1
|
Su CW, Yang F, Lai R, Li Y, Naeem H, Yao N, Zhang SP, Zhang H, Li Y, Huang ZG. Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling. Cogn Neurodyn 2025; 19:29. [PMID: 39866663 PMCID: PMC11757662 DOI: 10.1007/s11571-024-10208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 01/28/2025] Open
Abstract
The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory. Furthermore, we explore the system's involvement in stress responses and pain modulation, as well as its developmental changes and susceptibility to stressors. By integrating molecular, electrophysiological, and theoretical modeling approaches, we shed light on the LC-NE system's complex role in the brain's adaptability and its potential relevance to neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Chun-Wang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Fan Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Runchen Lai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Yanhai Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Hadia Naeem
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Nan Yao
- Department of Applied Physics, Xi’an University of Technology, 710054 Shaanxi, China
| | - Si-Ping Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Haiqing Zhang
- Xi’an Children’s Hospital, Xi’an, 710003 Shaanxi China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| |
Collapse
|
2
|
Liu Y, Zhou ZX, Lv Q, Huang G, Zhang H, Wang YQ, Chen JG, Wang F. A superior colliculus-originating circuit prevents cocaine reinstatement via VR-based eye movement desensitization treatment. Natl Sci Rev 2025; 12:nwae467. [PMID: 40160681 PMCID: PMC11951104 DOI: 10.1093/nsr/nwae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 04/02/2025] Open
Abstract
While Virtual Reality (VR) technology shows promise in the management of substance use disorders, the development of an effective VR-based extinction procedure remains lacking. In this study, we developed a VR-based eye movement desensitization and reprocessing extinction training program tailored for mice. We found that this VR treatment during cocaine extinction prevents reinstatement by suppressing the hyperactivation of glutamatergic excitatory neurons in the intermediate layers of the superior colliculus (SCiCaMKIIα) during exposure to environmental cues. Additionally, SCiCaMKIIα neurons innervate tyrosine hydroxylase-positive neurons in the locus coeruleus (LCTH). Environmental cues trigger stronger phasic activation of LCTH neurons through this SCiCaMKIIα→LCTH projection, leading to increased dopamine release onto the dorsal CA3 (dCA3) region, thereby facilitating reinstatement. Furthermore, we demonstrate that VR treatment effectively inhibits the neural circuitry involving SCiCaMKIIα→LCTH→dCA3 in response to environmental cues, thus preventing cocaine reinstatement. Our findings suggest that VR treatment may represent a promising strategy for achieving drug abstinence.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi-Xiang Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Lv
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guan Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ye-Qin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Shizhen Laboratory, Wuhan 430030, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Shizhen Laboratory, Wuhan 430030, China
| |
Collapse
|
3
|
Amaral A, Lister J, Rueckemann J, Wojnarowicz M, McGaughy J, Mokler D, Galler J, Rosene D, Rushmore R. Prenatal protein malnutrition decreases neuron numbers in the parahippocampal region but not prefrontal cortex in adult rats. Nutr Neurosci 2025; 28:333-346. [PMID: 39088448 PMCID: PMC11788924 DOI: 10.1080/1028415x.2024.2371256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE Prenatal protein malnutrition produces anatomical and functional changes in the developing brain that persist despite immediate postnatal nutritional rehabilitation. Brain networks of prenatally malnourished animals show diminished activation of prefrontal areas and an increased activation of hippocampal regions during an attentional task [1]. While a reduction in cell number has been documented in hippocampal subfield CA1, nothing is known about changes in neuron numbers in the prefrontal or parahippocampal cortices. METHODS In the present study, we used unbiased stereology to investigate the effect of prenatal protein malnutrition on the neuron numbers in the medial prefrontal cortex and the cortices of the parahippocampal region that comprise the larger functional network. RESULTS Results show that prenatal protein malnutrition does not cause changes in the neuronal population in the medial prefrontal cortex of adult rats, indicating that the decrease in functional activation during attentional tasks is not due to a reduction in the number of neurons. Results also show that prenatal protein malnutrition is associated with a reduction in neuron numbers in specific parahippocampal subregions: the medial entorhinal cortex and presubiculum. DISCUSSION The affected regions along with CA1 comprise a tightly interconnected circuit, suggesting that prenatal malnutrition confers a vulnerability to specific hippocampal circuits. These findings are consistent with the idea that prenatal protein malnutrition produces a reorganization of structural and functional networks, which may underlie observed alterations in attentional processes and capabilities.
Collapse
Affiliation(s)
- A.C. Amaral
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
| | - J.P. Lister
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
- Department of Pathology and Laboratory Medicine, University
of California Los Angeles, Los Angeles, CA 90095
| | - J.W. Rueckemann
- Department of Physiology and Biophysics, University of
Washington, Seattle, WA 98195
| | - M.W. Wojnarowicz
- Department of Pathology & Laboratory
Medicine, Boston University Chobanian & Avedisian School of
Medicine, Boston, MA 02118
| | - J.A. McGaughy
- Dept of Psychology, University of New Hampshire, Durham, NH
03824
| | - D.J. Mokler
- Dept of Biomedical Sciences, University of New England,
Biddeford, ME 04005
| | - J.R. Galler
- Department of Psychiatry, Harvard Medical School, Boston,
MA 02120
- Department of Pediatrics & Division of Gastroenterology
and Nutrition, MassGeneral Hospital for Children, Boston, MA
| | - D.L. Rosene
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
| | - R.J. Rushmore
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
- Psychiatry Neuroimaging Laboratory,
Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA
02120
- Department of Psychiatry, Massachusetts General Hospital,
Boston, MA 02120
| |
Collapse
|
4
|
Hagena H, Manahan-Vaughan D. Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus. Proc Natl Acad Sci U S A 2025; 122:e2402356122. [PMID: 39793037 PMCID: PMC11725844 DOI: 10.1073/pnas.2402356122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/19/2024] [Indexed: 01/12/2025] Open
Abstract
The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience. To what extent the VTA and the LC influence the direction of change of synaptic plasticity and therefore the content of stored experience is not clear. Here, we report that test-pulse activation of Schaffer-collateral-CA1 synapses of freely behaving male rats, in conjunction with VTA stimulation, results in LTP (>24 h), whereas concomitant hippocampal afferent and LC stimulation results in LTD (>24 h). Effects are frequency-dependent (1 to 50 Hz) and competitive: high-frequency (25 Hz), but not low-frequency (5 Hz) optogenetic activation of tyrosine hydroxylase-positive (TH+) neurons in the VTA, results in D1/D5R-dependent LTP, whereas 5 Hz (but not 1, or 25 Hz) activation of TH+ neurons in the LC results in hippocampal LTD that is both D1/D5 and β-AR-dependent. These results suggest that the VTA and LC do not work in synergy, but rather function in a competing fashion to drive different forms of information encoding through synaptic plasticity. Our findings indicate that information transmitted by the VTA and LC is likely to play a decisive role in the shaping of hippocampal information storage and the nature of learned experience.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum44780, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum44780, Germany
| |
Collapse
|
5
|
Kabanova A, Yang M, Logothetis NK, Eschenko O. Partial chemogenetic inhibition of the locus coeruleus due to heterogeneous transduction of noradrenergic neurons preserved auditory salience processing in wild-type rats. Eur J Neurosci 2024; 60:6237-6253. [PMID: 39349382 DOI: 10.1111/ejn.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
