1
|
Schramm KD, Marshall BT, Oliver P, Elsdon TS, Marnane MJ, Saunders BJ, Rouphael AB, Harvey ES. Assessing fish assemblages on oil jackets off the Angolan coast: Implications for decommissioning decisions. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107011. [PMID: 40054425 DOI: 10.1016/j.marenvres.2025.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 04/01/2025]
Abstract
West Africa plays a significant role in global oil production. Much of the offshore infrastructure in this region is due for decommissioning. An understanding of the marine communities associated with the infrastructure is essential to predict the outcome of different decommissioning alternatives, such as leave-in-place or full removal. Using ROV inspection footage, we sampled nine jackets off Angola (Cabinda Province) to quantify the abundance and species composition of fish. Sixty-five species of fish were observed among jackets, including several taxa that are commercially important to the region, such as sardine (Sardinella spp.) and mackerel species (Trachurus spp.). We also observed taxa that are commonly targeted in small-scale (artisanal) fisheries in Angola, such as groupers (Epinephelidae) and snappers (Lutjanidae). Distinct fish assemblages were observed at each jacket, and attributed to differences in jacket location, depth, and infrastructure design. Time of day also affected the assemblage detected across jackets, although similar dominant families were present across day and night at a specific depth zone when pooled. Unlike patterns observed in other regions, there was not a clear depth zonation pattern at individual jackets, and only a weak depth zonation pattern was evident when all jackets were combined. Six species had not previously been recorded off Angola, suggesting that the jackets may either facilitate range extensions or highlight a paucity of fish studies in the region. Our results have important implications for evaluating decommissioning options, including addressing questions on jacket removal or reefing and implications for species of importance to fisheries.
Collapse
Affiliation(s)
- Karl D Schramm
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Brooke T Marshall
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Peter Oliver
- Chevron Britain Ltd., Aberdeen, Scotland, United Kingdom
| | - Travis S Elsdon
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia; Chevron Energy Technology Pty. Ltd., Perth, Western Australia, Australia
| | - Michael J Marnane
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia; Chevron Energy Technology Pty. Ltd., Perth, Western Australia, Australia
| | - Benjamin J Saunders
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Anthony B Rouphael
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
2
|
Clubley CH, Silva TAM, Wood LE, Firth LB, Bilton DT, O'Dea E, Knights AM. Multi-generational dispersal and dynamic patch occupancy reveals spatial and temporal stability of seascapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175762. [PMID: 39197777 DOI: 10.1016/j.scitotenv.2024.175762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
The success of non-native species (NNS) invasions depends on patterns of dispersal and connectivity, which underpin genetic diversity, population establishment and growth. In the marine environment, both global environmental change and increasing anthropogenic activity can alter hydrodynamic patterns, leading to significant inter-annual variability in dispersal pathways. Despite this, multi-generational dispersal is rarely explicitly considered in attempts to understand NNS spread or in the design of management interventions. Here, we present a novel approach to quantifying species spread that considers range expansion and network formation across time using the non-native Pacific oyster, Magallana gigas (Thunberg 1793), as a model. We combined biophysical modelling, dynamic patch occupancy models, consideration of environmental factors, and graph network theory to model multi-generational dispersal in northwest Europe over 13 generations. Results revealed that M. gigas has a capacity for rapid range expansion through the creation of an ecological network of dispersal pathways that remains stable through time. Maximum network size was achieved in four generations, after which connectivity patterns remained temporally stable. Multi-generational connectivity could therefore be divided into two periods: network growth (2000-2003) and network stability (2004-2012). Our study is the first to examine how dispersal trajectories affect the temporal stability of ecological networks across biogeographic scales, and provides an approach for the assignment of site-based prioritisation of non-native species management at different stages of the invasion timeline. More broadly, the framework we present can be applied to other fields (e.g. Marine Protected Area design, management of threatened species and species range expansion due to climate change) as a means of characterising and defining ecological network structure, functioning and stability.
