1
|
Mohsen E, Haffez H, Ahmed S, Hamed S, El-Mahdy TS. Multiple Sclerosis: A Story of the Interaction Between Gut Microbiome and Components of the Immune System. Mol Neurobiol 2025; 62:7762-7775. [PMID: 39934561 PMCID: PMC12078361 DOI: 10.1007/s12035-025-04728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Multiple sclerosis (MS) is defined as an inflammatory disorder that chronically affects the central nervous system of young people mostly and is distributed globally. It is associated with degeneration and demyelination of the myelin sheath around the nerves, resulting in multiple neurological disability symptoms ranging from mild to severe cases that end with paralysis sometimes. MS is one of the rising diseases globally that is unfortunately associated with reduced quality of life and adding national economic burdens. The definite MS mechanism is not clearly defined; however, all the previous researches confirm the role of the immune system as the master contributor in the pathogenesis. Innate and adaptive immune cells are activated peripherally then attracted toward the central nervous system (CNS) due to the breakdown of the blood-brain barrier. Recently, the gut-brain axis was shown to depend on gut metabolites that are produced by different microorganisms in the colon. The difference in microbiota composition between individuals is responsible for diversity in secreted metabolites that affect immune responses locally in the gut or systemically when reach blood circulation to the brain. It may enhance or suppress immune responses in the central nervous system (CNS) (repeated short forms); consequently, it may exacerbate or ameliorate MS symptoms. Recent data showed that some metabolites can be used as adjuvant therapy in MS and other inflammatory diseases. This review sheds light on the nature of MS and the possible interaction between gut microbiota and immune system regulation through the gut-brain axis, hence contributing to MS pathogenesis.
Collapse
Affiliation(s)
- Esraa Mohsen
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
| | - Hesham Haffez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research (HSBR), Helwan University, Cairo, 11795, Egypt
| | - Sandra Ahmed
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Selwan Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt.
| | - Taghrid S El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| |
Collapse
|
2
|
Liu L, Qi W, Zhang N, Zhang J, Liu S, Wang H, Jiang L, Sun Y. Nutraceuticals for Gut-Brain Axis Health: A Novel Approach to Combat Malnutrition and Future Personalised Nutraceutical Interventions. Nutrients 2025; 17:1551. [PMID: 40362863 PMCID: PMC12073618 DOI: 10.3390/nu17091551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
The gut-brain axis (GBA) is a bidirectional communication network between the gastrointestinal tract and the brain, modulated by gut microbiota and related biomarkers. Malnutrition disrupts GBA homeostasis, exacerbating GBA dysfunction through gut dysbiosis, impaired neuroactive metabolite production, and systemic inflammation. Nutraceuticals, including probiotics, prebiotics, synbiotics, postbiotics, and paraprobiotics, offer a promising approach to improving GBA homeostasis by modulating the gut microbiota composition and related neuroactive metabolites. This review aims to elucidate the interplay between gut microbiota-derived biomarkers and GBA dysfunction in malnutrition and evaluate the potential of nutraceuticals in combating malnutrition. Furthermore, it explores the future of personalised nutraceutical interventions tailored to individual genetic and microbiome profiles, providing a targeted approach to optimise health outcomes. The integration of nutraceuticals into GBA health management could transform malnutrition treatment and improve cognitive and metabolic health.
Collapse
Affiliation(s)
- Litai Liu
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6UR, UK
| | - Wen Qi
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| | - Na Zhang
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| | - Jinhao Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.W.); (L.J.)
| | - Shen Liu
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.W.); (L.J.)
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.W.); (L.J.)
| | - Ying Sun
- Tourism & Cuisine College, Harbin University of Commerce, Harbin 150028, China; (L.L.); (W.Q.); (N.Z.); (S.L.)
| |
Collapse
|
3
|
Dezfouli MA, Rashidi SK, Yazdanfar N, Khalili H, Goudarzi M, Saadi A, Kiani Deh Kiani A. The emerging roles of neuroactive components produced by gut microbiota. Mol Biol Rep 2024; 52:1. [PMID: 39570444 DOI: 10.1007/s11033-024-10097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND As a multifunctional ecosystem, the human digestive system contains a complex network of microorganisms, collectively known as gut microbiota. This consortium composed of more than 1013 microorganisms and Firmicutes and Bacteroidetes are the dominant microbes. Gut microbiota is increasingly recognized for its critical role in physiological processes beyond digestion. Gut microbiota participates in a symbiotic relationship with the host and takes advantage of intestinal nutrients and mutually participates in the digestion of complex carbohydrates and maintaining intestinal functions. METHOD AND RESULT We reviewed the neuroactive components produced by gut microbiota. Interestingly, microbiota plays a crucial role in regulating the activity of the intestinal lymphatic system, regulation of the intestinal epithelial barrier, and maintaining the tolerance to food immunostimulating molecules. The gut-brain axis is a two-way communication pathway that links the gut microbiota to the central nervous system (CNS) and importantly is involved in neurodevelopment, cognition, emotion and synaptic transmissions. The connections between gut microbiota and CNS are via endocrine system, immune system and vagus nerve. CONCLUSION The gut microbiota produces common neurotransmitters and neuromodulators of the nervous system. These compounds play a role in neuronal functions, immune system regulation, gastrointestinal homeostasis, permeability of the blood brain barrier and other physiological processes. This review investigates the essential aspects of the neurotransmitters and neuromodulators produced by gut microbiota and their implications in health and disease.
