1
|
Shakeel A, Noor JJ, Jan U, Gul A, Handoo Z, Ashraf N. Saponins, the Unexplored Secondary Metabolites in Plant Defense: Opportunities in Integrated Pest Management. PLANTS (BASEL, SWITZERLAND) 2025; 14:861. [PMID: 40265787 PMCID: PMC11944338 DOI: 10.3390/plants14060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
Plants are exposed to a diverse range of biotic stressors, including fungi, bacteria, nematodes, insects and viruses. To combat these enemies, plants have developed an arsenal of defense mechanisms over time, among which secondary metabolites are the most effective. Moreover, to overcome the negative impact of chemical pesticides, the plant's secondary metabolites can be harnessed to develop novel disease management strategies. Alkaloids, flavonoids, terpenes and essential oils are major pathogen/pest-responsive secondary metabolite classes in plants. Among these, saponins have shown significant potential in suppressing a wide range of plant pathogens. However, they are yet to be explored thoroughly compared to other secondary metabolites in plant defense, and therefore, a low number of disease control agents exist in agri-markets based on saponins. Thus, this review aims to rectify this bias by identifying and acknowledging the significance of saponins as being on par with other classes of secondary metabolites in plant defense systems. It also provides the first holistic review on the role of saponins with known mechanisms against all of the major plant pathogens/pests. Furthermore, this review discusses the potential of saponin-rich crops in providing eco-friendly pest/pathogen management products for integrated pest management (IPM) and prospectives on the potential of saponin derivatives in developing novel biocides for sustainable agriculture.
Collapse
Affiliation(s)
- Adnan Shakeel
- Plant Biotechnology and Molecular Biology Division, CSIR-Indian Institute of Integrative Medicine, Br. Sanat Nagar, Srinagar 190005, Jammu and Kashmir, India; (A.S.); (J.J.N.); (U.J.); (A.G.)
| | - Jewel Jameeta Noor
- Plant Biotechnology and Molecular Biology Division, CSIR-Indian Institute of Integrative Medicine, Br. Sanat Nagar, Srinagar 190005, Jammu and Kashmir, India; (A.S.); (J.J.N.); (U.J.); (A.G.)
| | - Uzma Jan
- Plant Biotechnology and Molecular Biology Division, CSIR-Indian Institute of Integrative Medicine, Br. Sanat Nagar, Srinagar 190005, Jammu and Kashmir, India; (A.S.); (J.J.N.); (U.J.); (A.G.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Aabida Gul
- Plant Biotechnology and Molecular Biology Division, CSIR-Indian Institute of Integrative Medicine, Br. Sanat Nagar, Srinagar 190005, Jammu and Kashmir, India; (A.S.); (J.J.N.); (U.J.); (A.G.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Zafar Handoo
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Northeast Area, 10300 Baltimore Avenue, Beltsville, MD 20705, USA;
| | - Nasheeman Ashraf
- Plant Biotechnology and Molecular Biology Division, CSIR-Indian Institute of Integrative Medicine, Br. Sanat Nagar, Srinagar 190005, Jammu and Kashmir, India; (A.S.); (J.J.N.); (U.J.); (A.G.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Fujiyama K, Muranaka T, Okazawa A, Seki H, Taguchi G, Yasumoto S. Recent advances in plant-based bioproduction. J Biosci Bioeng 2024; 138:1-12. [PMID: 38614829 DOI: 10.1016/j.jbiosc.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 04/15/2024]
Abstract
Unable to move on their own, plants have acquired the ability to produce a wide variety of low molecular weight compounds to survive against various stresses. It is estimated that there are as many as one million different kinds. Plants also have the ability to accumulate high levels of proteins. Although plant-based bioproduction has traditionally relied on classical tissue culture methods, the attraction of bioproduction by plants is increasing with the development of omics and bioinformatics and other various technologies, as well as synthetic biology. This review describes the current status and prospects of these plant-based bioproduction from five advanced research topics, (i) de novo production of plant-derived high value terpenoids in engineered yeast, (ii) biotransformation of plant-based materials, (iii) genome editing technology for plant-based bioproduction, (iv) environmental effect of metabolite production in plant factory, and (v) molecular pharming.