The acoustic startle reflex (ASR) and prepulse inhibition of the ASR (PPI) assess the efficiency of salience processing, a fundamental brain function that is impaired in many psychiatric conditions. Both ASR and PPI depend on noradrenergic transmission, yet the modulatory role of the locus coeruleus (LC) remains controversial. Clonidine (0.05 mg/kg, i.p.), an alpha2-adrenoreceptor agonist, strongly reduced the ASR amplitude. In contrast, chemogenetic LC inhibition only mildly suppressed the ASR and did affect the PPI in virus-transduced rats. The canine adenovirus type 2 (CAV2)-based vector carrying a gene cassette for the expression of inhibitory receptors (hM4Di) and noradrenergic cell-specific promoter (PRSx8) had high cell-type specificity (94.4 ± 3.1%) but resulted in heterogeneous virus transduction of DbH-positive LC neurons (range: 9.2-94.4%). Clozapine-N-oxide (CNO; 1 mg/kg, i.p.), a hM4Di actuator, caused the firing cessation of hM4Di-expressing LC neurons, yet complete inhibition of the entire population of LC neurons was not achieved. Case-based immunohistochemistry revealed that virus injections distal (> 150 μm) to the LC core resulted in partial LC transduction, while proximal (< 50 μm) injections caused neuronal loss due to virus neurotoxicity. Neither the ASR nor PPI differed between the intact and virus-transduced rats. Our results suggest that a residual activity of virus-non-transduced LC neurons might have been sufficient for mediating an unaltered ASR and PPI. Our study highlights the importance of a case-based assessment of the virus efficiency, specificity, and neurotoxicity for targeted cell populations and of considering these factors when interpreting behavioral effects in experiments employing chemogenetic modulation.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Mingyu Yang
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China
- Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
6
|
McKenzie S, Sommer AL, Donaldson TN, Pimentel I, Kakani M, Choi IJ, Newman EL, English DF. Event boundaries drive norepinephrine release and distinctive neural representations of space in the rodent hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605900. [PMID: 39131365 PMCID: PMC11312532 DOI: 10.1101/2024.07.30.605900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Episodic memories are temporally segmented around event boundaries that tend to coincide with moments of environmental change. During these times, the state of the brain should change rapidly, or reset, to ensure that the information encountered before and after an event boundary is encoded in different neuronal populations. Norepinephrine (NE) is thought to facilitate this network reorganization. However, it is unknown whether event boundaries drive NE release in the hippocampus and, if so, how NE release relates to changes in hippocampal firing patterns. The advent of the new GRABNE sensor now allows for the measurement of NE binding with sub-second resolution. Using this tool in mice, we tested whether NE is released into the dorsal hippocampus during event boundaries defined by unexpected transitions between spatial contexts and presentations of novel objections. We found that NE binding dynamics were well explained by the time elapsed after each of these environmental changes, and were not related to conditioned behaviors, exploratory bouts of movement, or reward. Familiarity with a spatial context accelerated the rate in which phasic NE binding decayed to baseline. Knowing when NE is elevated, we tested how hippocampal coding of space differs during these moments. Immediately after context transitions we observed relatively unique patterns of neural spiking which settled into a modal state at a similar rate in which NE returned to baseline. These results are consistent with a model wherein NE release drives hippocampal representations away from a steady-state attractor. We hypothesize that the distinctive neural codes observed after each event boundary may facilitate long-term memory and contribute to the neural basis for the primacy effect.
Collapse
Affiliation(s)
- Sam McKenzie
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Alexandra L. Sommer
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Tia N. Donaldson
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Infania Pimentel
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
- Department of Mechanical Engineering, Tufts School of Engineering, Medford MA 02155
| | - Meenakshi Kakani
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Irene Jungyeon Choi
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405
| | - Ehren L. Newman
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405
| | | |
Collapse
|
7
|
Kabanova A, Fedorov L, Eschenko O. The Projection-Specific Noradrenergic Modulation of Perseverative Spatial Behavior in Adult Male Rats. eNeuro 2024; 11:ENEURO.0063-24.2024. [PMID: 39160074 PMCID: PMC11334950 DOI: 10.1523/eneuro.0063-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 08/21/2024] Open
Abstract
Adaptive behavior relies on efficient cognitive control. The anterior cingulate cortex (ACC) is a key node within the executive prefrontal network. The reciprocal connectivity between the locus ceruleus (LC) and ACC is thought to support behavioral reorganization triggered by the detection of an unexpected change. We transduced LC neurons with either excitatory or inhibitory chemogenetic receptors in adult male rats and trained rats on a spatial task. Subsequently, we altered LC activity and confronted rats with an unexpected change of reward locations. In a new spatial context, rats with decreased noradrenaline (NA) in the ACC entered unbaited maze arms more persistently which was indicative of perseveration. In contrast, the suppression of the global NA transmission reduced perseveration. Neither chemogenetic manipulation nor inactivation of the ACC by muscimol affected the rate of learning, possibly due to partial virus transduction of the LC neurons and/or the compensatory engagement of other prefrontal regions. Importantly, we observed behavioral deficits in rats with LC damage caused by virus injection. The latter finding highlights the importance of careful histological assessment of virus-transduced brain tissue as inadvertent damage of the targeted cell population due to virus neurotoxicity or other factors might cause unwanted side effects. Although the specific role of ACC in the flexibility of spatial behavior has not been convincingly demonstrated, our results support the beneficial role of noradrenergic transmission for an optimal function of the ACC. Overall, our findings suggest the LC exerts the projection-specific modulation of neural circuits mediating the flexibility of spatial behavior.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Leonid Fedorov
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Ibáñez Alcalá RJ, Beck DW, Salcido AA, Davila LD, Giri A, Heaton CN, Villarreal Rodriguez K, Rakocevic LI, Hossain SB, Reyes NF, Batson SA, Macias AY, Drammis SM, Negishi K, Zhang Q, Umashankar Beck S, Vara P, Joshi A, Franco AJ, Hernandez Carbajal BJ, Ordonez MM, Ramirez FY, Lopez JD, Lozano N, Ramirez A, Legaspy L, Cruz PL, Armenta AA, Viel SN, Aguirre JI, Quintanar O, Medina F, Ordonez PM, Munoz AE, Martínez Gaudier GE, Naime GM, Powers RE, O'Dell LE, Moschak TM, Goosens KA, Friedman A. RECORD, a high-throughput, customizable system that unveils behavioral strategies leveraged by rodents during foraging-like decision-making. Commun Biol 2024; 7:822. [PMID: 38971889 PMCID: PMC11227549 DOI: 10.1038/s42003-024-06489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
Translational studies benefit from experimental designs where laboratory organisms use human-relevant behaviors. One such behavior is decision-making, however studying complex decision-making in rodents is labor-intensive and typically restricted to two levels of cost/reward. We design a fully automated, inexpensive, high-throughput framework to study decision-making across multiple levels of rewards and costs: the REward-COst in Rodent Decision-making (RECORD) system. RECORD integrates three components: 1) 3D-printed arenas, 2) custom electronic hardware, and 3) software. We validated four behavioral protocols without employing any food or water restriction, highlighting the versatility of our system. RECORD data exposes heterogeneity in decision-making both within and across individuals that is quantifiably constrained. Using oxycodone self-administration and alcohol-consumption as test cases, we reveal how analytic approaches that incorporate behavioral heterogeneity are sensitive to detecting perturbations in decision-making. RECORD is a powerful approach to studying decision-making in rodents, with features that facilitate translational studies of decision-making in psychiatric disorders.