Collapse
Affiliation(s)
- Charlotte H Clubley
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; Aarhus University, Department of Ecoscience, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark.
| | - Tiago A M Silva
- Lowestoft Laboratory, Centre for Environment, Fisheries and Aquaculture Science, NR33 0HT Lowestoft, United Kingdom
| | - Louisa E Wood
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom; Department of Biology, University of Fribourg, Chemin du Musée 15, CH-1700 Fribourg, Switzerland
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| | - David T Bilton
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Enda O'Dea
- Met Éireann, 65/67 Glasnevin Hill, Dublin 9 D09 Y921, Ireland; Met Office, FitzRoy Road, Exeter, Devon EX1 3PB, United Kingdom
| | - Antony M Knights
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| |
Collapse
|
3
|
Galaiduk R, McLean DL, Speed CW, Greer D, McIntosh R, Treml EA. Offshore oil and gas infrastructure plays a minor role in marine metapopulation dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172981. [PMID: 38705301 DOI: 10.1016/j.scitotenv.2024.172981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Decommissioning consequences of offshore oil and gas infrastructure removal on marine population dynamics, including connectivity, are not well understood. We modelled the connectivity and metapopulation dynamics of three fish and two benthic invertebrate species inhabiting the natural rocky reefs and offshore oil and gas infrastructure located in the Bass Strait, south-east Australia. Using a network approach, we found that platforms are not major sources, destinations, or stepping-stones for most species, yet act as modest sources for connectivity of Corynactis australis (jewel anemone). In contrast, sections of subsea pipelines appear to act as stepping-stones, source and destination habitats of varying strengths for all study species, except for Centrostephanus rodgersii (long-spined sea urchin). Natural reefs were the main stepping-stones, local source, and destination habitats for all study species. These reefs were largely responsible for the overall metapopulation growth of all study species (average of 96 % contribution across all species), with infrastructure acting as a minor contributor (<2 % average contribution). Full or partial decommissioning of platforms should have a very low or negligible impact on the overall metapopulation dynamics of the species explored, except C. australis, while full removal of pipelines could have a low impact on the metapopulation dynamics of benthic invertebrate species and a moderate impact on fish species (up to 34.1 % reduction in the metapopulation growth). We recommend that the decision to remove offshore infrastructure, either in full or in-part, be made on a platform-by-platform basis and consider contributions of pipelines to connectivity and metapopulation dynamics.
Collapse
Affiliation(s)
- Ronen Galaiduk
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre (IOMRC), Perth, WA, Australia; Oceans Institute, The University of Western Australia, Perth, WA, Australia.
| | - Dianne L McLean
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre (IOMRC), Perth, WA, Australia; Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | - Conrad W Speed
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre (IOMRC), Perth, WA, Australia; Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | | | | | - Eric A Treml
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre (IOMRC), Perth, WA, Australia; Oceans Institute, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Mugge RL, Rakocinski CF, Woolsey M, Hamdan LJ. Proximity to built structures on the seabed promotes biofilm development and diversity. BIOFOULING 2023; 39:706-718. [PMID: 37746691 DOI: 10.1080/08927014.2023.2255141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
The rapidly expanding built environment in the northern Gulf of Mexico includes thousands of human built structures (e.g. platforms, shipwrecks) on the seabed. Primary-colonizing microbial biofilms transform structures into artificial reefs capable of supporting biodiversity, yet little is known about formation and recruitment of biofilms. Short-term seafloor experiments containing steel surfaces were placed near six structures, including historic shipwrecks and modern decommissioned energy platforms. Biofilms were analyzed for changes in phylogenetic composition, richness, and diversity relative to proximity to the structures. The biofilm core microbiome was primarily composed of iron-oxidizing Mariprofundus, sulfur-oxidizing Sulfurimonas, and biofilm-forming Rhodobacteraceae. Alpha diversity and richness significantly declined as a function of distance from structures. This study explores how built structures influence marine biofilms and contributes knowledge on how anthropogenic activity impacts microbiomes on the seabed.
