1
|
Yang T, Yao G, Jiang X, Xu L. Characteristics and radiological features of bone lesions in patients with Langerhans cell histiocytosis: A case series study. Medicine (Baltimore) 2025; 104:e41833. [PMID: 40101065 PMCID: PMC11922398 DOI: 10.1097/md.0000000000041833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The aim of this study was to explore the characteristics and radiological features of bone lesions in patients with Langerhans cell histiocytosis (LCH). This case series study included patients with LCH in the Second Affiliated Hospital Zhejiang University School of Medicine between January 2010 and December 2020. A total of 126 patients with 141 lesions were included. Among the 141 lesions, craniofacial bones (n = 24, 17.02%), trunk bones (n = 40, 28.37%), limb bones (n = 41, 29.08%), and vertebrae (n = 36, 25.53%) were the most frequently affected anatomic sites. X-ray showed 84 (84/110) bone osteolytic lesions were in the bone marrow cavity or cancellous. Computed tomography (CT) showed 17 (17/141) lesions with unclear boundaries. Magnetic resonance imaging found 48 (48/127) lesions with heterogeneous hyperintense signals. The radioactive concentration was observed in 97 (97/113) cases, multiple lesions were observed in 8 (8/113) cases, and a total of 106 lesions were checked out by single-photon emission CT. Positron emission tomography-computed tomography (PET-CT) found that 21 lesions of PET-CT were positive and single. The bone lesions of LCH are observed in limb bones, trunk bones, and vertebrae. The radiological features of bone lesions in patients with LCH are complex and varied. A combination of X-ray, CT, magnetic resonance imaging, single-photon emission CT, and PET-CT might be needed for complete detection and characterization of the lesions.
Collapse
Affiliation(s)
- Ting Yang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gang Yao
- Department of Radiology, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xingfang Jiang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Leiming Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Karlova Zubata I, Smetanova Brozova J, Karel T, Bacova B, Novak J. High pre-transplant Mucosal Associated Invariant T Cell (MAIT) count predicts favorable course of myeloid aplasia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:139-146. [PMID: 36896825 DOI: 10.5507/bp.2023.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
AIMS Mucosal Associated Invariant T (MAIT) cells are unconventional T cells with anti-infective potential. MAIT cells detect and fight against microbes on mucosal surfaces and in peripheral tissues. Previous works suggested that MAIT cells survive exposure to cytotoxic drugs in these locations. We sought to determine if they maintain their anti-infective functions after myeloablative chemotherapy. METHODS We correlated the amount of MAIT cells (measured by flow cytometry) in the peripheral blood of 100 adult patients before the start of myeloablative conditioning plus autologous stem cell transplantation with the clinical and laboratory outcomes of aplasia. RESULTS The amount of MAIT cells negatively correlated with peak C-reactive protein level and the amount of red blood cell transfusion units resulting in earlier discharge of patients with the highest amount of MAIT cells. CONCLUSION This work suggests the anti-infectious potential of MAIT cells is maintained during myeloid aplasia.
Collapse
Affiliation(s)
| | - Jitka Smetanova Brozova
- Central Laboratories of the Faculty Hospital Kralovske Vinohrady, Srobarova 50, 100 34, Prague 10, Czech Republic
| | - Tomas Karel
- Department of Statistics and Probability, Faculty of Informatics and Statistics, University of Economics and Business in Prague, Namesti W. Churchilla 1938/4, 130 67, Prague 3, Czech Republic
| | - Barbora Bacova
- Central Laboratories of the Faculty Hospital Kralovske Vinohrady, Srobarova 50, 100 34, Prague 10, Czech Republic
- Department of Immunology, 3rd Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague 10, Czech Republic
| | - Jan Novak
- Department of Haematology, 3
- Department of Immunology, 3rd Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague 10, Czech Republic
| |
Collapse
|
3
|
Sconocchia T, Foßelteder J, Sconocchia G, Reinisch A. Langerhans cell histiocytosis: current advances in molecular pathogenesis. Front Immunol 2023; 14:1275085. [PMID: 37965340 PMCID: PMC10642229 DOI: 10.3389/fimmu.2023.1275085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare and clinically heterogeneous hematological disease characterized by the accumulation of mononuclear phagocytes in various tissues and organs. LCH is often characterized by activating mutations of the mitogen-activated protein kinase (MAPK) pathway with BRAFV600E being the most recurrent mutation. Although this discovery has greatly helped in understanding the disease and in developing better investigational tools, the process of malignant transformation and the cell of origin are still not fully understood. In this review, we focus on the newest updates regarding the molecular pathogenesis of LCH and novel suggested pathways with treatment potential.