Collapse
Affiliation(s)
| | - Dirk W Beck
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Alexis A Salcido
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Luis D Davila
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Atanu Giri
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Cory N Heaton
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | | | - Lara I Rakocevic
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Safa B Hossain
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Neftali F Reyes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Serina A Batson
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Andrea Y Macias
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Sabrina M Drammis
- Artificial Intelligence Laboratory, Department of Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Qingyang Zhang
- Department of Biomedical Informatics, Harvard Medical School, Cambridge, MA, USA
| | | | - Paulina Vara
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Arnav Joshi
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Austin J Franco
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | | | - Miguel M Ordonez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Felix Y Ramirez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jonathan D Lopez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Nayeli Lozano
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Abigail Ramirez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Linnete Legaspy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Paulina L Cruz
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Abril A Armenta
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Stephanie N Viel
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jessica I Aguirre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Odalys Quintanar
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Fernanda Medina
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Pablo M Ordonez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Alfonzo E Munoz
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | | | - Gabriela M Naime
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Rosalie E Powers
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Laura E O'Dell
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - Travis M Moschak
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Ki A Goosens
- Department of Psychiatry, Center for Translational Medicine and Pharmacology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alexander Friedman
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
9
|
van Herk L, Schilder FP, de Weijer AD, Bruinsma B, Geuze E. Heightened SAM- and HPA-axis activity during acute stress impairs decision-making: A systematic review on underlying neuropharmacological mechanisms. Neurobiol Stress 2024; 31:100659. [PMID: 39070283 PMCID: PMC11277380 DOI: 10.1016/j.ynstr.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Individuals might be exposed to intense acute stress while having to make decisions with far-reaching consequences. Acute stress impairs processes required for decision-making by activating different biological stress cascades that in turn affect the brain. By knowing which stress system, brain areas, and receptors are responsible for compromised decision-making processes, we can effectively find potential pharmaceutics that can prevent the deteriorating effects of acute stress. We used a systematic review procedure and found 44 articles providing information on this topic. Decision-making processes could be subdivided into 4 domains (cognitive, motivational, affective, and predictability) and could be referenced to specific brain areas, while mostly being impaired by molecules associated with the sympathetic-adrenal-medullar and hypothalamic-pituitary-adrenal axes. Potential drugs to alleviate these effects included α1 and β adrenoceptor antagonists, α2 adrenoceptor agonists, and corticotropin releasing factor receptor1/2 antagonists, while consistent stress-like effects were found with yohimbine, an α2 adrenoceptor antagonist. We suggest possible avenues for future research.
Collapse
Affiliation(s)
- Lukas van Herk
- Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Frank P.M. Schilder
- Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Antoin D. de Weijer
- Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Bastiaan Bruinsma
- Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Elbert Geuze
- Department of Psychiatry, University Medical Centre, Utrecht, the Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| |
Collapse
|
10
|
Zouridis IS, Schmors L, Fischer KM, Berens P, Preston-Ferrer P, Burgalossi A. Juxtacellular recordings from identified neurons in the mouse locus coeruleus. Eur J Neurosci 2024; 60:3659-3676. [PMID: 38872397 DOI: 10.1111/ejn.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
The locus coeruleus (LC) is the primary source of noradrenergic transmission in the mammalian central nervous system. This small pontine nucleus consists of a densely packed nuclear core-which contains the highest density of noradrenergic neurons-embedded within a heterogeneous surround of non-noradrenergic cells. This local heterogeneity, together with the small size of the LC, has made it particularly difficult to infer noradrenergic cell identity based on extracellular sampling of in vivo spiking activity. Moreover, the relatively high cell density, background activity and synchronicity of LC neurons have made spike identification and unit isolation notoriously challenging. In this study, we aimed at bridging these gaps by performing juxtacellular recordings from single identified neurons within the mouse LC complex. We found that noradrenergic neurons (identified by tyrosine hydroxylase, TH, expression; TH-positive) and intermingled putatively non-noradrenergic (TH-negative) cells displayed similar morphologies and responded to foot shock stimuli with excitatory responses; however, on average, TH-positive neurons exhibited more prominent foot shock responses and post-activation firing suppression. The two cell classes also displayed different spontaneous firing rates, spike waveforms and temporal spiking properties. A logistic regression classifier trained on spontaneous electrophysiological features could separate the two cell classes with 76% accuracy. Altogether, our results reveal in vivo electrophysiological correlates of TH-positive neurons, which can be useful for refining current approaches for the classification of LC unit activity.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Lisa Schmors
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Kathrin Maite Fischer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
11
|
Tseng CT, Welch HF, Gi AL, Kang EM, Mamidi T, Pydimarri S, Ramesh K, Sandoval A, Ploski JE, Thorn CA. Frequency Specific Optogenetic Stimulation of the Locus Coeruleus Induces Task-Relevant Plasticity in the Motor Cortex. J Neurosci 2024; 44:e1528232023. [PMID: 38124020 PMCID: PMC10869157 DOI: 10.1523/jneurosci.1528-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