Collapse
Affiliation(s)
- Rachel L Mugge
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| | - Chet F Rakocinski
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| | - Max Woolsey
- Hydrographic Science Research Center, University of Southern Mississippi, Stennis Space Center, Mississippi, USA
| | - Leila J Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, USA
| |
Collapse
|
5
|
Boughton J, Hirst AG, Lucas CH, Spencer M. Negative and positive interspecific interactions involving jellyfish polyps in marine sessile communities. PeerJ 2023; 11:e14846. [PMID: 36874979 PMCID: PMC9979834 DOI: 10.7717/peerj.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/12/2023] [Indexed: 03/02/2023] Open
Abstract
Sessile marine invertebrates on hard substrates are one of the two canonical examples of communities structured by competition, but some aspects of their dynamics remain poorly understood. Jellyfish polyps are an important but under-studied component of these communities. We determined how jellyfish polyps interact with their potential competitors in sessile marine hard-substrate communities, using a combination of experiments and modelling. We carried out an experimental study of the interaction between polyps of the moon jellyfish Aurelia aurita and potential competitors on settlement panels, in which we determined the effects of reduction in relative abundance of either A. aurita or potential competitors at two depths. We predicted that removal of potential competitors would result in a relative increase in A. aurita that would not depend on depth, and that removal of A. aurita would result in a relative increase in potential competitors that would be stronger at shallower depths, where oxygen is less likely to be limiting. Removal of potential competitors resulted in a relative increase in A. aurita at both depths, as predicted. Unexpectedly, removal of A. aurita resulted in a relative decrease in potential competitors at both depths. We investigated a range of models of competition for space, of which the most successful involved enhanced overgrowth of A. aurita by potential competitors, but none of these models was completely able to reproduce the observed pattern. Our results suggest that interspecific interactions in this canonical example of a competitive system are more complex than is generally believed.
Collapse
Affiliation(s)
- Jade Boughton
- Faculty of Sciences, International Master of Science in Marine Biological Resources (Consortium, EMBRC), University of Ghent, Ghent, Belgium
| | - Andrew G. Hirst
- School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent University, Southwell, United Kingdom
- Centre for Ocean Life, National Institute for Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| | - Cathy H. Lucas
- National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Matthew Spencer
- School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
McLean DL, Ferreira LC, Benthuysen JA, Miller KJ, Schläppy M, Ajemian MJ, Berry O, Birchenough SNR, Bond T, Boschetti F, Bull AS, Claisse JT, Condie SA, Consoli P, Coolen JWP, Elliott M, Fortune IS, Fowler AM, Gillanders BM, Harrison HB, Hart KM, Henry L, Hewitt CL, Hicks N, Hock K, Hyder K, Love M, Macreadie PI, Miller RJ, Montevecchi WA, Nishimoto MM, Page HM, Paterson DM, Pattiaratchi CB, Pecl GT, Porter JS, Reeves DB, Riginos C, Rouse S, Russell DJF, Sherman CDH, Teilmann J, Todd VLG, Treml EA, Williamson DH, Thums M. Influence of offshore oil and gas structures on seascape ecological connectivity. GLOBAL CHANGE BIOLOGY 2022; 28:3515-3536. [PMID: 35293658 PMCID: PMC9311298 DOI: 10.1111/gcb.16134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
Offshore platforms, subsea pipelines, wells and related fixed structures supporting the oil and gas (O&G) industry are prevalent in oceans across the globe, with many approaching the end of their operational life and requiring decommissioning. Although structures can possess high ecological diversity and productivity, information on how they interact with broader ecological processes remains unclear. Here, we review the current state of knowledge on the role of O&G infrastructure in maintaining, altering or enhancing ecological connectivity with natural marine habitats. There is a paucity of studies on the subject with only 33 papers specifically targeting connectivity and O&G structures, although other studies provide important related information. Evidence for O&G structures facilitating vertical and horizontal seascape connectivity exists for larvae and mobile adult invertebrates, fish and megafauna; including threatened and commercially important species. The degree to which these structures represent a beneficial or detrimental net impact remains unclear, is complex and ultimately needs more research to determine the extent to which natural connectivity networks are conserved, enhanced or disrupted. We discuss the potential impacts of different decommissioning approaches on seascape connectivity and identify, through expert elicitation, critical knowledge gaps that, if addressed, may further inform decision making for the life cycle of O&G infrastructure, with relevance for other industries (e.g. renewables). The most highly ranked critical knowledge gap was a need to understand how O&G structures modify and influence the movement patterns of mobile species and dispersal stages of sessile marine species. Understanding how different decommissioning options affect species survival and movement was also highly ranked, as was understanding the extent to which O&G structures contribute to extending species distributions by providing rest stops, foraging habitat, and stepping stones. These questions could be addressed with further dedicated studies of animal movement in relation to structures using telemetry, molecular techniques and movement models. Our review and these priority questions provide a roadmap for advancing research needed to support evidence-based decision making for decommissioning O&G infrastructure.