Collapse
Affiliation(s)
- Tommaso Sconocchia
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Foßelteder
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Li YR, Zhou K, Wilson M, Kramer A, Zhu Y, Dawson N, Yang L. Mucosal-associated invariant T cells for cancer immunotherapy. Mol Ther 2023; 31:631-646. [PMID: 36463401 PMCID: PMC10014234 DOI: 10.1016/j.ymthe.2022.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Human mucosal-associated invariant T (MAIT) cells are characterized by their expression of an invariant TCR α chain Vα7.2-Jα33/Jα20/Jα12 paired with a restricted TCR β chain. MAIT cells recognize microbial peptides presented by the highly conserved MHC class I-like molecule MR1 and bridge the innate and acquired immune systems to mediate augmented immune responses. Upon activation, MAIT cells rapidly proliferate, produce a variety of cytokines and cytotoxic molecules, and trigger efficient antitumor immunity. Administration of a representative MAIT cell ligand 5-OP-RU effectively activates MAIT cells and enhances their antitumor capacity. In this review, we introduce MAIT cell biology and their importance in antitumor immunity, summarize the current development of peripheral blood mononuclear cell-derived and stem cell-derived MAIT cell products for cancer treatment, and discuss the potential of genetic engineering of MAIT cells for off-the-shelf cancer immunotherapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Niels Dawson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Kvedaraite E, Milne P, Khalilnezhad A, Chevrier M, Sethi R, Lee HK, Hagey DW, von Bahr Greenwood T, Mouratidou N, Jädersten M, Lee NYS, Minnerup L, Yingrou T, Dutertre CA, Benac N, Hwang YY, Lum J, Loh AHP, Jansson J, Teng KWW, Khalilnezhad S, Weili X, Resteu A, Liang TH, Guan NL, Larbi A, Howland SW, Arnell H, Andaloussi SEL, Braier J, Rassidakis G, Galluzzo L, Dzionek A, Henter JI, Chen J, Collin M, Ginhoux F. Notch-dependent cooperativity between myeloid lineages promotes Langerhans cell histiocytosis pathology. Sci Immunol 2022; 7:eadd3330. [PMID: 36525505 PMCID: PMC7614120 DOI: 10.1126/sciimmunol.add3330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a potentially fatal neoplasm characterized by the aberrant differentiation of mononuclear phagocytes, driven by mitogen-activated protein kinase (MAPK) pathway activation. LCH cells may trigger destructive pathology yet remain in a precarious state finely balanced between apoptosis and survival, supported by a unique inflammatory milieu. The interactions that maintain this state are not well known and may offer targets for intervention. Here, we used single-cell RNA-seq and protein analysis to dissect LCH lesions, assessing LCH cell heterogeneity and comparing LCH cells with normal mononuclear phagocytes within lesions. We found LCH discriminatory signatures pointing to senescence and escape from tumor immune surveillance. We also uncovered two major lineages of LCH with DC2- and DC3/monocyte-like phenotypes and validated them in multiple pathological tissue sites by high-content imaging. Receptor-ligand analyses and lineage tracing in vitro revealed Notch-dependent cooperativity between DC2 and DC3/monocyte lineages during expression of the pathognomonic LCH program. Our results present a convergent dual origin model of LCH with MAPK pathway activation occurring before fate commitment to DC2 and DC3/monocyte lineages and Notch-dependent cooperativity between lineages driving the development of LCH cells.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Marion Chevrier
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Raman Sethi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Hong Kai Lee
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Daniel W. Hagey
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Mouratidou
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Martin Jädersten
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Yee Shin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Lara Minnerup
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tan Yingrou