The locus ceruleus (LC) is the primary source of neocortical noradrenaline, which is known to be involved in diverse brain functions including sensory perception, attention, and learning. Previous studies have shown that LC stimulation paired with sensory experience can induce task-dependent plasticity in the sensory neocortex and in the hippocampus. However, it remains unknown whether LC activation similarly impacts neural representations in the agranular motor cortical regions that are responsible for movement planning and production. In this study, we test whether optogenetic stimulation of the LC paired with motor performance is sufficient to induce task-relevant plasticity in the somatotopic cortical motor map. Male and female TH-Cre + rats were trained on a skilled reaching lever-pressing task emphasizing the use of the proximal forelimb musculature, and a viral approach was used to selectively express ChR2 in noradrenergic LC neurons. Once animals reached criterial behavioral performance, they received five training sessions in which correct task performance was paired with optogenetic stimulation of the LC delivered at 3, 10, or 30 Hz. After the last stimulation session, motor cortical mapping was performed using intracortical microstimulation. Our results show that lever pressing paired with LC stimulation at 10 Hz, but not at 3 or 30 Hz, drove the expansion of the motor map representation of the task-relevant proximal FL musculature. These findings demonstrate that phasic, training-paired activation of the LC is sufficient to induce experience-dependent plasticity in the agranular motor cortex and that this LC-driven plasticity is highly dependent on the temporal dynamics of LC activation.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Hailey F Welch
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Ashley L Gi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Erica Mina Kang
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Tanushree Mamidi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Sahiti Pydimarri
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Kritika Ramesh
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Alfredo Sandoval
- Department of Neurobiology, The University of Texas Medical Branch, Galveston 77555, Texas
| | - Jonathan E Ploski
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey 17033-0850, Pennsylvania
| | - Catherine A Thorn
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas,
| |
Collapse
|
12
|
Jordan R. The locus coeruleus as a global model failure system. Trends Neurosci 2024; 47:92-105. [PMID: 38102059 DOI: 10.1016/j.tins.2023.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Predictive processing models posit that brains constantly attempt to predict their sensory inputs. Prediction errors signal when these predictions are incorrect and are thought to be instructive signals that drive corrective plasticity. Recent findings support the idea that the locus coeruleus (LC) - a brain-wide neuromodulatory system - signals several types of prediction error. I discuss how these findings support models proposing that the LC signals global model failures: instances where predictions about the world are strongly violated. Focusing on the cortex, I explore the utility of this signal in learning rate control, how the LC circuit may compute the signal, and how this view may aid our understanding of neurodivergence.
Collapse
Affiliation(s)
- Rebecca Jordan
- Simons Initiative for the Developing Brain, University of Edinburgh, 1 George Square, EH8 9JZ, Edinburgh, UK.
| |
Collapse
|
13
|
Aimon S, Cheng KY, Gjorgjieva J, Grunwald Kadow IC. Global change in brain state during spontaneous and forced walk in Drosophila is composed of combined activity patterns of different neuron classes. eLife 2023; 12:e85202. [PMID: 37067152 PMCID: PMC10168698 DOI: 10.7554/elife.85202] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/13/2023] [Indexed: 04/18/2023] Open
Abstract
Movement-correlated brain activity has been found across species and brain regions. Here, we used fast whole brain lightfield imaging in adult Drosophila to investigate the relationship between walk and brain-wide neuronal activity. We observed a global change in activity that tightly correlated with spontaneous bouts of walk. While imaging specific sets of excitatory, inhibitory, and neuromodulatory neurons highlighted their joint contribution, spatial heterogeneity in walk- and turning-induced activity allowed parsing unique responses from subregions and sometimes individual candidate neurons. For example, previously uncharacterized serotonergic neurons were inhibited during walk. While activity onset in some areas preceded walk onset exclusively in spontaneously walking animals, spontaneous and forced walk elicited similar activity in most brain regions. These data suggest a major contribution of walk and walk-related sensory or proprioceptive information to global activity of all major neuronal classes.
Collapse
Affiliation(s)
- Sophie Aimon
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Karen Y Cheng
- School of Life Sciences, Technical University of MunichFreisingGermany
- University of Bonn, Medical Faculty (UKB), Institute of Physiology IIBonnGermany
| | - Julijana Gjorgjieva
- School of Life Sciences, Technical University of MunichFreisingGermany
- Max Planck Institute for Brain Research, Computation in Neural CircuitsFrankfurtGermany
| | - Ilona C Grunwald Kadow
- School of Life Sciences, Technical University of MunichFreisingGermany
- University of Bonn, Medical Faculty (UKB), Institute of Physiology IIBonnGermany
| |
Collapse
|
14
|
Benarroch E. What Are Current Concepts on the Functional Organization of the Locus Coeruleus and Its Role in Cognition and Neurodegeneration? Neurology 2023; 100:132-137. [PMID: 36646470 DOI: 10.1212/wnl.0000000000206736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 01/18/2023] Open
|
15
|
Xiang L, Harel A, Todorova R, Gao H, Sara SJ, Wiener SI. Locus coeruleus noradrenergic neurons phase-lock to prefrontal and hippocampal infra-slow rhythms that synchronize to behavioral events. Front Cell Neurosci 2023; 17:1131151. [PMID: 37025702 PMCID: PMC10070758 DOI: 10.3389/fncel.2023.1131151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
The locus coeruleus (LC) is the primary source of noradrenergic projections to the forebrain, and, in prefrontal cortex, is implicated in decision-making and executive function. LC neurons phase-lock to cortical infra-slow wave oscillations during sleep. Such infra-slow rhythms are rarely reported in awake states, despite their interest, since they correspond to the time scale of behavior. Thus, we investigated LC neuronal synchrony with infra-slow rhythms in awake rats performing an attentional set-shifting task. Local field potential (LFP) oscillation cycles in prefrontal cortex and hippocampus on the order of 0.4 Hz phase-locked to task events at crucial maze locations. Indeed, successive cycles of the infra-slow rhythms showed different wavelengths, as if they are periodic oscillations that can reset phase relative to salient events. Simultaneously recorded infra-slow rhythms in prefrontal cortex and hippocampus could show different cycle durations as well, suggesting independent control. Most LC neurons (including optogenetically identified noradrenergic neurons) recorded here were phase-locked to these infra-slow rhythms, as were hippocampal and prefrontal units recorded on the LFP probes. The infra-slow oscillations also phase-modulated gamma amplitude, linking these rhythms at the time scale of behavior to those coordinating neuronal synchrony. This would provide a potential mechanism where noradrenaline, released by LC neurons in concert with the infra-slow rhythm, would facilitate synchronization or reset of these brain networks, underlying behavioral adaptation.