Collapse
|
7
|
Otto CRV, Bailey LL, Smart AH. Patch utilization and flower visitations by wild bees in a honey bee-dominated, grassland landscape. Ecol Evol 2021; 11:14888-14904. [PMID: 34765148 PMCID: PMC8571640 DOI: 10.1002/ece3.8174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 12/05/2022] Open
Abstract
Understanding habitat needs and patch utilization of wild and managed bees has been identified as a national research priority in the United States. We used occupancy models to investigate patterns of bee use across 1030 transects spanning a gradient of floral resource abundance and richness and distance from apiaries in the Prairie Pothole Region (PPR) of the United States. Estimates of transect use by honey bees were nearly 1.0 during our 3.5-month sampling period, suggesting honey bees were nearly ubiquitous across transects. Wild bees more frequently used transects with higher flower richness and more abundant flowers; however, the effect size of the native flower abundance covariate (β ^ native = 3.90 ± 0.65 [1SE]) was four times greater than the non-native flower covariate (β ^ n o n - n a t i v e = 0.99 ± 0.17). We found some evidence that wild bee use was lower at transects near commercial apiaries, but the effect size was imprecise (β ^ distance = 1.4 ± 0.81). Honey bees were more frequently detected during sampling events with more non-native flowers and higher species richness but showed an uncertain relationship with native flower abundance. Of the 4039 honey bee and flower interactions, 85% occurred on non-native flowers, while only 43% of the 738 wild bee observations occurred on non-native flowers. Our study suggests wild bees and honey bees routinely use the same resource patches in the PPR but often visit different flowering plants. The greatest potential for resource overlap between honey bees and wild bees appears to be for non-native flowers in the PPR. Our results are valuable to natural resource managers tasked with supporting habitat for managed and wild pollinators in agroecosystems.