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- National Skin Center, National Healthcare Group, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathan Benac
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women’s and Children’s Hospital, Singapore
| | - Jessica Jansson
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Karen Wei Weng Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Xu Weili
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Tey Hong Liang
- National Skin Centre, National Healthcare Group, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Ng Lai Guan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Henrik Arnell
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Samir EL Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jorge Braier
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | - Georgios Rassidakis
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Laura Galluzzo
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | | | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, Narional Unietsoty of Sinapore (NUS)
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
6
|
Gao XM, Li J, Cao XX. Signaling pathways, microenvironment, and targeted treatments in Langerhans cell histiocytosis. Cell Commun Signal 2022; 20:195. [PMID: 36536400 PMCID: PMC9764551 DOI: 10.1186/s12964-022-00917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/11/2022] [Indexed: 12/23/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid malignancy in the "L-group" histiocytosis. Mitogen-activated protein kinase (MAPK) pathway activating mutations are detectable in nearly all LCH lesions. However, the pathogenic roles of MAPK pathway activation in the development of histiocytosis are still elusive. This review will summarize research concerning the landscape and pathogenic roles of MAPK pathway mutations and related treatment opportunities in Langerhans cell histiocytosis. Video abstract.
Collapse
Affiliation(s)
- Xue-min Gao
- grid.506261.60000 0001 0706 7839Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Li
- grid.506261.60000 0001 0706 7839Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-xin Cao
- grid.506261.60000 0001 0706 7839Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Mitchell J, Kvedaraite E, von Bahr Greenwood T, Lourda M, Henter JI, Berzins SP, Kannourakis G. Plasma Signaling Factors in Patients With Langerhans Cell Histiocytosis (LCH) Correlate With Relative Frequencies of LCH Cells and T Cells Within Lesions. Front Pediatr 2022; 10:872859. [PMID: 35844751 PMCID: PMC9277082 DOI: 10.3389/fped.2022.872859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) lesions contain an inflammatory infiltrate of immune cells including myeloid-derived LCH cells. Cell-signaling proteins within the lesion environment suggest that LCH cells and T cells contribute majorly to the inflammation. Foxp3+ regulatory T cells (Tregs) are enriched in lesions and blood from patients with LCH and are likely involved in LCH pathogenesis. In contrast, mucosal associated invariant T (MAIT) cells are reduced in blood from these patients and the consequence of this is unknown. Serum/plasma levels of cytokines have been associated with LCH disease extent and may play a role in the recruitment of cells to lesions. We investigated whether plasma signaling factors differed between patients with active and non-active LCH. Cell-signaling factors (38 analytes total) were measured in patient plasma and cell populations from matched lesions and/or peripheral blood were enumerated. This study aimed at understanding whether plasma factors corresponded with LCH cells and/or LCH-associated T cell subsets in patients with LCH. We identified several associations between plasma factors and lesional/circulating immune cell populations, thus highlighting new factors as potentially important in LCH pathogenesis. This study highlights plasma cell-signaling factors that are associated with LCH cells, MAIT cells or Tregs in patients, thus they are potentially important in LCH pathogenesis. Further study into these associations is needed to determine whether these factors may become suitable prognostic indicators or therapeutic targets to benefit patients.