Collapse
Affiliation(s)
- Liyang Xiang
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
- Zhejiang Key Laboratory of Neuroelectronics and Brain Computer Interface Technology, Hangzhou, China
| | - Antoine Harel
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Ralitsa Todorova
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - HongYing Gao
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Susan J. Sara
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
- Department of Child and Adolescent Psychiatry, New York University Medical School, New York, NY, United States
| | - Sidney I. Wiener
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
- *Correspondence: Sidney I. Wiener,
| |
Collapse
|
16
|
McBurney-Lin J, Vargova G, Garad M, Zagha E, Yang H. The locus coeruleus mediates behavioral flexibility. Cell Rep 2022; 41:111534. [PMID: 36288712 PMCID: PMC9662304 DOI: 10.1016/j.celrep.2022.111534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Behavioral flexibility is the ability to adjust behavioral strategies in response to changing environmental contingencies. A major hypothesis in the field posits that the activity of neurons in the locus coeruleus (LC) plays an important role in mediating behavioral flexibility. To test this hypothesis, we developed a tactile-based rule-shift detection task in which mice responded to left and right whisker deflections in a context-dependent manner and exhibited varying degrees of switching behavior. Recording spiking activity from optogenetically tagged neurons in the LC at millisecond precision during task performance revealed a prominent graded correlation between baseline LC activity and behavioral flexibility, where higher baseline activity following a rule change was associated with faster behavioral switching to the new rule. Increasing baseline LC activity with optogenetic activation accelerated task switching and improved task performance. Overall, our study provides important evidence to reveal the link between LC activity and behavioral flexibility.
Collapse
Affiliation(s)
- Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA,These authors contributed equally
| | - Greta Vargova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA,These authors contributed equally
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Edward Zagha
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA,Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
17
|
Dastgheib M, Kulanayagam A, Dringenberg HC. Is the role of sleep in memory consolidation overrated? Neurosci Biobehav Rev 2022; 140:104799. [PMID: 35905801 DOI: 10.1016/j.neubiorev.2022.104799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Substantial empirical evidence suggests that sleep benefits the consolidation and reorganization of learned information. Consequently, the concept of "sleep-dependent memory consolidation" is now widely accepted by the scientific community, in addition to influencing public perceptions regarding the functions of sleep. There are, however, numerous studies that have presented findings inconsistent with the sleep-memory hypothesis. Here, we challenge the notion of "sleep-dependency" by summarizing evidence for effective memory consolidation independent of sleep. Plasticity mechanisms thought to mediate or facilitate consolidation during sleep (e.g., neuronal replay, reactivation, slow oscillations, neurochemical milieu) also operate during non-sleep states, particularly quiet wakefulness, thus allowing for the stabilization of new memories. We propose that it is not sleep per se, but the engagement of plasticity mechanisms, active during both sleep and (at least some) waking states, that constitutes the critical factor determining memory formation. Thus, rather than playing a "critical" role, sleep falls along a continuum of behavioral states that vary in their effectiveness to support memory consolidation at the neural and behavioral level.
Collapse
Affiliation(s)
| | | | - Hans C Dringenberg
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
18
|
Swallow KM, Broitman AW, Riley E, Turker HB. Grounding the Attentional Boost Effect in Events and the Efficient Brain. Front Psychol 2022; 13:892416. [PMID: 35936250 PMCID: PMC9355572 DOI: 10.3389/fpsyg.2022.892416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022] Open
Abstract
Attention and memory for everyday experiences vary over time, wherein some moments are better attended and subsequently better remembered than others. These effects have been demonstrated in naturalistic viewing tasks with complex and relatively uncontrolled stimuli, as well as in more controlled laboratory tasks with simpler stimuli. For example, in the attentional boost effect (ABE), participants perform two tasks at once: memorizing a series of briefly presented stimuli (e.g., pictures of outdoor scenes) for a later memory test, and responding to other concurrently presented cues that meet pre-defined criteria (e.g., participants press a button for a blue target square and do nothing for a red distractor square). However, rather than increasing dual-task interference, attending to a target cue boosts, rather than impairs, subsequent memory for concurrently presented information. In this review we describe current data on the extent and limitations of the attentional boost effect and whether it may be related to activity in the locus coeruleus neuromodulatory system. We suggest that insight into the mechanisms that produce the attentional boost effect may be found in recent advances in the locus coeruleus literature and from understanding of how the neurocognitive system handles stability and change in everyday events. We consequently propose updates to an early account of the attentional boost effect, the dual-task interaction model, to better ground it in what is currently known about event cognition and the role that the LC plays in regulating brain states.
Collapse
Affiliation(s)
- Khena M. Swallow
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| | - Adam W. Broitman
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| | - Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Hamid B. Turker
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| |
Collapse
|
19
|
Feasibility of Canine Adenovirus Type 2 (CAV2) Based Vector for the Locus Coeruleus Optogenetic Activation in Non-Transgenic Rats: Implications for Functional Studies. Brain Sci 2022; 12:brainsci12070904. [PMID: 35884711 PMCID: PMC9319986 DOI: 10.3390/brainsci12070904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system modulates many visceral and cognitive functions, while LC-NE dysfunction leads to neurological and neurodegenerative conditions such as sleep disorders, depression, ADHD, or Alzheimer's disease. Innovative viral-vector and gene-engineering technology combined with the availability of cell-specific promoters enabled regional targeting and selective control over phenotypically specific populations of neurons. We transduced the LC-NE neurons in adult male rats by delivering the canine adenovirus type 2-based vector carrying the NE-specific promoter PRSx8 and a light-sensitive channelrhodopsin-2 receptor (ChR2) directly in the LC or retrogradely from the LC targets. The highest ChR2 expression level was achieved when the virus was delivered medially to the trigeminal pathway and ~100 μm lateral to the LC. The injections close or directly in the LC compromised the tissue integrity and NE cell phenotype. Retrograde labeling was more optimal given the transduction of projection-selective subpopulations. Our results highlight a limited inference of ChR2 expression from representative cases to the entire population of targeted cells. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. Thus, besides the cell-type specificity and the transduction efficiency, the between-subject variability in the proportion of the remaining viral-transduced targeted cell population must be considered in any functional connectivity study.