Collapse
Affiliation(s)
- Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan.
| | - Atsushi Okazawa
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Rehman M, Pan J, Mubeen S, Ma W, Luo D, Cao S, Saeed W, Jin G, Li R, Chen T, Chen P. Morpho-physio-biochemical, molecular, and phytoremedial responses of plants to red, blue, and green light: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20772-20791. [PMID: 38393568 DOI: 10.1007/s11356-024-32532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Light is a basic requirement to drive carbon metabolism in plants and supports life on earth. Spectral quality greatly affects plant morphology, physiology, and metabolism of various biochemical pathways. Among visible light spectrum, red, blue, and green light wavelengths affect several mechanisms to contribute in plant growth and productivity. In addition, supplementation of red, blue, or green light with other wavelengths showed vivid effects on the plant biology. However, response of plants differs in different species and growing conditions. This review article provides a detailed view and interpretation of existing knowledge and clarifies underlying mechanisms that how red, blue, and green light spectra affect plant morpho-physiological, biochemical, and molecular parameters to make a significant contribution towards improved crop production, fruit quality, disease control, phytoremediation potential, and resource use efficiency.
Collapse
Affiliation(s)
- Muzammal Rehman
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Jiao Pan
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Samavia Mubeen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Wenyue Ma
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Dengjie Luo
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Shan Cao
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Wajid Saeed
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Peng Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Nasr A, Yosuf I, Turki Z, Abozeid A. LC-MS metabolomics profiling of Salvia aegyptiaca L. and S. lanigera Poir. with the antimicrobial properties of their extracts. BMC PLANT BIOLOGY 2023; 23:340. [PMID: 37365525 DOI: 10.1186/s12870-023-04341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Salvia L. (Lamiaceae) found in almost all countries in temperate and tropical regions. Both S. aegyptiaca L. and S. lanigera Poir. have a rather wide distribution in Egypt (Mediterranean region, Gebel Elba and nearly the whole Sinai). Salvia species showed antibacterial and antifungal activities against several groups of food microorganisms and pathogens, so they are considered as a natural foods preservatives. AIM Investigate the phytochemical profiles of S. aegyptiaca & S. lanigera collected from their natural habitats in Egypt and test the antimicrobial activities of both species against some bacteria and fungi pathogenic strains. METHODOLOGY In the present study, S. aegyptiaca and S. lanigera were collected from their natural habitat. Total phenolics and flavonoids contents were measured for aerial parts of both Salvia spp.. The separation and identification of the pure active materials of both Salvia sp. by using LC-MS system (UHPLC-TSQ Quantum Mass Spectrometer). The antimicrobial activities of the ethanol, water and benzene extracts of the two species were tested against different pathogenic strains and compared with the standard antimicrobial drug (Gentamycin). Antimicrobial activity was determined by using agar disk diffusion method. RESULTS The phenolics content in S. lanigera 132.61±6.23 mg/g and S. aegyptiaca 125.19±4.97 mg/g, while the flavonoids content was 35.68±1.84 and 40.63±2.11 mg/g, respectively. Through LC-MS analysis, two compounds were detected in both species; heptadecanoyl coenzyme A, that the highest percentage (13.5%) in S. aegyptiaca and (11.5 %) in S. lanigera. Oenin, in a peak area of 3.1% in S. aegyptiaca and 1.2 % in S. lanigera. Ethanol extract of the two species had the most inhibitory effect against all tested microorganisms that exceeded the effect of the standard, except for Mucor reinelloids which was more sensitive to the water extract. Moreover, S. lanigera ethanol extract showed larger inhibition zone than S. aegyptiaca in all tested microorganisms except for Pseudomonas aeruginosa. CONCLUSION This study shows the important phytochemicals that improve the antibacterial and antifungal activities of Salvia aegyptiaca and S. lanigera.
Collapse
Affiliation(s)
- Alyaa Nasr
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin Elkoom, 32511, Egypt
| | - Israa Yosuf
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin Elkoom, 32511, Egypt
| | - Zaki Turki
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin Elkoom, 32511, Egypt
| | - Ann Abozeid
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin Elkoom, 32511, Egypt.