Collapse
Affiliation(s)
- Jenée Mitchell
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| | - Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Magda Lourda
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Stuart P Berzins
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| |
Collapse
|
8
|
Mitchell J, Kannourakis G. Does CD1a Expression Influence T Cell Function in Patients With Langerhans Cell Histiocytosis? Front Immunol 2021; 12:773598. [PMID: 34956202 PMCID: PMC8702800 DOI: 10.3389/fimmu.2021.773598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Langerhans cell histiocytosis lesions are characterized by CD1a+ myeloid lineage LCH cells and an inflammatory infiltrate of cytokines and immune cells, including T cells. T cells that recognize CD1a may be implicated in the pathology of many disease states including cancer and autoimmunity but have not been studied in the context of LCH despite the expression of CD1a by LCH cells. In this perspective article, we discuss the expression of CD1a by LCH cells, and we explore the potential for T cells that recognize CD1a to be involved in LCH pathogenesis.
Collapse
Affiliation(s)
- Jenée Mitchell
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
- *Correspondence: George Kannourakis,
| |
Collapse
|
9
|
Mitchell J, Kannourakis G. Langerhans cell histiocytosis: A malignant myeloid neoplasm or disorder of immune regulation? Acta Paediatr 2021; 110:2888-2891. [PMID: 34146441 PMCID: PMC8596980 DOI: 10.1111/apa.15995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Jenee Mitchell
- Fiona Elsey Cancer Research Institute Ballarat Vic. Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute Ballarat Vic. Australia
- Federation University Ballarat Vic. Australia
| |
Collapse
|
10
|
Rodriguez‐Galindo C. Clinical features and treatment of Langerhans cell histiocytosis. Acta Paediatr 2021; 110:2892-2902. [PMID: 34192374 DOI: 10.1111/apa.16014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Langerhans cell histiocytosis (LCH) is caused by the expansion of CD1a+/CD207+ cells and is characterised by a wide spectrum of organ involvement and dysfunction, affecting all ages. While almost all organs and systems can be affected, only the involvement and dysfunction of liver, spleen, and haematopoietic system influence survival. The LCH pathogenic cells are defined by universal activation of the mitogen-activated protein kinase (MAPK) signalling pathway. The most common alteration is a somatic BRAFV600E mutation, which is present in approximately two-thirds of the cases, followed by MAP2K1 mutations. Treatment of LCH is risk-adapted; patients with single lesions may respond well to local treatment, whereas patients with multi-system disease require systemic chemotherapy. While survival for patients without organ dysfunction is excellent, mortality rates for patients with organ dysfunction may reach 20%. Despite progress made in the treatment of LCH, disease reactivation rates remain above 30%, and standard second-line treatment has yet to be established. Long-term effects, including neuroendocrine dysfunction and neurodegeneration, represent a major challenge for survivors. Treatment with BRAF or MEK inhibitors results in immediate responses, but reactivations are very common after discontinuation. Their role as single agents and in combination with chemotherapy is being explored.
Collapse
Affiliation(s)
- Carlos Rodriguez‐Galindo
- Departments of Global Pediatric Medicine and Oncology St. Jude Children’s Research Hospital Memphis TN USA
| |
Collapse
|
11
|
MR1-restricted T cells: the new dawn of cancer immunotherapy. Biosci Rep 2021; 40:226783. [PMID: 33185693 PMCID: PMC7670570 DOI: 10.1042/bsr20202962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 12/03/2022] Open
Abstract
Cancer immunotherapy has recently undergone rapid development into a validated therapy for clinical use. The adoptive transfer of engineered autologous T cells, such as chimeric antigen receptor (CAR) T cells, has been remarkably successful in patients with leukemia and lymphoma with cluster of differentiation (CD)19 expression. Because of the higher number of antigen choices and reduced incidence of cytokine release syndrome (CRS) than CAR-T cells, T cell receptor (TCR)-T cells are also considered a promising immunotherapy. More therapeutic targets for other cancers need to be explored due to the human leukocyte antigen (HLA)-restricted recognition of TCR-T. Major histocompatibility complex (MHC), class I-related (MR1)-restricted T cells can recognize metabolites presented by MR1 in the context of host cells infected with pathogens. MR1 is expressed by all types of human cells. Recent studies have shown that one clone of a MR1-restricted T (MR1-T) cell can recognize many types of cancer cells without HLA-restriction. These studies provide additional information on MR1-T cells for cancer immunotherapy. This review describes the complexity of MR1-T cell TCR in diseases and the future of cancer immunotherapy.