Collapse
Affiliation(s)
- Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Khalil Rashidi
- Department of Medical Biotechnology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nada Yazdanfar
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Khalili
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Saadi
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Kiani Deh Kiani
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Mihailovich M, Soković Bajić S, Dinić M, Đokić J, Živković M, Radojević D, Golić N. Cutting-Edge iPSC-Based Approaches in Studying Host-Microbe Interactions in Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:10156. [PMID: 39337640 PMCID: PMC11432053 DOI: 10.3390/ijms251810156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota (GM), together with its metabolites (such as SCFA, tryptophan, dopamine, GABA, etc.), plays an important role in the functioning of the central nervous system. Various neurological and psychiatric disorders are associated with changes in the composition of GM and their metabolites, which puts them in the foreground as a potential adjuvant therapy. However, the molecular mechanisms behind this relationship are not clear enough. Therefore, before considering beneficial microbes and/or their metabolites as potential therapeutics for brain disorders, the mechanisms underlying microbiota-host interactions must be identified and characterized in detail. In this review, we summarize the current knowledge of GM alterations observed in prevalent neurological and psychiatric disorders, multiple sclerosis, major depressive disorder, Alzheimer's disease, and autism spectrum disorders, together with experimental evidence of their potential to improve patients' quality of life. We further discuss the main obstacles in the study of GM-host interactions and describe the state-of-the-art solution and trends in this field, namely "culturomics" which enables the culture and identification of novel bacteria that inhabit the human gut, and models of the gut and blood-brain barrier as well as the gut-brain axis based on induced pluripotent stem cells (iPSCs) and iPSC derivatives, thus pursuing a personalized medicine agenda for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
- Human Technopole, Palazzo Italia, Viale Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Miroslav Dinić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| |
Collapse
|
5
|
Archana, Gupta AK, Noumani A, Panday DK, Zaidi F, Sahu GK, Joshi G, Yadav M, Borah SJ, Susmitha V, Mohan A, Kumar A, Solanki PR. Gut microbiota derived short-chain fatty acids in physiology and pathology: An update. Cell Biochem Funct 2024; 42:e4108. [PMID: 39228159 DOI: 10.1002/cbf.4108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Short-chain fatty acids (SCFAs) are essential molecules produced by gut bacteria that fuel intestinal cells and may also influence overall health. An imbalance of SCFAs can result in various acute and chronic diseases, including diabetes, obesity and colorectal cancer (CRC). This review delves into the multifaceted roles of SCFAs, including a brief discussion on their source and various gut-residing bacteria. Primary techniques used for detection of SCFAs, including gas chromatography, high-performance gas chromatography, nuclear magnetic resonance and capillary electrophoresis are also discussed through this article. This review study also compiles various synthesis pathways of SCFAs from diverse substrates such as sugar, acetone, ethanol and amino acids. The different pathways through which SCFAs enter cells for immune response regulation are also highlighted. A major emphasis is the discussion on diseases associated with SCFA dysregulation, such as anaemia, brain development, CRC, depression, obesity and diabetes. This includes exploring the relationship between SCFA levels across ethnicities and their connection with blood pressure and CRC. In conclusion, this review highlights the critical role of SCFAs in maintaining gut health and their implications in various diseases, emphasizing the need for further research on SCFA detection, synthesis and their potential as diagnostic biomarkers. Future studies of SCFAs will pave the way for the development of novel diagnostic tools and therapeutic strategies for optimizing gut health and preventing diseases associated with SCFA dysregulation.