Collapse
Affiliation(s)
- Clint R. V. Otto
- U.S. Geological SurveyNorthern Prairie Wildlife Research CenterJamestownNorth DakotaUSA
| | - Larissa L. Bailey
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Autumn H. Smart
- U.S. Geological SurveyNorthern Prairie Wildlife Research CenterJamestownNorth DakotaUSA
- Department of EntomologyUniversity of NebraskaLincolnNebraskaUSA
| |
Collapse
|
8
|
Elizabeth Alter S, Tariq L, Creed JK, Megafu E. Evolutionary responses of marine organisms to urbanized seascapes. Evol Appl 2021; 14:210-232. [PMID: 33519966 PMCID: PMC7819572 DOI: 10.1111/eva.13048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Many of the world's major cities are located in coastal zones, resulting in urban and industrial impacts on adjacent marine ecosystems. These pressures, which include pollutants, sewage, runoff and debris, temperature increases, hardened shorelines/structures, and light and acoustic pollution, have resulted in new evolutionary landscapes for coastal marine organisms. Marine environmental changes influenced by urbanization may create new selective regimes or may influence neutral evolution via impacts on gene flow or partitioning of genetic diversity across seascapes. While some urban selective pressures, such as hardened surfaces, are similar to those experienced by terrestrial species, others, such as oxidative stress, are specific to aquatic environments. Moreover, spatial and temporal scales of evolutionary responses may differ in the ocean due to the spatial extent of selective pressures and greater capacity for dispersal/gene flow. Here, we present a conceptual framework and synthesis of current research on evolutionary responses of marine organisms to urban pressures. We review urban impacts on genetic diversity and gene flow and examine evidence that marine species are adapting, or are predicted to adapt, to urbanization over rapid evolutionary time frames. Our findings indicate that in the majority of studies, urban stressors are correlated with reduced genetic diversity. Genetic structure is often increased in urbanized settings, but artificial structures can also act as stepping stones for some hard-surface specialists, promoting range expansion. Most evidence for rapid adaptation to urban stressors comes from studies of heritable tolerance to pollutants in a relatively small number of species; however, the majority of marine ecotoxicology studies do not test directly for heritability. Finally, we highlight current gaps in our understanding of evolutionary processes in marine urban environments and present a framework for future research to address these gaps.
Collapse
Affiliation(s)
- S. Elizabeth Alter
- Department of Biology & ChemistryCalifornia State University, Monterey BayChapman Academic Science CenterSeasideCAUSA
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
- Department of IchthyologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Laraib Tariq
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
| | - James Keanu Creed
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
- Department of IchthyologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Emmanuel Megafu
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
| |
Collapse
|
9
|
Alfaya JEF, Tonini MH, Soria G, Penchaszadeh PE, Bigatti G. Nemertean Larval Dispersion Across Biogeographic Provinces of Southwest Atlantic. Zoolog Sci 2020; 37:450-457. [DOI: 10.2108/zs200050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022]
Affiliation(s)
- José E. F. Alfaya
- LARBIM-IBIOMAR, CCT CONICET-CENPAT. Bvd. Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina
| | | | - Gaspar Soria
- Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Bvd. Brown 3100; U9120ACV Puerto Madryn, Chubut, Argentina
| | - Pablo E. Penchaszadeh
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN CONICET), Av. A. Gallardo 470 (C1405DJR), Buenos Aires, Argentina
| | - Gregorio Bigatti
- LARBIM-IBIOMAR, CCT CONICET-CENPAT. Bvd. Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina
| |
Collapse
|
10
|
Coolen JWP, Boon AR, Crooijmans R, van Pelt H, Kleissen F, Gerla D, Beermann J, Birchenough SNR, Becking LE, Luttikhuizen PC. Marine stepping-stones: Connectivity of Mytilus edulis populations between offshore energy installations. Mol Ecol 2020; 29:686-703. [PMID: 31989703 PMCID: PMC7065051 DOI: 10.1111/mec.15364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Recent papers have suggested that epifaunal organisms use artificial structures as stepping-stones to spread to areas that are too distant to reach in a single generation. With thousands of artificial structures present in the North Sea, we test the hypothesis that these structures are connected by water currents and act as an interconnected reef. Population genetic structure of the blue mussel, Mytilus edulis, was expected to follow a pattern predicted by a particle tracking model (PTM). Correlation between population genetic differentiation, based on microsatellite markers, and particle exchange was tested. Specimens of M. edulis were found at each location, although the PTM indicated that locations >85 km offshore were isolated from coastal subpopulations. The fixation coefficient FST correlated with the number of arrivals in the PTM. However, the number of effective migrants per generation as inferred from coalescent simulations did not show a strong correlation with the arriving particles. Isolation by distance analysis showed no increase in isolation with increasing distance and we did not find clear structure among the populations. The marine stepping-stone effect is obviously important for the distribution of M. edulis in the North Sea and it may influence ecologically comparable species in a similar way. In the absence of artificial shallow hard substrates, M. edulis would be unlikely to survive in offshore North Sea waters.