| |
Collapse
|
5
|
Zaytseva Y, Petruk A, Novikova T. Thidiazuron and LED Lighting Enhance Taxifolin and Rutin Production in Rhododendron mucronulatum Turcz. Microshoot Culture. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:2933-2942. [PMID: 35975274 PMCID: PMC9374291 DOI: 10.1007/s00344-022-10757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/28/2022] [Indexed: 05/03/2023]
Abstract
Rhododendron mucronulatum Turcz., distributed throughout the northern region of East Asia has been considered to be an alternative natural source of taxifolin (dihydroquercetin) and rutin. The present study was conducted based on a biotechnological approach to develop an environment friendly and efficient system to produce taxifolin and rutin in R. mucronulatum microshoots, using different thidiazuron (TDZ) treatments (0.1; 0.5; 2.5 µM) in combination with various types of lighting including fluorescent (FL) and light-emitting diode (LED) (R/B- 80% red + 20% blue; 5LED-20% red + 20% blue + 20% green + 20% yellow + 20% white). The highest number of shoots per explant was obtained under 0.5 µM TDZ combined with 5LED in comparison with FL lighting. Among shoot clusters obtained under different lighting types and TDZ concentrations, a considerable increase in fresh and dry weight was observed in ones cultivated on medium, supplemented with 2.5 µM TDZ under FL and 0.5 µM TDZ at R/B or 5LED. The content of total chlorophylls in R. mucronulatum microshoots increased on TDZ-free medium under FL lighting, whereas, the TDZ treatment decreased chlorophylls concentration at FL and 5LED. The use of 0.1 µM TDZ at 5LED decreased the ratio of chlorophylls a + b to carotenoids and led to the highest accumulation of taxifolin and rutin, quercetin, hyperoside, and avicularin. Thus, it has been demonstrated that the application of combined action of LED and TDZ has great potential in terms of propagation efficiency, biomass accumulation, and taxifolin and rutin production in R. mucronulatum microshoots.
Collapse
Affiliation(s)
- Yulianna Zaytseva
- Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, st. Zolotodolinskaya, 101, Novosibirsk, 630090 Russian Federation
| | - Anastasia Petruk
- Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, st. Zolotodolinskaya, 101, Novosibirsk, 630090 Russian Federation
| | - Tatyana Novikova
- Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, st. Zolotodolinskaya, 101, Novosibirsk, 630090 Russian Federation
| |
Collapse
|
6
|
Physiological responses and antioxidant properties of coriander plants (Coriandrum sativum L.) under different light intensities of red and blue lights. Sci Rep 2022; 12:21139. [PMID: 36477410 PMCID: PMC9729621 DOI: 10.1038/s41598-022-25749-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Coriander (Coriandrum sativum L.) contains abundant antioxidants and essential oils which can provide antibacterial, antifungal, and antioxidant activities in the pharmaceutical, health and food production industry. To improve the economic values of coriander, the relationships between optimal light treatments for maximizing both plant growth and the antioxidant and essential oil content of coriander leaves need to be determined. Plants were exposed to five light-emitting diodes spectral color mixtures, high blue light (BL) intensity induced the levels of reducing power response. The light treatments were then adjusted for the analysis of secondary metabolite compounds of coriander leaves. Among 30 identified compounds, the amounts of decamethyl-cyclopentasiloxane and dodecane were significantly reduced in the R80 + G50 + B50 condition, whereas dodecamethyl-cyclohexasiloxane level was significantly reduced in R50 + G50 + B80 condition. Various light quality and intensity combinations influenced the accumulations of chlorophyll and phytochemical contents, mediated antioxidative properties, and secondary metabolites of coriander leaves, which may be useful in developing a new LED lighting apparatus optimized for coriander production in plant factories.
Collapse
|
7
|
Kochetova GV, Avercheva OV, Bassarskaya EM, Zhigalova TV. Light quality as a driver of photosynthetic apparatus development. Biophys Rev 2022; 14:779-803. [PMID: 36124269 PMCID: PMC9481803 DOI: 10.1007/s12551-022-00985-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 12/18/2022] Open
Abstract
Light provides energy for photosynthesis and also acts as an important environmental signal. During their evolution, plants acquired sophisticated sensory systems for light perception and light-dependent regulation of their growth and development in accordance with the local light environment. Under natural conditions, plants adapted by using their light sensors to finely distinguish direct sunlight and dark in the soil, deep grey shade under the upper soil layer or litter, green shade under the canopy and even lateral green reflectance from neighbours. Light perception also allows plants to evaluate in detail the weather, time of day, day length and thus the season. However, in artificial lighting conditions, plants are confronted with fundamentally different lighting conditions. The advent of new light sources - light-emitting diodes (LEDs), which emit narrow-band light - allows growing plants with light of different spectral bands or their combinations. This sets the task of finding out how light of different quality affects the development and functioning of plants, and in particular, their photosynthetic apparatus (PSA), which is one of the basic processes determining plant yield. In this review, we briefly describe how plants perceive environment light signals by their five families of photoreceptors and by the PSA as a particular light sensor, and how they use this information to form their PSA under artificial narrow-band LED-based lighting of different spectral composition. We consider light regulation of the biosynthesis of photosynthetic pigments, photosynthetic complexes and chloroplast ATP synthase function, PSA photoprotection mechanisms, carbon assimilation reactions and stomatal development and function.