Collapse
Affiliation(s)
- Archana
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Abhijeet Kumar Gupta
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Ashab Noumani
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Dharmendra Kumar Panday
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Fareen Zaidi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Kumar Sahu
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gunjan Joshi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Manisha Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Shikha Jyoti Borah
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Vanne Susmitha
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi, India
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Liu T, Wang Y, Hou Z, Shi Z, Wang R, Shi Y, Hua L, Wu L, Xu M, Ding X, Sun Q. Effects of antibiotic cocktail on the fecal microbiota and their potential correlation of local immune response. BMC Microbiol 2024; 24:283. [PMID: 39085808 PMCID: PMC11290084 DOI: 10.1186/s12866-024-03424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The guts of mammals are home to trillions of microbes, forming a complex and dynamic ecosystem. Gut microbiota is an important biological barrier for maintaining immune homeostasis. Recently, the use of antibiotics to clear gut microbiota has gained popularity as a low cost and easy-to-use alternative to germ-free animals. However, the effect of the duration of the antibiotic cocktail on the gut microbiome is unclear, and more importantly, the effect of dramatic changes in the gut microbiota on intestinal tissue morphology and local immune response is rarely reported. RESULTS We observed a significant reduction in fecal microbiota species and abundance after 1 week of exposure to an antibiotic cocktail, gavage twice daily by intragastric administration. In terms of composition, Bacteroidetes and Firmicutes were replaced by Proteobacteria. Extending antibiotic exposure to 2-3 weeks did not significantly improve the overall efficiency of microbiotal consumption. No significant histomorphological changes were observed in the first 2 weeks of antibiotic cocktail exposure, but the expression of inflammatory mediators in intestinal tissue was increased after 3 weeks of antibiotic cocktail exposure. Mendelian randomization analysis showed that Actinobacteria had a significant causal association with the increase of IL-1β (OR = 1.65, 95% CI = 1.23 to 2.21, P = 0.007) and TNF-α (OR = 1.81, 95% CI = 1.26 to 2.61, P = 0.001). CONCLUSIONS Our data suggest that treatment with an antibiotic cocktail lasting 1 week is sufficient to induce a significant reduction in gut microbes. 3 weeks of antibiotic exposure can lead to the colonization of persistant microbiota and cause changes in intestinal tissue and local immune responses.
Collapse
Affiliation(s)
- Ting Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No.584, Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Yin Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No.584, Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Zhuoer Hou
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Rongyun Wang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanan Shi
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lijiangshan Hua
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyun Wu
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinghong Ding
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No.584, Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Qiuhua Sun
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
7
|
Zheng Y, Bonfili L, Wei T, Eleuteri AM. Understanding the Gut-Brain Axis and Its Therapeutic Implications for Neurodegenerative Disorders. Nutrients 2023; 15:4631. [PMID: 37960284 PMCID: PMC10648099 DOI: 10.3390/nu15214631] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The gut-brain axis (GBA) is a complex bidirectional communication network connecting the gut and brain. It involves neural, immune, and endocrine communication pathways between the gastrointestinal (GI) tract and the central nervous system (CNS). Perturbations of the GBA have been reported in many neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), among others, suggesting a possible role in disease pathogenesis. The gut microbiota is a pivotal component of the GBA, and alterations in its composition, known as gut dysbiosis, have been associated with GBA dysfunction and neurodegeneration. The gut microbiota might influence the homeostasis of the CNS by modulating the immune system and, more directly, regulating the production of molecules and metabolites that influence the nervous and endocrine systems, making it a potential therapeutic target. Preclinical trials manipulating microbial composition through dietary intervention, probiotic and prebiotic supplementation, and fecal microbial transplantation (FMT) have provided promising outcomes. However, its clear mechanism is not well understood, and the results are not always consistent. Here, we provide an overview of the major components and communication pathways of the GBA, as well as therapeutic approaches targeting the GBA to ameliorate NDDs.
Collapse
Affiliation(s)
- Yadong Zheng
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
| | - Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
| |
Collapse
|
8
|
Moțățăianu A, Șerban G, Andone S. The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Cross-Talk with a Focus on Amyotrophic Lateral Sclerosis: A Systematic Review. Int J Mol Sci 2023; 24:15094. [PMID: 37894774 PMCID: PMC10606032 DOI: 10.3390/ijms242015094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by the gradual loss of motor neurons in the brain and spinal cord, leading to progressive motor function decline. Unfortunately, there is no effective treatment, and its increasing prevalence is linked to an aging population, improved diagnostics, heightened awareness, and changing lifestyles. In the gastrointestinal system, the gut microbiota plays a vital role in producing metabolites, neurotransmitters, and immune molecules. Short-chain fatty acids, of interest for their potential health benefits, are influenced by a fiber- and plant-based diet, promoting a diverse and balanced gut microbiome. These fatty acids impact the body by binding to receptors on enteroendocrine cells, influencing hormones like glucagon-like peptide-1 and peptide YY, which regulate appetite and insulin sensitivity. Furthermore, these fatty acids impact the blood-brain barrier, neurotransmitter levels, and neurotrophic factors, and directly stimulate vagal afferent nerves, affecting gut-brain communication. The vagus nerve is a crucial link between the gut and the brain, transmitting signals related to appetite, inflammation, and various processes. Dysregulation of this pathway can contribute to conditions like obesity and irritable bowel syndrome. Emerging evidence suggests the complex interplay among these fatty acids, the gut microbiota, and environmental factors influences neurodegenerative processes via interconnected pathways, including immune function, anti-inflammation, gut barrier, and energy metabolism. Embracing a balanced, fiber-rich diet may foster a diverse gut microbiome, potentially impacting neurodegenerative disease risk. Comprehensive understanding requires further research into interventions targeting the gut microbiome and fatty acid production and their potential therapeutic role in neurodegeneration.
