranolol. Furthermore, we tested a dual-effect therapy by promoting ECs stability with Propranolol and boosting oxidative stress to induce cancer cell death with a nanoformulation comprising selenium-containing chrysin (SeChry) encapsulated in a fourth generation polyurea dendrimer (SeChry@PUREG4). Our data showed that novel developments in cancer treatment may rely on multi-targeting strategies focusing on nanoformulations for a safer induction of cancer cell death, taking advantage of tumor vasculature stabilization.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Filipa Martins
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ana Hipólito
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cindy Mendes
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Catarina O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Rita F Pires
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - António M Almeida
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,Hematology, Hospital da Luz, Lisboa, Portugal
| | - Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Jacinta Serpa
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
35
|
Bonifácio VDB, Pereira SA, Serpa J, Vicente JB. Cysteine metabolic circuitries: druggable targets in cancer. Br J Cancer 2021; 124:862-879. [PMID: 33223534 PMCID: PMC7921671 DOI: 10.1038/s41416-020-01156-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
To enable survival in adverse conditions, cancer cells undergo global metabolic adaptations. The amino acid cysteine actively contributes to cancer metabolic remodelling on three different levels: first, in its free form, in redox control, as a component of the antioxidant glutathione or its involvement in protein s-cysteinylation, a reversible post-translational modification; second, as a substrate for the production of hydrogen sulphide (H2S), which feeds the mitochondrial electron transfer chain and mediates per-sulphidation of ATPase and glycolytic enzymes, thereby stimulating cellular bioenergetics; and, finally, as a carbon source for epigenetic regulation, biomass production and energy production. This review will provide a systematic portrayal of the role of cysteine in cancer biology as a source of carbon and sulphur atoms, the pivotal role of cysteine in different metabolic pathways and the importance of H2S as an energetic substrate and signalling molecule. The different pools of cysteine in the cell and within the body, and their putative use as prognostic cancer markers will be also addressed. Finally, we will discuss the pharmacological means and potential of targeting cysteine metabolism for the treatment of cancer.
Collapse
Affiliation(s)
- Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157, Oeiras, Portugal
| |
Collapse
|
36
|
Hypoxia-Mediated Decrease of Ovarian Cancer Cells Reaction to Treatment: Significance for Chemo- and Immunotherapies. Int J Mol Sci 2020; 21:ijms21249492. [PMID: 33327450 PMCID: PMC7764929 DOI: 10.3390/ijms21249492] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Hypoxia, a common factor ruling the microenvironment composition, leads to tumor progression. In this hypoxic context, cytokines and cells cooperate to favor cancer development and metastasis. Tumor hypoxia is heterogeneously distributed. Oxygen gradients depend on the vicinity, functionality of blood vessels, and oxygen ability to diffuse into surrounding tissues. Thus, the vasculature state modulates the microenvironment of the tumor cells. Cells sense and react to small variations in oxygen tension, which explains the lack of tumor cells’ unicity in their reaction to drugs. Ovarian cancers are highly hypoxia-dependent, ascites worsening the access to oxygen, in their reactions to both chemotherapy and new immunotherapy. Consequently, hypoxia affects the results of immunotherapy, and is thus, crucial for the design of treatments. Controlling key immunosuppressive factors and receptors, as well as immune checkpoint molecule expression on tumor, immune and stromal cells, hypoxia induces immunosuppression. Consequently, new approaches to alleviate hypoxia in the tumor microenvironment bring promises for ovarian cancer immunotherapeutic strategies. This review focuses on the effects of hypoxia in the microenvironment and its consequences on tumor treatments. This opens the way to innovative combined treatments to the advantage of immunotherapy outcome in ovarian cancers.