Collapse
|
8
|
Esmaelpour S, Iranbakhsh A, Dilmaghani K, Marandi SJ, Oraghi Ardebili Z. The potential contribution of the WRKY53 transcription factor, gamma-aminobutyric acid (GABA) transaminase, and histone deacetylase in regulating growth, organogenesis, photosynthesis, and transcriptional responses of tomato to different light-emitting diodes (LEDs). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112413. [PMID: 35220016 DOI: 10.1016/j.jphotobiol.2022.112413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Impressive progress in developing light-emitting diodes (LEDs) offers a new dimension for meeting agricultural and biological expectations. The present study addresses how tomato (Solanum lycopersicum) seedlings respond to the different spectral qualities of LEDs (white, red, blue, and blue + red). The light treatments in a wavelength-dependent manner contributed to the variations in biomass accumulation, morphology, and organogenesis pattern. Light quality epigenetically contributed to the transcriptional regulation of the histone deacetylase (HDA3) gene. The expression of WRKY53 transcription factor and gamma-aminobutyric acid transaminase (GABA-TP1) genes displayed a similar upward trend in response to the blue wavelength. On the contrary, the sole red light downregulated the WRKY53 and GABA-TP1 genes. The blue irradiation was associated with the upregulation in the glycolate oxidase (GLO2) and ribulose-1,5-bisphosphate carboxylase‑oxygenase large subunit (rbcL) genes, while the red wavelength down-regulated the GLO2 and rbcL genes. Moreover, rbcL statistically correlated with GLO2, referring to the balanced regulation of photorespiration and the Calvin cycle. The blue wavelengths were more capable of improving the concentrations of photosynthetic pigments and proline. The seedlings grown under the white LEDs displayed the maximum activity of the catalase enzyme. The cultivation of tomato seedlings under the blue lights enhanced the activities of the superoxide dismutase and ascorbate peroxidase enzymes. The light treatments were associated with the variation in the nutritional status of K+ and Ca2+ in both leaves and roots. The presented findings and inferences support the potential contribution of WRKY53, HDA3, and GABA signaling in modulating plant responses to light quality.
Collapse
Affiliation(s)
- Soghra Esmaelpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sayeh Jafari Marandi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
9
|
Appolloni E, Pennisi G, Zauli I, Carotti L, Paucek I, Quaini S, Orsini F, Gianquinto G. Beyond vegetables: effects of indoor LED light on specialized metabolite biosynthesis in medicinal and aromatic plants, edible flowers, and microgreens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:472-487. [PMID: 34462916 PMCID: PMC9292972 DOI: 10.1002/jsfa.11513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 05/11/2023]
Abstract
Specialized metabolites from plants are important for human health due to their antioxidant properties. Light is one of the main factors modulating the biosynthesis of specialized metabolites, determining the cascade response activated by photoreceptors and the consequent modulation of expressed genes and biosynthetic pathways. Recent developments in light emitting diode (LED) technology have enabled improvements in artificial light applications for horticulture. In particular, the possibility to select specific spectral light compositions, intensities and photoperiods has been associated with altered metabolite content in a variety of crops. This review aims to analyze the effects of indoor LED lighting recipes and management on the specialized metabolite content in different groups of crop plants (namely medicinal and aromatic plants, microgreens and edible flowers), focusing on the literature from the last 5 years. The literature collection produced a total of 40 papers, which were analyzed according to the effects of artificial LED lighting on the content of anthocyanins, carotenoids, phenols, tocopherols, glycosides, and terpenes, and ranked on a scale of 1 to 3. Most studies applied a combination of red and blue light (22%) or monochromatic blue (23%), with a 16 h day-1 photoperiod (78%) and an intensity greater than 200 μmol m-2 s-1 (77%). These treatment features were often the most efficient in enhancing specialized metabolite content, although large variations in performance were observed, according to the species considered and the compound analyzed. The review aims to provide valuable indications for the definition of the most promising spectral components toward the achievement of nutrient-rich indoor-grown products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisa Appolloni
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Giuseppina Pennisi
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Ilaria Zauli
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Laura Carotti
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Ivan Paucek
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | | | - Francesco Orsini
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Giorgio Gianquinto