Collapse
Affiliation(s)
- Anca Moțățăianu
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mures ‘George Emil Palade’, 540142 Târgu Mures, Romania
| | - Georgiana Șerban
- Doctoral School, University of Medicine, Pharmacy, Science and Technology of Târgu Mures ‘George Emil Palade’, 540142 Târgu Mures, Romania
| | - Sebastian Andone
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mures ‘George Emil Palade’, 540142 Târgu Mures, Romania
| |
Collapse
|
9
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
10
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
11
|
Bronzini M, Maglione A, Rosso R, Matta M, Masuzzo F, Rolla S, Clerico M. Feeding the gut microbiome: impact on multiple sclerosis. Front Immunol 2023; 14:1176016. [PMID: 37304278 PMCID: PMC10248010 DOI: 10.3389/fimmu.2023.1176016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial neurological disease characterized by chronic inflammation and immune-driven demyelination of the central nervous system (CNS). The rising number of MS cases in the last decade could be partially attributed to environmental changes, among which the alteration of the gut microbiome driven by novel dietary habits is now of particular interest. The intent of this review is to describe how diet can impact the development and course of MS by feeding the gut microbiome. We discuss the role of nutrition and the gut microbiota in MS disease, describing preclinical studies on experimental autoimmune encephalomyelitis (EAE) and clinical studies on dietary interventions in MS, with particular attention to gut metabolites-immune system interactions. Possible tools that target the gut microbiome in MS, such as the use of probiotics, prebiotics and postbiotics, are analyzed as well. Finally, we discuss the open questions and the prospects of these microbiome-targeted therapies for people with MS and for future research.
Collapse
Affiliation(s)
- Matteo Bronzini
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Matta
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| | | | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
12
|
Yang Y, Zhong Z, Wang B, Wang Y. Xiaoyao San ameliorates high-fat diet-induced anxiety and depression via regulating gut microbiota in mice. Biomed Pharmacother 2022; 156:113902. [DOI: 10.1016/j.biopha.2022.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022] Open
|
13
|
Melamed E, Palmer JL, Fonken C. Advantages and limitations of experimental autoimmune encephalomyelitis in breaking down the role of the gut microbiome in multiple sclerosis. Front Mol Neurosci 2022; 15:1019877. [PMID: 36407764 PMCID: PMC9672668 DOI: 10.3389/fnmol.2022.1019877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 08/22/2023] Open
Abstract
Since the first model of experimental autoimmune encephalomyelitis (EAE) was introduced almost a century ago, there has been an ongoing scientific debate about the risks and benefits of using EAE as a model of multiple sclerosis (MS). While there are notable limitations of translating EAE studies directly to human patients, EAE continues to be the most widely used model of MS, and EAE studies have contributed to multiple key breakthroughs in our understanding of MS pathogenesis and discovery of MS therapeutics. In addition, insights from EAE have led to a better understanding of modifiable environmental factors that can influence MS initiation and progression. In this review, we discuss how MS patient and EAE studies compare in our learning about the role of gut microbiome, diet, alcohol, probiotics, antibiotics, and fecal microbiome transplant in neuroinflammation. Ultimately, the combination of rigorous EAE animal studies, novel bioinformatic approaches, use of human cell lines, and implementation of well-powered, age- and sex-matched randomized controlled MS patient trials will be essential for improving MS patient outcomes and developing novel MS therapeutics to prevent and revert MS disease progression.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | | | |
Collapse
|
14
|
Salari AA, Jand Y, Ghazi-Khansari M. Antibiotic treatment during pregnancy and lactation in dams exacerbates clinical symptoms and inflammatory responses in offspring with experimental autoimmune encephalomyelitis. J Neuroimmunol 2022; 366:577840. [DOI: 10.1016/j.jneuroim.2022.577840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 10/19/2022]
|
15
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Uniyal A, Tiwari V, Rani M, Tiwari V. Immune-microbiome interplay and its implications in neurodegenerative disorders. Metab Brain Dis 2022; 37:17-37. [PMID: 34357554 DOI: 10.1007/s11011-021-00807-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/22/2021] [Indexed: 12/28/2022]
Abstract
The neurodegeneration and its related CNS pathologies need an urgent toolbox to minimize the global mental health burden. The neuroimmune system critically regulates the brain maturation and survival of neurons across the nervous system. The chronic manipulated immunological drive can accelerate the neuronal pathology hence promoting the burden of neurodegenerative disorders. The gut is home for trillions of microorganisms having a mutual relationship with the host system. The gut-brain axis is a unique biochemical pathway through which the gut residing microbes connects with the brain cells and regulates various physiological and pathological cascades. The gut microbiota and CNS communicate using a common language that synchronizes the tuning of immune cells. The intestinal gut microbial community has a profound role in the maturation of the immune system as well as the development of the nervous system. We have critically summarised the clinical and preclinical reports from the past a decade emphasising that the significant changes in gut microbiota can enhance the host susceptibility towards neurodegenerative disorders. In this review, we have discussed how the gut microbiota-mediated immune response inclines the host physiology towards neurodegeneration and indicated the gut microbiota as a potential future candidate for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankit Uniyal