Collapse
|
20
|
Babushkina N, Manahan-Vaughan D. Frequency-dependency of the involvement of dopamine D1/D5 and beta-adrenergic receptors in hippocampal LTD triggered by locus coeruleus stimulation. Hippocampus 2022; 32:449-465. [PMID: 35478421 DOI: 10.1002/hipo.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
Patterned stimulation of the locus coeruleus (LC, 100 Hz), in conjunction with test-pulse stimulation of hippocampal afferents, results in input-specific long-term depression (LTD) of synaptic plasticity in the hippocampus. Effects are long-lasting and have been described in Schaffer-collateral-CA1 and perforant path-dentate gyrus synapses in behaving rats. To what extent LC-mediated hippocampal LTD (LC-LTD) is frequency-dependent is unclear. Here, we report that LC-LTD can be triggered by LC stimulation with 2 and 5 Hz akin to tonic activity, 10 Hz equivalent to phasic activity, and 100 Hz akin to high-phasic activity in the dentate gyrus (DG) of freely behaving rats. LC-LTD at both 2 and 100 Hz can be significantly prevented by an NMDA receptor antagonist. The LC releases both noradrenaline (NA) and dopamine (DA) from its hippocampal terminals and may also trigger hippocampal DA release by activating the ventral tegmental area (VTA). Unclear is whether both neurotransmitters contribute equally to hippocampal LTD triggered by LC stimulation (LC-LTD). Both DA D1/D5 receptors (D1/D5R) and beta-adrenergic receptors (β-AR) are critically required for hippocampal LTD that is induced by patterned stimulation of hippocampal afferents, or is facilitated by spatial learning. We, therefore, explored to what extent these receptor subtypes mediate frequency-dependent hippocampal LC-LTD. LC-LTD elicited by 2, 5, and 10 Hz stimulation was unaffected by antagonism of β-AR with propranolol, whereas LC-LTD induced by these frequencies was prevented by D1/D5R-antagonism using SCH23390. By contrast, LC-LTD evoked at 100 Hz was prevented by β-AR-antagonism and only mildly affected by D1/D5R-antagonism. Taken together, these findings support that LC-LTD can be triggered by LC activity at a wide range of frequencies. Furthermore, the contribution of D1/D5R and β-AR to hippocampal LTD that is triggered by LC activity is frequency-dependent and suggests that D1/D5R may be involved in LC-mediated hippocampal tonus.
Collapse
Affiliation(s)
- Natalia Babushkina
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Canton-Josh JE, Qin J, Salvo J, Kozorovitskiy Y. Dopaminergic regulation of vestibulo-cerebellar circuits through unipolar brush cells. eLife 2022; 11:e76912. [PMID: 35476632 PMCID: PMC9106328 DOI: 10.7554/elife.76912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
While multiple monoamines modulate cerebellar output, the mechanistic details of dopaminergic signaling in the cerebellum remain poorly understood. We show that dopamine type 1 receptors (Drd1) are expressed in unipolar brush cells (UBCs) of the mouse cerebellar vermis. Drd1 activation increases UBC firing rate and post-synaptic NMDAR -mediated currents. Using anatomical tracing and in situ hybridization, we test three hypotheses about the source of cerebellar dopamine. We exclude midbrain dopaminergic nuclei and tyrosine hydroxylase-positive Purkinje (Pkj) cells as potential sources, supporting the possibility of dopaminergic co-release from locus coeruleus (LC) axons. Using an optical dopamine sensor GRABDA2h, electrical stimulation, and optogenetic activation of LC fibers in the acute slice, we find evidence for monoamine release onto Drd1-expressing UBCs. Altogether, we propose that the LC regulates cerebellar cortex activity by co-releasing dopamine onto UBCs to modulate their response to cerebellar inputs. Pkj cells directly inhibit these Drd1-positive UBCs, forming a dopamine-sensitive recurrent vestibulo-cerebellar circuit.
Collapse
Affiliation(s)
| | - Joanna Qin
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Joseph Salvo
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | | |
Collapse
|
22
|
Grossman CD, Cohen JY. Neuromodulation and Neurophysiology on the Timescale of Learning and Decision-Making. Annu Rev Neurosci 2022; 45:317-337. [PMID: 35363533 DOI: 10.1146/annurev-neuro-092021-125059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nervous systems evolved to effectively navigate the dynamics of the environment to achieve their goals. One framework used to study this fundamental problem arose in the study of learning and decision-making. In this framework, the demands of effective behavior require slow dynamics-on the scale of seconds to minutes-of networks of neurons. Here, we review the phenomena and mechanisms involved. Using vignettes from a few species and areas of the nervous system, we view neuromodulators as key substrates for temporal scaling of neuronal dynamics. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, and Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Jeremiah Y Cohen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, and Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
23
|
Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach. SENSORS 2021; 21:s21217106. [PMID: 34770410 PMCID: PMC8588114 DOI: 10.3390/s21217106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Strong evidence from studies on primates and rodents shows that changes in pupil diameter may reflect neural activity in the locus coeruleus (LC). Pupillometry is the only available non-invasive technique that could be used as a reliable and easily accessible real-time biomarker of changes in the in vivo activity of the LC. However, the application of pupillometry to preclinical research in rodents is not yet fully standardized. A lack of consensus on the technical specifications of some of the components used for image recording or positioning of the animal and cameras have been recorded in recent scientific literature. In this study, a novel pupillometry system to indirectly assess, in real-time, the function of the LC in anesthetized rodents is presented. The system comprises a deep learning SOLOv2 instance-based fast segmentation framework and a platform designed to place the experimental subject, the video cameras for data acquisition, and the light source. The performance of the proposed setup was assessed and compared to other baseline methods using a validation and an external test set. In the latter, the calculated intersection over the union was 0.93 and the mean absolute percentage error was 1.89% for the selected method. The Bland–Altman analysis depicted an excellent agreement. The results confirmed a high accuracy that makes the system suitable for real-time pupil size tracking, regardless of the pupil’s size, light intensity, or any features typical of the recording process in sedated mice. The framework could be used in any neurophysiological study with sedated or fixed-head animals.
Collapse
|
24
|
Abstract
An organism's survival can depend on its ability to recall and navigate to spatial locations associated with rewards, such as food or a home. Accumulating research has revealed that computations of reward and its prediction occur on multiple levels across a complex set of interacting brain regions, including those that support memory and navigation. However, how the brain coordinates the encoding, recall and use of reward information to guide navigation remains incompletely understood. In this Review, we propose that the brain's classical navigation centres - the hippocampus and the entorhinal cortex - are ideally suited to coordinate this larger network by representing both physical and mental space as a series of states. These states may be linked to reward via neuromodulatory inputs to the hippocampus-entorhinal cortex system. Hippocampal outputs can then broadcast sequences of states to the rest of the brain to store reward associations or to facilitate decision-making, potentially engaging additional value signals downstream. This proposal is supported by recent advances in both experimental and theoretical neuroscience. By discussing the neural systems traditionally tied to navigation and reward at their intersection, we aim to offer an integrated framework for understanding navigation to reward as a fundamental feature of many cognitive processes.