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| |
Collapse
|
10
|
Moradi S, Kafi M, Aliniaeifard S, Salami SA, Shokrpour M, Pedersen C, Moosavi-Nezhad M, Wróbel J, Kalaji HM. Blue Light Improves Photosynthetic Performance and Biomass Partitioning toward Harvestable Organs in Saffron ( Crocus sativus L.). Cells 2021; 10:cells10081994. [PMID: 34440766 PMCID: PMC8392054 DOI: 10.3390/cells10081994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Saffron is a valuable plant and one of the most expensive spices worldwide. Nowadays, there is a tendency to produce this crop in indoor plant production systems. However, the production of saffron is restricted by the need for the reproduction of high-quality corms. In this study, we investigated the effect of different ratios of red (R) and blue (B) light spectra (including 100% B (monochromatic B), 75%, 50%, 40%, 25% B, and 0% B (monochromatic R) on the photosynthetic performance and biomass partitioning as well as morphological and biochemical characteristics of saffron. The growth of flower, root, and corm was improved by increasing the proportion of B to R light. B-grown plants were characterized by the highest photosynthetic functionality with efficient electron transport and lower energy dissipation when compared to R-grown plants. B light directed biomass toward the corms and floral organs, while R light directed it toward the leaves. In saffron, the weight of a daughter corm is of great importance since it determines the yield of the next year. As the ratio of B to R light increased, the daughter corms also became heavier, at the cost of reducing their number, though increasing the proportion of B-enhanced antioxidant capacity as well as the activity of ascorbate peroxidase and catalase while superoxide dismutase activity was enhanced in R-grown plants. In conclusion, B light increased the production of high-quality daughter corms and altered biomass partitioning towards harvestable organs (corms and flowers) in saffron plants.
Collapse
Affiliation(s)
- Shirin Moradi
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
| | - Mohsen Kafi
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
- Correspondence: (M.K.); (S.A.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran P.O. Box 33916-53755, Iran
- Correspondence: (M.K.); (S.A.)
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
| | - Majid Shokrpour
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
| | - Carsten Pedersen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark;
| | - Moein Moosavi-Nezhad
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran; (S.M.); (S.A.S.); (M.S.); (M.M.-N.)
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran P.O. Box 33916-53755, Iran
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Street, 71-434 Szczecin, Poland;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, University of Life Sciences SGGW, 02-776 Warsaw, Poland;
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
| |
Collapse
|
11
|
Quo vadis Cardiac Glycoside Research? Toxins (Basel) 2021; 13:toxins13050344. [PMID: 34064873 PMCID: PMC8151307 DOI: 10.3390/toxins13050344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG’s chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain.
Collapse
|
12
|
Hairy root culture technology: applications, constraints and prospect. Appl Microbiol Biotechnol 2020; 105:35-53. [PMID: 33226470 DOI: 10.1007/s00253-020-11017-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
Hairy root (HR) culture, a successful biotechnology combining in vitro tissue culture with recombinant DNA machinery, is intended for the genetic improvement of plants. This technology has been put to use since the last three decades for genetic advancement of medicinal and aromatic plants and also to harvest the economical products in the form of secondary metabolites that are significantly important for their ethnobotanical and pharmacological properties. It also provides an efficient way out for the quicker extraction and quantification of the valuable phytochemicals. The current review provides an account of the in vitro HR culture technology and its wide-scale applications in the field of research as well as in pharmaceutical industries. Different facets of HR with respect to the culture establishment, phytochemical production as well as research investigations concerning the areas of gene manipulation, biotransformation of the secondary metabolites, phytoremediation, their industrial utilisations and different problems encountered during the application of this technology have been covered in this appraisal. Eventually, an idea has been provided on HR about the recent trends on the progress of this technology that may open up newer prospects in near future and calls for further research and explorations in this field. KEY POINTS: • Genetic engineering-based HR culture aims towards enhanced secondary metabolite production. • This review explores an insight in the HR technology and its multi-faceted approaches. • Up-to-date ground-breaking research applications and constraints of HR culture are discussed.