Collapse
|
37
|
Ma K, Zhao L, Yue Y, Huo F, Chao J, Yin C. Thiol “Click” Chromene Ring Opening and Subsequent Cascade Nucleophilic Cyclization NIR Fluorescence Imaging Reveal High Levels of Thiol in Drug-Resistant Cells. Anal Chem 2020; 92:15936-15942. [DOI: 10.1021/acs.analchem.0c03362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Lingling Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Jianbin Chao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
38
|
Seledtsov VI, von Delwig A. Clinically feasible and prospective immunotherapeutic interventions in multidirectional comprehensive treatment of cancer. Expert Opin Biol Ther 2020; 21:323-342. [PMID: 32981358 DOI: 10.1080/14712598.2021.1828338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The immune system is able to exert both tumor-destructive and tumor-protective functions. Immunotherapeutic technologies aim to enhance immune-based anti-tumor activity and (or) weaken tumor-protective immunity. AREAS COVERED Cancer vaccination, antibody (Ab)-mediated cytotoxicity, Ab-based checkpoint molecule inhibition, Ab-based immunostimulation, cytokine therapy, oncoviral therapy, drug-mediated immunostimulation, exovesicular therapy, anti-inflammatory therapy, neurohormonal immunorehabilitation, metabolic therapy, as well as adoptive cell immunotherapy, could be coherently used to synergize and amplify each other in achieving robust anti-cancer responses in cancer patients. Tumor-specific immunotherapy applied at early stages is capable of eliminating remaining tumor cells after surgery, thus preventing the development of minimal residual disease. Patients with advanced disease stages could benefit from combined immunotherapy, which would be aimed at providing tumor cell/mass dormancy. Traditional therapeutic anti-cancer interventions (chemoradiotherapy, hyperthermia, anti-hormonal therapy) could significantly enhance tumor sensitivity to anti-cancer immunotherapy. It is important that lower-dose (metronomic) chemotherapy regimens, which are well-tolerated by normal cells, could advance immune-mediated control over tumor growth. EXPERT OPINION We envisage that combined immunotherapy regimens in the context of traditional treatment could become the mainstream modality for treating cancers in all phases of the tumorigenesis. The effectiveness of the anti-cancer treatment could be monitored by the following blood parameters: C-reactive protein, lactate dehydrogenase, and neutrophil-to-lymphocyte ratio.
Collapse
Affiliation(s)
- Victor I Seledtsov
- Center for Integral Immunotherapy, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russia.,Department of Immunology, Innovita Research Company, Vilnius, Lithuania
| | - Alexei von Delwig
- Department of Immunology, Innovita Research Company, Vilnius, Lithuania
| |
Collapse
|
39
|
Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020; 25:molecules25173984. [PMID: 32882966 PMCID: PMC7504796 DOI: 10.3390/molecules25173984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - João B. Vicente
- Institute of Technology, Chemistry and Biology António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
- Correspondence: (J.B.V.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
- Correspondence: (J.B.V.); (J.S.)
| |
Collapse
|
40
|
Ashrafizadeh M, Taeb S, Hushmandi K, Orouei S, Shahinozzaman M, Zabolian A, Moghadam ER, Raei M, Zarrabi A, Khan H, Najafi M. Cancer and SOX proteins: New insight into their role in ovarian cancer progression/inhibition. Pharmacol Res 2020; 161:105159. [PMID: 32818654 DOI: 10.1016/j.phrs.2020.105159] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors are potential targets in disease therapy, particularly in cancer. This is due to the fact that transcription factors regulate a variety of cellular events, and their modulation has opened a new window in cancer therapy. Sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are potential transcription factors that are involved in developmental processes such as embryogenesis. It has been reported that abnormal expression of SOX proteins is associated with development of different cancers, particularly ovarian cancer (OC). In the present review, our aim is to provide a mechanistic review of involvement of SOX members in OC. SOX members may suppress and/or promote aggressiveness and proliferation of OC cells. Clinical studies have also confirmed the potential of transcription factors as diagnostic and prognostic factors in OC. Notably, studies have demonstrated the relationship between SOX members and other molecular pathways such as ST6Ga1-I, PI3K, ERK and so on, leading to more complexity. Furthermore, SOX members can be affected by upstream mediators such as microRNAs, long non-coding RNAs, and so on. It is worth mentioning that the expression of each member of SOX proteins is corelated with different stages of OC. Furthermore, their expression determines the response of OC cells to chemotherapy. These topics are discussed in this review to shed some light on role of SOX transcription factors in OC.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