Collapse
|
25
|
Kurniawan IT, Grueschow M, Ruff CC. Anticipatory Energization Revealed by Pupil and Brain Activity Guides Human Effort-Based Decision Making. J Neurosci 2021; 41:6328-6342. [PMID: 34103359 PMCID: PMC8287989 DOI: 10.1523/jneurosci.3027-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023] Open
Abstract
An organism's fitness is determined by how it chooses to adapt to effort in response to challenges. Exertion of effort correlates with activity in dorsomedial prefrontal cortex (dmPFC) and noradrenergic pupil dilation, but little is known about the role of these neurophysiological processes for decisions about future efforts, they may provide anticipatory energization to help us accept the challenge or a cost representation that is weighted against the expected rewards. Here, we provide evidence for the former, by measuring pupil and functional magnetic resonance imaging (fMRI) brain responses while 52 human participants (29 females) chose whether to exert efforts to obtain rewards. Both pupil-dilation rate and dmPFC fMRI activity increased with anticipated effort level, and these increases differ depending on the choice outcome: they were stronger when participants chose to accept the challenge compared with when the challenge was declined. Crucially, the choice-dependent modulation of pupil and brain-activity effort representations were stronger in participants whose behavioral choices were more sensitive to effort. Our results identify a process involving the peripheral and central human nervous system that simulates the required energization before overt response, suggesting a role in guiding effort-based decisions.SIGNIFICANCE STATEMENT The brain's arousal system tracks the effort we engage in during strenuous activity. But much less is known about what role this effort signaling may play when we decide whether to exert effort in the future. Here, we characterize pupil-linked arousal and brain signals that guide decisions whether to engage in effort to gain money. During such choices, increases in brain activity and pupil dilation correlated with the effort involved in the chosen option, and these increases were stronger when people decided to accept the effort compared with when they rejected it. These results suggest that the brain arousal system guides decisions by energizing the organism for the prospective challenge.
Collapse
Affiliation(s)
- Irma T Kurniawan
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zürich 8006, Switzerland
| | - Marcus Grueschow
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zürich 8006, Switzerland
| | - Christian C Ruff
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zürich 8006, Switzerland
| |
Collapse
|
26
|
Aghajani N, Pourhamzeh M, Azizi H, Semnanian S. Central blockade of orexin type 1 receptors reduces naloxone induced activation of locus coeruleus neurons in morphine dependent rats. Neurosci Lett 2021; 755:135909. [PMID: 33892002 DOI: 10.1016/j.neulet.2021.135909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Orexin neuropeptides are implicated in the expression of morphine dependence. Locus coeruleus (LC) nucleus is an important brain area involving in the development of withdrawal signs of morphine and contains high expression of orexin type 1 receptors (OX1Rs). Despite extensive considerations, effects of immediate inhibition of OX1Rs by a single dose administration of SB-334867 prior to the naloxone-induced activation of LC neurons remains unknown. Therefore, we examined the direct effects of OX1Rs acute blockade on the neuronal activity of the morphine-dependent rats which underwent naloxone administration. Adult male rats underwent subcutaneous administration of 10 mg/kg morphine (two times/day) for a ten-day period. On the last day of experiment, intra-cerebroventricular administration of 10 μg/μl antagonist of OX1Rs, SB-334867, was performed just before intra-peritoneal injection of 2 mg/kg naloxone. Thereafter, in vivo extracellular single unit recording was employed to evaluate the electrical activity of LC neuronal cells. The outcomes demonstrated that morphine tolerance developed following ten-day of injection. Then, naloxone administration causes hyperactivity of LC neuronal cells, whereas a single dose administration of SB-334867 prior to naloxone prevented the enhanced activity of neurons upon morphine withdrawal. Our findings indicate that increased response of LC neuronal cells to applied naloxone could be prevented by the acute inhibition of the OX1Rs just before the naloxone treatment.
Collapse
Affiliation(s)
- Niloofar Aghajani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
27
|
Stevens L, Larsen LE, Van Lysebettens W, Carrette E, Boon P, Raedt R, Vonck K. Optimized Parameters for Transducing the Locus Coeruleus Using Canine Adenovirus Type 2 (CAV2) Vector in Rats for Chemogenetic Modulation Research. Front Neurosci 2021; 15:663337. [PMID: 33927593 PMCID: PMC8076532 DOI: 10.3389/fnins.2021.663337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction The locus coeruleus noradrenergic (LC-NA) system is studied for its role in various neurological and psychiatric disorders such as epilepsy and Major Depression Dissorder. Chemogenetics is a powerful technique for specific manipulation of the LC to investigate its functioning. Local injection of AAV2/7 viral vectors has limitations with regards to efficiency and specificity of the transduction, potentially due to low tropism of AAV2/7 for LC neurons. In this study we used a canine adenovirus type 2 (CAV2) vector with different volumes and viral particle numbers to achieve high and selective expression of hM3Dq, an excitatory Designer Receptor Exclusively Activated by Designer Drugs (DREADD), for chemogenetic modulation of LC neurons. Methods Adult male Sprague-Dawley rats were injected in the LC with different absolute numbers of CAV2-PRSx8-hM3Dq-mCherry physical particles (0.1E9, 1E9, 5E9,10E9, or 20E9 pp) using different volumes (LowV = 3 nl × 300 nl, MediumV = 3 × 600 nl, HighV = 3 × 1200 nl). Two weeks post-injection, double-labeling immunohistochemistry for dopamine β hydroxylase (DBH) and mCherry was performed to determine hM3Dq expression and its specificity for LC neurons. The size of the transduced LC was compared to the contralateral LC to identify signs of toxicity. Results Administration of Medium volume (3 × 600 nl) and 1E9 particles resulted in high expression levels with 87.3 ± 9.8% of LC neurons expressing hM3Dq, but low specificity with 36.2 ± 17.3% of hM3Dq expression in non-LC neurons. The most diluted conditions (Low volume_0.1E pp and Medium Volume_0.1E pp) presented similar high transduction of LC neurons (70.9 ± 12.7 and 77.2 ± 9.8%) with lower aspecificity (5.5 ± 3.5 and 4.0 ± 1.9%, respectively). Signs of toxicity were observed in all undiluted conditions as evidenced by a decreased size of the transduced LC. Conclusion This study identified optimal conditions (Low and Medium Volume with 0.1E9 particles of CAV2-PRSx8-hM3Dq-mCherry) for safe and specific transduction of LC neurons with excitatory DREADDs to study the role of the LC-NA system in health and disease.