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vineeta Tiwari
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Mousmi Rani
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
17
|
Radojević D, Tomić S, Mihajlović D, Tolinački M, Pavlović B, Vučević D, Bojić S, Golić N, Čolić M, Đokić J. Fecal microbiota composition associates with the capacity of human peripheral blood monocytes to differentiate into immunogenic dendritic cells in vitro. Gut Microbes 2021; 13:1-20. [PMID: 33970783 PMCID: PMC8115579 DOI: 10.1080/19490976.2021.1921927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although promising for active immunization in cancer patients, dendritic cells (DCs) vaccines generated in vitro display high inter-individual variability in their immunogenicity, which mostly limits their therapeutic efficacy. Gut microbiota composition is a key emerging factor affecting individuals' immune responses, but it is unknown how it affects the variability of donors' precursor cells to differentiate into immunogenic DCs in vitro. By analyzing gut microbiota composition in 14 healthy donors, along with the phenotype and cytokines production by monocyte-derived DCs, we found significant correlations between immunogenic properties of DC and microbiota composition. Namely, donors who had higher α-diversity of gut microbiota and higher abundance of short-chain fatty acid (SCFAs) and SCFA-producing bacteria in feces, displayed lower expression of CD1a on immature (im)DC and higher expression of ILT-3, costimulatory molecules (CD86, CD40) proinflammatory cytokines (TNF-α, IL-6, IL-8) and IL-12p70/IL-10 ratio, all of which correlated with their lower maturation potential and immunogenicity upon stimulation with LPS/IFNγ, a well-known Th1 polarizing cocktail. In contrast, imDCs generated from donors with lower α-diversity and higher abundance of Bifidobacterium and Collinsella in feces displayed higher CD1a expression and higher potential to up-regulate CD86 and CD40, increase TNF-α, IL-6, IL-8 production, and IL-12p70/IL-10 ratio upon stimulation. These results emphasize the important role of gut microbiota on the capacity of donor precursor cells to differentiate into immunogenic DCs suitable for cancer therapy, which could be harnessed for improving the actual and future DC-based cancer therapies.
Collapse
Affiliation(s)
- Dušan Radojević
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Dušan Mihajlović
- Faculty of Medicine Foca, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina,Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | | | - Dragana Vučević
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | | | - Nataša Golić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Faculty of Medicine Foca, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Jelena Đokić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia,CONTACT Jelena Đokić Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, Belgrade11042, Serbia
| |
Collapse
|
18
|
Su Y, Gan XP, Li FF, Zhang DY, Chen L, Cao YN, Qiu HH, Cheng DC, Zu JF, Liu WY, Wang HK, Xu XM. Effect of exposure to antibiotics on the gut microbiome and biochemical indexes of pregnant women. BMJ Open Diabetes Res Care 2021; 9:9/2/e002321. [PMID: 34732397 PMCID: PMC8572386 DOI: 10.1136/bmjdrc-2021-002321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Exposure to antibiotics (ABX) during pregnancy can have a systematic effect on both fetal and maternal health. Although previous biomonitoring studies have indicated the effects on children of extensive exposure to ABX, studies on pregnant women remain scarce. To explore the effect on pregnant women of environmental exposure to ABX through accidental ingestion and identify potential health risks, the present study investigated 122 pregnant women in East China between 2019 and 2020. RESEARCH DESIGN AND METHODS The presence of six categories of ABX (quinolones, sulfonamides, lincosamides, tetracyclines, amide alcohol ABX, and β-lactams) in plasma samples taken from the pregnant women was investigated using an ABX kit and a time-resolved fluorescence immunoassay. RESULTS All six ABX were detected in the plasma, with a detection rate of 17.2%. It was discovered that the composition of intestinal flora in pregnant women exposed to ABX was different from that of pregnant women who had not been exposed to ABX. The intestinal flora of pregnant women exposed to ABX also changed at both the phylum and genus levels, and several genera almost disappeared. Furthermore, the metabolic levels of glucose and insulin and the alpha diversity of pregnant women exposed to ABX were higher than those of pregnant women not exposed to ABX. CONCLUSION Pregnant women are potentially at higher risk of adverse microbial effects. Glucose metabolism and insulin levels were generally higher in pregnant women exposed to ABX than in unexposed women. Also, the composition and color of the gut microbiome changed.