41
|
Metabolic Reprogramming of Chemoresistant Cancer Cells and the Potential Significance of Metabolic Regulation in the Reversal of Cancer Chemoresistance. Metabolites 2020; 10:metabo10070289. [PMID: 32708822 PMCID: PMC7408410 DOI: 10.3390/metabo10070289] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumors. Alterations of cellular metabolism not only contribute to tumor development, but also mediate the resistance of tumor cells to antitumor drugs. The metabolic response of tumor cells to various chemotherapy drugs can be analyzed by metabolomics. Although cancer cells have experienced metabolic reprogramming, the metabolism of drug resistant cancer cells has been further modified. Metabolic adaptations of drug resistant cells to chemotherapeutics involve redox, lipid metabolism, bioenergetics, glycolysis, polyamine synthesis and so on. The proposed metabolic mechanisms of drug resistance include the increase of glucose and glutamine demand, active pathways of glutaminolysis and glycolysis, promotion of NADPH from the pentose phosphate pathway, adaptive mitochondrial reprogramming, activation of fatty acid oxidation, and up-regulation of ornithine decarboxylase for polyamine production. Several genes are associated with metabolic reprogramming and drug resistance. Intervening regulatory points described above or targeting key genes in several important metabolic pathways may restore cell sensitivity to chemotherapy. This paper reviews the metabolic changes of tumor cells during the development of chemoresistance and discusses the potential of reversing chemoresistance by metabolic regulation.
Collapse
|
42
|
Serpa J. Cysteine as a Carbon Source, a Hot Spot in Cancer Cells Survival. Front Oncol 2020; 10:947. [PMID: 32714858 PMCID: PMC7344258 DOI: 10.3389/fonc.2020.00947] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer cells undergo a metabolic rewiring in order to fulfill the energy and biomass requirements. Cysteine is a pivotal organic compound that contributes for cancer metabolic remodeling at three different levels: (1) in redox control, free or as a component of glutathione; (2) in ATP production, via hydrogen sulfide (H2S) production, serving as a donor to electron transport chain (ETC), and (3) as a carbon source for biomass and energy production. In the present review, emphasis will be given to the role of cysteine as a carbon source, focusing on the metabolic reliance on cysteine, benefiting the metabolic fitness and survival of cancer cells. Therefore, the interplay between cysteine metabolism and other metabolic pathways, as well as the regulation of cysteine metabolism related enzymes and transporters, will be also addressed. Finally, the usefulness of cysteine metabolic route as a target in cancer treatment will be highlighted.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
43
|
Scollo F, Seggio M, Torrisi RL, Bua RO, Zimbone M, Contino A, Maccarrone G. New fluorescent-labelled nanoparticles: synthesis, characterization and interactions with cysteine and homocysteine to evaluate their stability in aqueous solution. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Cruz A, Mota P, Ramos C, Pires RF, Mendes C, Silva JP, Nunes SC, Bonifácio VDB, Serpa J. Polyurea Dendrimer Folate-Targeted Nanodelivery of l-Buthionine sulfoximine as a Tool to Tackle Ovarian Cancer Chemoresistance. Antioxidants (Basel) 2020; 9:antiox9020133. [PMID: 32028640 PMCID: PMC7070262 DOI: 10.3390/antiox9020133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
: Ovarian cancer is a highly lethal disease, mainly due to chemoresistance. Our previous studies on metabolic remodeling in ovarian cancer have supported that the reliance on glutathione (GSH) bioavailability is a main adaptive metabolic mechanism, also accounting for chemoresistance to conventional therapy based on platinum salts. In this study, we tested the effects of the in vitro inhibition of GSH synthesis on the restoration of ovarian cancer cells sensitivity to carboplatin. GSH synthesis was inhibited by exposing cells to l-buthionine sulfoximine (l-BSO), an inhibitor of -glutamylcysteine ligase (GCL). Given the systemic toxicity of l-BSO, we developed a new formulation using polyurea (PURE) dendrimers nanoparticles (l-BSO@PUREG4-FA2), targeting l-BSO delivery in a folate functionalized nanoparticle.