Collapse
|
12
|
MAIT Cells: Partners or Enemies in Cancer Immunotherapy? Cancers (Basel) 2021; 13:cancers13071502. [PMID: 33805904 PMCID: PMC8037823 DOI: 10.3390/cancers13071502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Unconventional T cells have recently come under intense scrutiny because of their innate-like effector functions and unique antigen specificity, suggesting their potential importance in antitumor immunity. MAIT cells, one such population of unconventional T cell, have been shown to significantly influence bacterial infections, parasitic and fungal infections, viral infections, autoimmune and other inflammatory diseases, and, as discussed thoroughly in this review, various cancers. This review aims to merge accumulating evidence, tease apart the complexities of MAIT cell biology in different malignancies, and discuss how these may impact clinical outcomes. While it is clear that MAIT cells can impact the tumor microenvironment, the nature of these interactions varies depending on the type of cancer, subset of MAIT cell, patient demographic, microbiome composition, and the type of therapy administered. This review examines the impact of these variables on MAIT cells and discusses outstanding questions within the field. Abstract A recent boom in mucosal-associated invariant T (MAIT) cell research has identified relationships between MAIT cell abundance, function, and clinical outcomes in various malignancies. As they express a variety of immune checkpoint receptors and ligands, and possess strong cytotoxic functions, MAIT cells are an attractive new subject in the field of tumor immunology. MAIT cells are a class of innate-like T cells that express a semi-invariant T cell antigen receptor (TCR) that recognizes microbially derived non-peptide antigens presented by the non-polymorphic MHC class-1 like molecule, MR1. In this review, we outline the current (and often contradictory) evidence exploring MAIT cell biology and how MAIT cells impact clinical outcomes in different human cancers, as well as what role they may have in cancer immunotherapy.
Collapse
|
13
|
Bone marrow-derived myeloid progenitors as driver mutation carriers in high- and low-risk Langerhans cell histiocytosis. Blood 2021; 136:2188-2199. [PMID: 32750121 DOI: 10.1182/blood.2020005209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a myeloid neoplasia, driven by sporadic activating mutations in the MAPK pathway. The misguided myeloid dendritic cell (DC) model proposes that high-risk, multisystem, risk-organ-positive (MS-RO+) LCH results from driver mutation in a bone marrow (BM)-resident multipotent hematopoietic progenitor, while low-risk, MS-RO- and single-system LCH would result from driver mutation in a circulating or tissue-resident, DC-committed precursor. We have examined the CD34+c-Kit+Flt3+ myeloid progenitor population as potential mutation carrier in all LCH disease manifestations. This population contains oligopotent progenitors of monocytes (Mo's)/macrophages (MΦs), osteoclasts (OCs), and DCs. CD34+c-Kit+Flt3+ cells from BM of MS-RO+ LCH patients produced Langerhans cell (LC)-like cells in vitro. Both LC-like and DC offspring from this progenitor carried the BRAF mutation, confirming their common origin. In both high- and low-risk LCH patients, CD34+c-Kit+Flt3+ progenitor frequency in blood was higher than in healthy donors. In one MS-RO+ LCH patient, CD34+c-Kit+Flt3+ cell frequency in blood and its BRAF-mutated offspring reported response to chemotherapy. CD34+c-Kit+Flt3+ progenitors from blood of both high- and low-risk LCH patients gave rise to DCs and LC-like cells in vitro, but the driver mutation was not easily detectable, likely due to low frequency of mutated progenitors. Mutant BRAF alleles were found in Mo's /MΦs, DCs, LC-like cells, and/or OC-like cells in lesions and/or Mo and DCs in blood of multiple low-risk patients. We therefore hypothesize that in both high- and low-risk LCH, the driver mutation is present in a BM-resident myeloid progenitor that can be mobilized to the blood.