Collapse
Affiliation(s)
- Yao Su
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, Huangpu District, China
| | - Xu-Pei Gan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
| | - Fei-Fei Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
| | - Dong-Yao Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, Huangpu District, China
| | - Li Chen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, Huangpu District, China
| | - Yan-Nan Cao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
| | - Hong-Hui Qiu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, Huangpu District, China
| | - De-Cui Cheng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
| | - Jian-Fei Zu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
| | - Wen-Yu Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, Huangpu District, China
| | - Hong-Kun Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
| | - Xian-Ming Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai, Hongkou District, China
| |
Collapse
|
19
|
Yang K, He S, Dong W. Gut microbiota and bronchopulmonary dysplasia. Pediatr Pulmonol 2021; 56:2460-2470. [PMID: 34077996 DOI: 10.1002/ppul.25508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
Bronchopulmonary dysplasia is a relatively common and severe complication of prematurity, and its pathogenesis remains ambiguous. Revolutionary advances in microbiological analysis techniques, together with the growing sophistication of the gut-lung axis hypothesis, have resulted in more studies linking gut microbiota dysbiosis to the occurrence and development of bronchopulmonary dysplasia. The present article builds on current findings to examine the intrinsic associations between gut microbiota and bronchopulmonary dysplasia. Gut microbiota dysbiosis may insult the intestinal barrier, triggering inflammation, metabolic disturbances, and malnutrition, consequences of which might impact bronchopulmonary dysplasia by altering the gut-lung axis. By evaluating the potential mechanisms, new therapeutic targets and potential therapeutic modalities for bronchopulmonary dysplasia can be identified from a microecological perspective.
Collapse
Affiliation(s)
- Kun Yang
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shasha He
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Miljković Đ, Stanisavljević S, Jensen IJ, Griffith TS, Badovinac VP. Sepsis and multiple sclerosis: Causative links and outcomes. Immunol Lett 2021; 238:40-46. [PMID: 34320384 DOI: 10.1016/j.imlet.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Sepsis is a life-threatening condition characterized by an acute cytokine storm followed by prolonged dysfunction of the immune system in the survivors. Post-septic lymphopenia and functional deficits of the remaining immune cells lead to increased susceptibility to secondary infections and other morbid conditions causing late death in the patients. This state of post-septic immunoparalysis may also influence disorders stemming from inappropriate or overactive immune responses, such as autoimmune and immunoinflammatory diseases, including multiple sclerosis. In addition, ongoing autoimmunity likely influences the susceptibility to and outcome of sepsis. This review article addresses the bidirectional relationship between sepsis and multiple sclerosis, with a focus on the immunologic mechanisms of the interaction and potential directions for future studies.
Collapse
Affiliation(s)
- Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Isaac J Jensen
- Department of Pathology, Department of Microbiology and Immunology, Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, Department of Urology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Vladimir P Badovinac
- Department of Pathology, Department of Microbiology and Immunology, Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Fleck AK, Hucke S, Teipel F, Eschborn M, Janoschka C, Liebmann M, Wami H, Korn L, Pickert G, Hartwig M, Wirth T, Herold M, Koch K, Falk-Paulsen M, Dobrindt U, Kovac S, Gross CC, Rosenstiel P, Trautmann M, Wiendl H, Schuppan D, Kuhlmann T, Klotz L. Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS autoimmunity. Brain 2021; 144:1152-1166. [PMID: 33899089 PMCID: PMC8105041 DOI: 10.1093/brain/awab040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut–CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut–CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.