Collapse
Affiliation(s)
- Adriana Cruz
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (A.C.); (P.M.); (R.F.P.)
| | - Pedro Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (A.C.); (P.M.); (R.F.P.)
| | - Cristiano Ramos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.R.); (C.M.); (S.C.N.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Rita F. Pires
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (A.C.); (P.M.); (R.F.P.)
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.R.); (C.M.); (S.C.N.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - José P. Silva
- Hospital Santo António dos Capuchos, Centro Hospitalar Lisboa Central, Alameda Santo António dos Capuchos, 1169-050 Lisboa, Portugal;
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.R.); (C.M.); (S.C.N.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Vasco D. B. Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (A.C.); (P.M.); (R.F.P.)
- Correspondence: (V.D.B.B.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.R.); (C.M.); (S.C.N.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
- Correspondence: (V.D.B.B.); (J.S.)
| |
Collapse
|
45
|
Hipólito A, Mendes C, Serpa J. The Metabolic Remodelling in Lung Cancer and Its Putative Consequence in Therapy Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:311-333. [PMID: 32130706 DOI: 10.1007/978-3-030-34025-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide in both men and women. Conventional chemotherapy has failed to provide long-term benefits for many patients and in the past decade, important advances were made to understand the underlying molecular/genetic mechanisms of lung cancer, allowing the unfolding of several other pathological entities. Considering these molecular subtypes, and the appearance of promising targeted therapies, an effective personalized control of the disease has emerged, nonetheless benefiting a small proportion of patients. Although immunotherapy has also appeared as a new hope, it is still not accessible to the majority of patients with lung cancer.The metabolism of energy and biomass is the basis of cellular survival. This is true for normal cells under physiological conditions and it is also true for pathophysiologically altered cells, such as cancer cells. Thus, knowledge of the metabolic remodelling that occurs in cancer cells in the sense of, on one hand, surviving in the microenvironment of the organ in which the tumour develops and, on the other hand, escaping from drugs conditioned microenvironment, is essential to understand the disease and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
46
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
47
|
Bonifácio VDB. Ovarian Cancer Biomarkers: Moving Forward in Early Detection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:355-363. [PMID: 32130708 DOI: 10.1007/978-3-030-34025-4_18] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is a silent cancer which rate survival mainly relays in early stage detection. The discovery of reliable ovarian cancer biomarkers plays a crucial role in the disease management and strongly impact in patient's prognosis and survival. Although having many limitations CA125 is a classical ovarian cancer biomarker, but current research using proteomic or metabolomic methodologies struggles to find alternative biomarkers, using non-invasive our relatively non-invasive sources such as urine, serum, plasma, tissue, ascites or exosomes. Metabolism and metabolites are key players in cancer biology and its importance in biomarkers discovery cannot be neglected. In this chapter we overview the state of art and the challenges facing the use and discovery of biomarkers and focus on ovarian cancer early detection.
Collapse
Affiliation(s)
- Vasco D B Bonifácio
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
48
|
Giuffrè A, Tomé CS, Fernandes DGF, Zuhra K, Vicente JB. Hydrogen Sulfide Metabolism and Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:335-353. [PMID: 32130707 DOI: 10.1007/978-3-030-34025-4_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S), while historically perceived merely as a toxicant, has progressively emerged as a key regulator of numerous processes in mammalian physiology, exerting its signaling function essentially through interaction with and/or modification of proteins, targeting mainly cysteine residues and metal centers. As a gaseous signaling molecule that freely diffuses across aqueous and hydrophobic biological milieu, it has been designated the third 'gasotransmitter' in mammalian physiology. H2S is synthesized and detoxified by specialized endogenous enzymes that operate under a tight regulation, ensuring homeostatic levels of this otherwise toxic molecule. Indeed, imbalances in H2S levels associated with dysfunctional H2S metabolism have been growingly correlated with various human pathologies, from cardiovascular and neurodegenerative diseases to cancer. Several cancer cell lines and specimens have been shown to naturally overexpress one or more of the H2S-synthesizing enzymes. The resulting increased H2S levels have been proposed to promote cancer development through the regulation of various cancer-related processes, which led to the interest in pharmacological targeting of H2S metabolism. Herein are summarized some of the key observations that place H2S metabolism and signaling pathways at the forefront of the cellular mechanisms that support the establishment and development of a tumor within its complex and challenging microenvironment. Special emphasis is given to the mechanisms whereby H2S helps shaping cancer cell bioenergetic metabolism and affords resistance and adaptive mechanisms to hypoxia.