Collapse
|
13
|
Quantification of Spectral Perception of Plants with Light Absorption of Photoreceptors. PLANTS 2020; 9:plants9050556. [PMID: 32349252 PMCID: PMC7285096 DOI: 10.3390/plants9050556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022]
Abstract
Although plant responses to artificial lighting spectra often produce abnormal morphogenesis and reduced productivity, no quantification method to determine how plants perceive and respond to light has been available. Our objective in this study was to test whether a plant's spectral perception can be quantified using the light absorption of its major photoreceptors, phytochrome, cryptochrome, and phototropin. We developed an artificial solar lamp and three different light sources, based on a high-pressure sodium lamp, a fluorescent lamp, and red and blue light-emitting diodes, whose absorption by photoreceptors was equal to that of the standard solar spectrum. Cucumber plants grown under the artificial solar and developed light sources showed normal photomorphogenesis and were indistinguishable from each other. Plants grown under unmodified commercial light sources had abnormal photomorphogenesis that made them short and small. The photosynthetic rate was higher under the unmodified light sources; however, dry masses were highest under the artificial solar and modified light sources, indicating that the cucumber plants are optimized to the solar spectrum. Our results clearly demonstrate that the spectral perceptions of plants can be quantified using the light absorption of their photoreceptors, not visual color or spectra. We expect that our findings will contribute to a better understanding of plant perceptions of and responses to light quality, and improve the productivity of plants cultivated under artificial light.
Collapse
|
14
|
Adil M, Haider Abbasi B, Ul Haq I. Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L. ACTA ACUST UNITED AC 2019; 24:e00380. [PMID: 31641624 PMCID: PMC6796579 DOI: 10.1016/j.btre.2019.e00380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
Combination of thidiazuron and naphthalene acetic acid induced callus growth in Withania somnifera. Red light improved callus growth with lower antioxidant enzymes activities. Violet light enhanced the total phenolic and flavonoid content in callus culture of W. somnifera. Withaferin A and chlorogenic acid were detected in callus cultures.
Withania somnifera L. is an endangered medicinal plant of higher market value. The in vitro callus cultures were established on Murashige and Skoog (MS) media augmented with different plant growth regulators. The MS medium containing 0.5 mg∙L−1 of each TDZ and NAA was found to be optimal for callus formation and growth. Further, callus cultures were raised in different light wavelengths to find the right wavelength carrying the photons for the ideal cell growth of W. somnifera. Among the different wavelengths, red light was best for maximum biomass accumulation in callus culture. However, violet light condition was proven to be favouring the phenols and flavonoids synthesis in the callus cultures. Compared to other wavelengths, red light grown callus extract showed significantly higher content of chlorogenic acid, and withaferin A. This study concludes that red light treatment was optimum for maximum biomass accumulation and anti-oxidant activity in calli of W. somnifera.
Collapse
Affiliation(s)
- Muhammad Adil
- H.E.J. Research Institute of Chemistry-Biotechnology Wing, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Quaid I Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
15
|
Adil M, Ren X, Jeong BR. Light elicited growth, antioxidant enzymes activities and production of medicinal compounds in callus culture of Cnidium officinale Makino. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 196:111509. [PMID: 31128431 DOI: 10.1016/j.jphotobiol.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 02/02/2023]
Abstract
Cnidium officinale Makino is an important medicinal plant of oriental clinics and is considered as the main source of phthalides, polyphenols, and flavonoids. However, there is no available report regarding the effect of different light colors on the secondary metabolites composition of C. officinale. In this study different light (dark, white, blue, red and red: blue) conditions were arranged to raise callus on MS medium containing 0.5 mg·L-1 of each 2,4-D and BAP. Callus grown in dark condition showed maximum (2.0 g) fresh weight with lower total phenolic and flavonoids contents. Also, in dark condition callus faced higher catalase (CAT) and guaiacol peroxidase (GPX) activities to avoid free radicals. Mix (red: blue) light condition favored the synthesis of phenolics and flavonoids in callus at the cost of higher ascorbate peroxidase (APX) and superoxide dismutase (SOD) enzymes expression. However, DPPH free radical scavenging activity was less variable among the samples from the different light conditions. Interestingly, the HPLC profile showed higher (28.3 μg·g-1 DW) phthalide accumulation in dark grown-cultures. Compared to other light conditions, 3-butyledinephthalide accumulation was higher (0.43 μg·g-1 DW) in white light-grown callus. These findings suggest that light conditions play an important role in the regulation of in vitro callus growth and synthesis of important medicinal compounds of C. officinale.
Collapse
Affiliation(s)
- Muhammad Adil
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; H.E.J. Research Institute of Chemistry-Biotechnology Wing, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Xiuxia Ren
- Department of Horticulture, Division of Applied Life Science Graduate School (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Horticulture, Division of Applied Life Science Graduate School (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea; Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|