Collapse
Affiliation(s)
- Ann-Katrin Fleck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stephanie Hucke
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Flavio Teipel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Melanie Eschborn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Haleluya Wami
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Geethanjali Pickert
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany
| | - Marvin Hartwig
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Martin Herold
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Kathrin Koch
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tanja Kuhlmann
- Department of Neuropathology, University of Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
22
|
Miljković Đ, Jevtić B, Stojanović I, Dimitrijević M. ILC3, a Central Innate Immune Component of the Gut-Brain Axis in Multiple Sclerosis. Front Immunol 2021; 12:657622. [PMID: 33912185 PMCID: PMC8071931 DOI: 10.3389/fimmu.2021.657622] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gut immune cells have been increasingly appreciated as important players in the central nervous system (CNS) autoimmunity in animal models of multiple sclerosis (MS). Among the gut immune cells, innate lymphoid cell type 3 (ILC3) is of special interest in MS research, as they represent the innate cell counterpart of the major pathogenic cell population in MS, i.e. T helper (Th)17 cells. Importantly, these cells have been shown to stimulate regulatory T cells (Treg) and to counteract pathogenic Th17 cells in animal models of autoimmune diseases. Besides, they are also well known for their ability to stabilize the intestinal barrier and to shape the immune response to the gut microbiota. Thus, proper maintenance of the intestinal barrier and the establishment of the regulatory milieu in the gut performed by ILC3 may prevent activation of CNS antigen-specific Th17 cells by the molecular mimicry. Recent findings on the role of ILC3 in the gut-CNS axis and their relevance for MS pathogenesis will be discussed in this paper. Possibilities of ILC3 functional modulation for the benefit of MS patients will be addressed, as well.
Collapse
Affiliation(s)
- Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Complete Freund's adjuvant-free experimental autoimmune encephalomyelitis in Dark Agouti rats is a valuable tool for multiple sclerosis studies. J Neuroimmunol 2021; 354:577547. [PMID: 33765502 DOI: 10.1016/j.jneuroim.2021.577547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is classically induced with complete Freund's adjuvant (CFA). The immune response against CFA has a confounding influence on the translational capacity of EAE as a multiple sclerosis model. Here, we compare clinical, cellular and molecular properties between syngeneic spinal cord homogenate (SCH)- and SCH + CFA-immunized Dark Agouti rats. EAE signs were observed earlier and the cumulative clinical score was higher without CFA. Also, a higher number of immune cells infiltrates in the spinal cords was noticed at the peak of EAE without CFA. High spinal cord abundance of CD8+CD11bc+MHC class II+ cells was detected in SCH-immunized rats. Myelin basic protein -specific response can be elicited in the cells from the lymph nodes draining the site of SCH immunization. This CFA-free EAE is a reliable multiple sclerosis model.
Collapse
|
24
|
Rauf A, Khalil AA, Rahman UU, Khalid A, Naz S, Shariati MA, Rebezov M, Urtecho EZ, de Albuquerque RDDG, Anwar S, Alamri A, Saini RK, Rengasamy KRR. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review. Crit Rev Food Sci Nutr 2021; 62:6034-6054. [PMID: 33703960 DOI: 10.1080/10408398.2021.1895064] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, the gut microbiota has emerged as an important frontier in understanding the human body's homeostasis and the development of diseases. Gut flora in human beings regulates various metabolic functionalities, including enzymes, amino acid synthesis, bio-transformation of bile acid, fermentation of non-digestible carbohydrates (NDCs), generation of indoles and polyamines (PAs), and production of short-chain fatty acids (SCFAs). Among all the metabolites produced by gut microbiota, SCFAs, the final product of fermentation of dietary fibers by gut microbiota, receive lots of attention from scientists due to their pharmacological and physiological characteristics. However, the molecular mechanisms underlying the role of SCFAs in the interaction between diet, gut microbiota, and host energy metabolism is still needed in-depth research. This review highlights the recent biotechnological advances in applying SCFAs as important metabolites to treat various diseases and maintain colonic health.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Ubaid-Ur- Rahman
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Saima Naz
- Deaprtment of Biotechnology, Woman University Mardan, Mardan, Khyber Pakhtunkhwa (KP), Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky, Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian
- Prokhorov General Physics Institute of the, Russian Academy of Science, Moscow, Russian
| | | | | | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, KSA
| | - Abdulwahab Alamri
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, KSA
| | | | - Kannan R R Rengasamy
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North West Province, South Africa
| |
Collapse
|
25
|
Goyal D, Ali SA, Singh RK. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110112. [PMID: 32949638 DOI: 10.1016/j.pnpbp.2020.110112] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a complex multifactorial disease involving chronic neuroinflammation and neurodegeneration. It has been recently recognized that gut microbiota interacts with the brain, and it is termed as microbiota-gut-brain axis. Modulation of this axis has been recently reported to affect the pathogenesis of neurodegenerative diseases, such as AD. Gut microbiota has a pivotal role in regulating multiple neuro-chemical pathways through the highly interconnected gut-brain axis. Recent emerging evidences have highlighted that the intestinal microflora takes part in bidirectional communication between the gut and the brain. Due to this, the researchers have suggested that human gut microflora may even act as the "second brain" and may be responsible for neurodegenerative disorders like Alzheimer's disease. Dysbiosis of gut microbiota can induce increased intestinal permeability and systemic inflammation. This may lead to the development of AD pathologies and cognitive impairment via the neural, immune, endocrine, and metabolic pathways. Thus, the modulation of gut microbiota through personalized diet, oral bacteriotherapy may lead to alteration of gut microbiota their products including amyloid protein. It has been demonstrated that modulation of the gut microbiota induces beneficial effects on neuronal pathways consequently leading to delay the progression of Alzheimer's disease. Thus, this approach may provide a novel therapeutic option for treatment of AD.