Collapse
Affiliation(s)
- Joop W. P. Coolen
- Wageningen Marine ResearchDen HelderThe Netherlands
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Arjen R. Boon
- Deltares, Marine and Coastal SystemsDelftThe Netherlands
| | - Richard Crooijmans
- Animal Breeding and Genomics CentreWageningen UniversityWageningenThe Netherlands
| | | | - Frank Kleissen
- Deltares, Marine and Coastal SystemsDelftThe Netherlands
| | - Daan Gerla
- Wageningen Marine ResearchDen HelderThe Netherlands
| | - Jan Beermann
- Department of Functional EcologyAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
- Helmholtz Institute for Functional Marine BiodiversityOldenburgGermany
| | | | - Leontine E. Becking
- Wageningen Marine ResearchDen HelderThe Netherlands
- Marine Animal Ecology GroupWageningen UniversityWageningenThe Netherlands
| | - Pieternella C. Luttikhuizen
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchUtrecht UniversityDen BurgThe Netherlands
| |
Collapse
|
11
|
Tidbury H, Taylor N, Molen J, Garcia L, Posen P, Gill A, Lincoln S, Judd A, Hyder K. Social network analysis as a tool for marine spatial planning: Impacts of decommissioning on connectivity in the North Sea. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hannah Tidbury
- Weymouth Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Weymouth UK
| | - Nick Taylor
- Weymouth Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Weymouth UK
| | - Johan Molen
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research and Utrecht University Den Burg The Netherlands
| | - Luz Garcia
- Lowestoft Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Lowestoft UK
| | - Paulette Posen
- Weymouth Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Weymouth UK
| | - Andrew Gill
- Lowestoft Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Lowestoft UK
| | - Susana Lincoln
- Lowestoft Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Lowestoft UK
| | - Adrian Judd
- Lowestoft Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Lowestoft UK
| | - Kieran Hyder
- Lowestoft Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Lowestoft UK
- School of Environmental Sciences University of East AngliaNorwich Research Park Norwich UK
| |
Collapse
|
12
|
Sheehan EV, Bridger D, Nancollas SJ, Pittman SJ. PelagiCam: a novel underwater imaging system with computer vision for semi-automated monitoring of mobile marine fauna at offshore structures. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 192:11. [PMID: 31807930 DOI: 10.1007/s10661-019-7980-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Engineered structures in the open ocean are becoming more frequent with the expansion of the marine renewable energy industry and offshore marine aquaculture. Floating engineered structures function as artificial patch reefs providing novel and relatively stable habitat structure not otherwise available in the pelagic water column. The enhanced physical structure can increase local biodiversity and benefit fisheries yet can also facilitate the spread of invasive species. Clear evidence of any ecological consequences will inform the design and placement of structures to either minimise negative impacts or enhance ecosystem restoration. The development of rapid, cost-effective and reliable remote underwater monitoring methods is crucial to supporting evidence-based decision-making by planning authorities and developers when assessing environmental risks and benefits of offshore structures. A novel, un-baited midwater video system, PelagiCam, with motion-detection software (MotionMeerkat) for semi-automated monitoring of mobile marine fauna, was developed and tested on the UK's largest offshore rope-cultured mussel farm in Lyme Bay, southwest England. PelagiCam recorded Atlantic horse mackerel (Trachurus trachurus), garfish (Belone belone) and two species of jellyfish (Chrysaora hysoscella and Rhizostoma pulmo) in open water close to the floating farm structure. The software successfully distinguished video frames where fishes were present versus absent. The PelagiCam system provides a cost-effective remote monitoring tool to streamline biological data acquisition in impact assessments of offshore floating structures. With the rise of sophisticated artificial intelligence for object recognition, the integration of computer vision techniques should receive more attention in marine ecology and has great potential to revolutionise marine biological monitoring.