Collapse
Affiliation(s)
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal
| | - Dalila G F Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal
| | - Karim Zuhra
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal.
| |
Collapse
|
49
|
Lopes-Coelho F, Silva F, Gouveia-Fernandes S, Martins C, Lopes N, Domingues G, Brito C, Almeida AM, Pereira SA, Serpa J. Monocytes as Endothelial Progenitor Cells (EPCs), Another Brick in the Wall to Disentangle Tumor Angiogenesis. Cells 2020; 9:cells9010107. [PMID: 31906296 PMCID: PMC7016533 DOI: 10.3390/cells9010107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Bone marrow contains endothelial progenitor cells (EPCs) that, upon pro-angiogenic stimuli, migrate and differentiate into endothelial cells (ECs) and contribute to re-endothelialization and neo-vascularization. There are currently no reliable markers to characterize EPCs, leading to their inaccurate identification. In the past, we showed that, in a panel of tumors, some cells on the vessel wall co-expressed CD14 (monocytic marker) and CD31 (EC marker), indicating a putative differentiation route of monocytes into ECs. Herein, we disclosed monocytes as potential EPCs, using in vitro and in vivo models, and also addressed the cancer context. Monocytes acquired the capacity to express ECs markers and were able to be incorporated into blood vessels, contributing to cancer progression, by being incorporated in tumor neo-vasculature. Reactive oxygen species (ROS) push monocytes to EC differentiation, and this phenotype is reverted by cysteine (a scavenger and precursor of glutathione), which indicates that angiogenesis is controlled by the interplay between the oxidative stress and the scavenging capacity of the tumor microenvironment.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Fernanda Silva
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Carmo Martins
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Nuno Lopes
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica, 2780-157 Oeiras, Portugal; (N.L.); (C.B.)
| | - Germana Domingues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica, 2780-157 Oeiras, Portugal; (N.L.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - António M Almeida
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
- Hospital da Luz, Av. Lusíada 100, 1500-650 Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (F.L.-C.); (F.S.); (S.G.-F.); (G.D.); (S.A.P.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto 1099-023 Lisboa, Portugal; (C.M.); (A.M.A.)
- Correspondence: ; Tel.: +350-217-229-800; Fax: +351-217-248-756
| |
Collapse
|
50
|
Metabolic Remodelling: An Accomplice for New Therapeutic Strategies to Fight Lung Cancer. Antioxidants (Basel) 2019; 8:antiox8120603. [PMID: 31795465 PMCID: PMC6943435 DOI: 10.3390/antiox8120603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling is a hallmark of cancer, however little has been unravelled in its role in chemoresistance, which is a major hurdle to cancer control. Lung cancer is a leading cause of death by cancer, mainly due to the diagnosis at an advanced stage and to the development of resistance to therapy. Targeted therapeutic agents combined with comprehensive drugs are commonly used to treat lung cancer. However, resistance mechanisms are difficult to avoid. In this review, we will address some of those therapeutic regimens, resistance mechanisms that are eventually developed by lung cancer cells, metabolic alterations that have already been described in lung cancer and putative new therapeutic strategies, and the integration of conventional drugs and genetic and metabolic-targeted therapies. The oxidative stress is pivotal in this whole network. A better understanding of cancer cell metabolism and molecular adaptations underlying resistance mechanisms will provide clues to design new therapeutic strategies, including the combination of chemotherapeutic and targeted agents, considering metabolic intervenients. As cancer cells undergo a constant metabolic adaptive drift, therapeutic regimens must constantly adapt.
Collapse
|