Collapse
|
14
|
Souter MNT, Eckle SBG. Biased MAIT TCR Usage Poised for Limited Antigen Diversity? Front Immunol 2020; 11:1845. [PMID: 33013835 PMCID: PMC7461848 DOI: 10.3389/fimmu.2020.01845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize the evolutionarily conserved major histocompatibility complex (MHC) class I-like antigen-presenting molecule known as MHC class I related protein 1 (MR1). Since their rise from obscurity in the early 1990s, the study of MAIT cells has grown substantially, accelerating our fundamental understanding of these cells and their possible roles in immunity. In the context of recent advances, we review here the relationship between MR1, antigen, and TCR usage among MAIT and other MR1-reactive T cells and provide a speculative discussion.
Collapse
Affiliation(s)
- Michael N T Souter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Zhang C, Gao J, He J, Liu C, Lv X, Yin X, Deng Y, Lu Z, Tian Z. Regulatory T-cell expansion in oral and maxillofacial Langerhans cell histiocytosis. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130:547-556. [PMID: 32988807 DOI: 10.1016/j.oooo.2020.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/22/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Langerhans cell histiocytosis (LCH) is a rare myeloid-origin neoplasm characterized by the expansion and dissemination of CD1 a+/CD207+ dendritic cells (LCH cells), but the rarity of its occurrence has long impeded progress in understanding its pathology. We focus on the potentially important role that regulatory T cells (T-reg) play in the oral and maxillofacial LCH tumor microenvironment (TME). STUDY DESIGN Nine cases of oral and maxillofacial LCH, diagnosed from 2009 to 2019, were collected retrospectively from the affiliated hospitals of Southern Medical University. Immunohistochemistry was conducted characterizing T cells and T-reg phenotype. Data were evaluated by 1-sample Wilcoxon's test. RESULTS Significantly increased frequency and abnormal distributions of T-reg were identified in all the LCH lesion sections. Proliferating T-reg account for a mean average of 11.5% of the total T-cell subsets, with significant difference (Wilcoxon's test; P < .05). CONCLUSIONS T-reg expansion in the localized inflammatory TME leads to a failure of immune regulation by suppressing antitumor response, which can be a latent and significant factor contributing to LCH progression. However, T-reg may also acquire the capability for aiding in initiating T-cell responses under the "cytokine storm" at the beginning of LCH onset. T-reg might contribute to the augmentation of tissue repair by transforming growth factor-β (TGF-β), explaining the self-limiting character of LCH.
Collapse
Affiliation(s)
- Chuhan Zhang
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingyi Gao
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jianghai He
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chundong Liu
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaozhi Lv
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xuemin Yin
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yongjian Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhiyun Lu
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Zhihui Tian
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
16
|
Mitchell J, Kelly J, Kvedaraite E, von Bahr Greenwood T, Henter JI, Pellicci DG, Berzins SP, Kannourakis G. Foxp3+ Tregs from Langerhans cell histiocytosis lesions co-express CD56 and have a definitively regulatory capacity. Clin Immunol 2020; 215:108418. [DOI: 10.1016/j.clim.2020.108418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
|
17
|
Abstract
Mucosal-associated invariant T (MAIT) cells are a newly described subset of T cells that are found in the blood and are enriched in many tissues, particularly in the liver. MAIT cells express a semi-invariant T cell receptor restricted by the MHC class I-related (MR1) molecule. MAIT cells are activated in a MR1-dependent manner in response to microbial-derived riboflavin metabolites which leads to rapid effector functions, but they can also be activated in a MR1-independent manner by cytokines and viruses. The use of mice models and MR1 tetramers, among other recent methodological advances, have provided more insight into the development, mode of activation, characterization in different diseases and tissues of MAIT cells. In this chapter, we provide an overview of MAIT cells and yet remaining questions about their potential therapeutic role.
Collapse
|