Collapse
Affiliation(s)
- Emma V Sheehan
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| | - Danielle Bridger
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| | - Sarah J Nancollas
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Simon J Pittman
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
13
|
Legrand T, Di Franco A, Ser-Giacomi E, Caló A, Rossi V. A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104761. [PMID: 31399203 DOI: 10.1016/j.marenvres.2019.104761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Assessing larval dispersal is essential to understand the structure and dynamics of marine populations. However, knowledge about early-life dispersal is sparse, and so is our understanding of the spawning process, perhaps the most obscure component of biphasic life cycles. Indeed, poorly known species-specific spawning modality and species-specific early-life traits, as well as the high spatio-temporal variability of the oceanic circulation experienced during larval drift, hamper our ability to appraise the realized connectivity of coastal fishes. Here, we propose an analytical framework which combines Lagrangian modelling, network theory, otolith analyses and biogeographical information to pinpoint and characterize larval sources which are then grouped into discrete spawning areas. Such well-delineated larval sources allow improving the quantitative evaluations of both dispersal scales and connectivity patterns. To illustrate its added value, our approach is applied to two case-studies focusing on Diplodus sargus and Diplodus vulgaris in the Adriatic sea. We evidence robust correlations between otolith geochemistry and modelled spawning areas to assess their relative importance for the larval replenishment of the Apulian coast. Our results show that, contrary to D. sargus, D. vulgaris larvae originate from both eastern and western Adriatic shorelines. Our findings also suggest that dispersal distances and dispersal surfaces scale differently with the pelagic larval duration. Furthermore, 30.8% of D. sargus larvae and 23.6% of D. vulgaris larvae of the Apulian populations originate from Marine protected area (MPA), exemplifying larval export from MPAs to surrounding unprotected areas. This flexible multidisciplinary framework, which can be adjusted to any coastal fish and oceanic system, exploits the explanatory power of a dispersal model, fine-tuned and backed-up by observations, to provide more reliable scientific basis for the management and conservation of marine ecosystems.
Collapse
Affiliation(s)
- T Legrand
- Mediterranean Institute of Oceanography (UM 110, UMR 7294), CNRS, Aix Marseille Univ., Univ. Toulon, IRD, 13288, Marseille, France.
| | - A Di Franco
- Stazione zoologica Anton Dohrn, Dipartimento Ecologia Marina Integrata, Sede Interdipartimentale della Sicilia, Lungomare Cristoforo Colombo (complesso Roosevelt), 90142 Palermo, Italy; Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Parc Valrose 28, Avenue Valrose, 06108, Nice, France
| | - E Ser-Giacomi
- Sorbonne Universités (UPMC, Université Paris 06)-CNRS-IRD-MNHN, LOCEAN, 4 Place JUSSIEU, F-75005, PARIS, France
| | - A Caló
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Parc Valrose 28, Avenue Valrose, 06108, Nice, France; Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, 90123 Palermo, Italy
| | - V Rossi
- Mediterranean Institute of Oceanography (UM 110, UMR 7294), CNRS, Aix Marseille Univ., Univ. Toulon, IRD, 13288, Marseille, France
| |
Collapse
|
14
|
Williams GJ, Graham NAJ, Jouffray JB, Norström AV, Nyström M, Gove JM, Heenan A, Wedding LM. Coral reef ecology in the Anthropocene. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13290] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Jean-Baptiste Jouffray
- Stockholm Resilience Centre; Stockholm University; Stockholm Sweden
- Global Economic Dynamics and the Biosphere Academy Programme; Royal Swedish Academy of Sciences; Stockholm Sweden
| | | | - Magnus Nyström
- Stockholm Resilience Centre; Stockholm University; Stockholm Sweden
| | - Jamison M. Gove
- NOAA Pacific Islands Fisheries Science Center; Honolulu Hawaii
| | - Adel Heenan
- School of Ocean Sciences; Bangor University; Anglesey UK
| | - Lisa M. Wedding
- Center for Ocean Solutions; Stanford University; Stanford California
| |
Collapse
|