Collapse
Affiliation(s)
- Latoya Stevens
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| | - Lars Emil Larsen
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium.,Medical Imaging and Signal Processing, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Wouter Van Lysebettens
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| | - Evelien Carrette
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| | - Paul Boon
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| | - Kristl Vonck
- 4BRAIN, Institute for Neuroscience, Department Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Dopeso-Reyes IG, Wolff M, Andrews MR, Kremer EJ. Editorial: Tropism, Mapping, Modeling, or Therapy Using Canine Adenovirus Type 2 (CAV-2) Vectors in the CNS. Front Mol Neurosci 2021; 14:636476. [PMID: 33642993 PMCID: PMC7904869 DOI: 10.3389/fnmol.2021.636476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Mathieu Wolff
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, INCIA, Université de Bordeaux, Bordeaux, France
| | - Melissa R Andrews
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
29
|
Bacon TJ, Pickering AE, Mellor JR. Noradrenaline Release from Locus Coeruleus Terminals in the Hippocampus Enhances Excitation-Spike Coupling in CA1 Pyramidal Neurons Via β-Adrenoceptors. Cereb Cortex 2020; 30:6135-6151. [PMID: 32607551 PMCID: PMC7609922 DOI: 10.1093/cercor/bhaa159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Release of the neuromodulator noradrenaline signals salience during wakefulness, flagging novel or important experiences to reconfigure information processing and memory representations in the hippocampus. Noradrenaline is therefore expected to enhance hippocampal responses to synaptic input; however, noradrenergic agonists have been found to have mixed and sometimes contradictory effects on Schaffer collateral synapses and the resulting CA1 output. Here, we examine the effects of endogenous, optogenetically driven noradrenaline release on synaptic transmission and spike output in mouse hippocampal CA1 pyramidal neurons. We show that endogenous noradrenaline release enhances the probability of CA1 pyramidal neuron spiking without altering feedforward excitatory or inhibitory synaptic inputs in the Schaffer collateral pathway. β-adrenoceptors mediate this enhancement of excitation-spike coupling by reducing the charge required to initiate action potentials, consistent with noradrenergic modulation of voltage-gated potassium channels. Furthermore, we find the likely effective concentration of endogenously released noradrenaline is sub-micromolar. Surprisingly, although comparable concentrations of exogenous noradrenaline cause robust depression of slow afterhyperpolarization currents, endogenous release of noradrenaline does not, indicating that endogenous noradrenaline release is targeted to specific cellular locations. These findings provide a mechanism by which targeted endogenous release of noradrenaline can enhance information transfer in the hippocampus in response to salient events.
Collapse
Affiliation(s)
- Travis J Bacon
- Centre for Synaptic Plasticity, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
- Bristol Anaesthesia, Pain & Critical Care Sciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
30
|
Bari BA, Chokshi V, Schmidt K. Locus coeruleus-norepinephrine: basic functions and insights into Parkinson's disease. Neural Regen Res 2020; 15:1006-1013. [PMID: 31823870 PMCID: PMC7034292 DOI: 10.4103/1673-5374.270297] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/17/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023] Open
Abstract
The locus coeruleus is a pontine nucleus that produces much of the brain's norepinephrine. Despite its small size, the locus coeruleus is critical for a myriad of functions and is involved in many neurodegenerative and neuropsychiatric disorders. In this review, we discuss the physiology and anatomy of the locus coeruleus system and focus on norepinephrine's role in synaptic plasticity. We highlight Parkinson's disease as a disorder with motor and neuropsychiatric symptoms that may be understood as aberrations in the normal functions of locus coeruleus.
Collapse
Affiliation(s)
- Bilal Abdul Bari
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Varun Chokshi
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katharina Schmidt
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Jahn CI, Varazzani C, Sallet J, Walton ME, Bouret S. Noradrenergic But Not Dopaminergic Neurons Signal Task State Changes and Predict Reengagement After a Failure. Cereb Cortex 2020; 30:4979-4994. [PMID: 32390051 DOI: 10.1093/cercor/bhaa089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
The two catecholamines, noradrenaline and dopamine, have been shown to play comparable roles in behavior. Both noradrenergic and dopaminergic neurons respond to cues predicting reward availability and novelty. However, even though both are thought to be involved in motivating actions, their roles in motivation have seldom been directly compared. We therefore examined the activity of putative noradrenergic neurons in the locus coeruleus and putative midbrain dopaminergic neurons in monkeys cued to perform effortful actions for rewards. The activity in both regions correlated with engagement with a presented option. By contrast, only noradrenaline neurons were also (i) predictive of engagement in a subsequent trial following a failure to engage and (ii) more strongly activated in nonrepeated trials, when cues indicated a new task condition. This suggests that while both catecholaminergic neurons are involved in promoting action, noradrenergic neurons are sensitive to task state changes, and their influence on behavior extends beyond the immediately rewarded action.
Collapse
Affiliation(s)
- Caroline I Jahn
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France.,Sorbonne Paris Cité universités, Université Paris Descartes, Frontières du Vivant, 75005 Paris, France.,Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13SR, UK
| | - Chiara Varazzani
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France.,Sorbonne Paris Cité universités, Université Paris Descartes, Frontières du Vivant, 75005 Paris, France
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13SR, UK.,Inserm, Stem Cell and Brain Research Institute U1208, Université Lyon, Université Lyon 1, 69500 Bron, France
| | - Mark E Walton
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13SR, UK
| | - Sébastien Bouret
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France
| |
Collapse
|
32
|
Chandler DJ, Jensen P, McCall JG, Pickering AE, Schwarz LA, Totah NK. Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture. J Neurosci 2019; 39:8239-8249. [PMID: 31619493 PMCID: PMC6794927 DOI: 10.1523/jneurosci.1164-19.2019] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 01/09/2023] Open
Abstract
The locus coeruleus (LC) is a seemingly singular and compact neuromodulatory nucleus that is a prominent component of disparate theories of brain function due to its broad noradrenergic projections throughout the CNS. As a diffuse neuromodulatory system, noradrenaline affects learning and decision making, control of sleep and wakefulness, sensory salience including pain, and the physiology of correlated forebrain activity (ensembles and networks) and brain hemodynamic responses. However, our understanding of the LC is undergoing a dramatic shift due to the application of state-of-the-art methods that reveal a nucleus of many modules that provide targeted neuromodulation. Here, we review the evidence supporting a modular LC based on multiple levels of observation (developmental, genetic, molecular, anatomical, and neurophysiological). We suggest that the concept of the LC as a singular nucleus and, alongside it, the role of the LC in diverse theories of brain function must be reconsidered.
Collapse
Affiliation(s)
- Dan J Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110, Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, Missouri 63110, Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, and Washington University Pain Center, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
- Bristol Anaesthesia, Pain and Critical Care Sciences, Translational Health Sciences, Bristol Medical School, Bristol Royal Infirmary, Bristol, BS2 8HW, United Kingdom
| | | | - Nelson K Totah
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany 72076,
- Helsinki Institute of Life Science, Helsinki 00014, Finland, and
- School of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|