Collapse
Affiliation(s)
- Divya Goyal
- Department of Pharmacology and Toxicology, National institute of Pharmaceutical Education and Research, Raebareli, Transit campus, Bijnour-sisendi road, Sarojini nagar, Lucknow 226002, Uttar Pradesh, India
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National institute of Pharmaceutical Education and Research, Raebareli, Transit campus, Bijnour-sisendi road, Sarojini nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National institute of Pharmaceutical Education and Research, Raebareli, Transit campus, Bijnour-sisendi road, Sarojini nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
26
|
Sun BL, Li WW, Wang J, Xu YL, Sun HL, Tian DY, Wang YJ, Yao XQ. Gut Microbiota Alteration and Its Time Course in a Tauopathy Mouse Model. J Alzheimers Dis 2020; 70:399-412. [PMID: 31177213 DOI: 10.3233/jad-181220] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that gut microbiota dysbiosis plays a role in neurodegenerative disorders. However, whether the composition and diversity of the gut microbiota are altered in tauopathies remains largely unknown. This study was aimed to examine the diversity and composition of the gut microbiota in tauopathies, as well as the correlation with pathological changes in the brain. We collected fecal samples from 32 P301L tau transgenic mice and 32 age- and gender-matched littermate mice at different ages. The 16S ribosomal RNA sequencing technique was used to analyze the microbiota composition in feces. Brain tau pathology levels were measured by immunohistochemistry. The diversity and composition of the gut microbiota significantly changed with aging. At the phylum level, the relative abundance of Bacteroidetes was increased, while Firmicutes were decreased in P301L mice compared with that in Wt mice after 3 months of age. In addition, Actinobacteria was decreased in P301L mice at 3 and 6 months of age, meanwhile Tenericutes was decreased in P301L mice at 10 months of age. Moreover, several specific macrobiota were highly associated with the levels of AT8-tau or pT231-tau protein in the brain. Our findings suggest that gut microbiota changed with aging, as well as in the tauopathy mice model. Modulation of the gut microbiota may be a potential strategy for treatment of tauopathy.
Collapse
Affiliation(s)
- Bin-Lu Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei-Wei Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ya-Li Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hao-Lun Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ding-Yuan Tian
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.,Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Beijing, China
| | - Xiu-Qing Yao
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
27
|
Elokil AA, Abouelezz KF, Ahmad HI, Pan Y, Li S. Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks. Animals (Basel) 2020; 10:ani10050896. [PMID: 32455745 PMCID: PMC7278382 DOI: 10.3390/ani10050896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Broad-spectrum antibiotics have been a cornerstone in the treatment of bacterial diseases. However, growing evidence suggests that antibiotics have effects on host-associated gut microbiota communities. In this study, we report persistent significant changes in the abundance of gut microbiota and their functional metabolite pathways in chickens due to enrofloxacin and diclazuril exposure. These changes may affect the taxonomic, genomic, and functional capacity of the chicken gut microbiota, reducing bacterial diversity while expanding and collapsing membership of specific indigenous taxa. Understanding the biology of competitive exclusion of adaptive functions during antibiotic exposure in the gut may inform the design of new strategies to treat infections, while preserving the ecology of chicken-beneficial constituents. Abstract The dynamic microbiota in chickens can be affected by exposure to antibiotics, which may alter the composition and substrate availability of functional pathways. Here, 120 Jing Hong chicks at 30 days of age were randomly divided into four treatments totaling seven experimental groups: control chicks not exposed to antibiotics; and chicks exposed to enrofloxacin, diclazuril, and their mixture at 1:1 for 14 days and then not exposed for a withdrawal period of 15 days. Fecal samples were collected from the 7 groups at 8 time-points (exposure to 4 antibiotics and 4 withdrawal periods) to perform in-depth 16S rRNA sequencing of the gut microbiota. Taxon-independent analysis showed that the groups had significantly distinct microbial compositions (p < 0.01). Based on the microbial composition, as compared with the control group, the abundances of the phyla Firmicutes, Actinobacteria, Thermi, and Verrucomicrobia, as well as the families Lactobacillus, Lactococcus, S24-7, and Corynebacterium, were decreased in the antibiotic-exposed chicks (p < 0.01). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses revealed significant differences in microbiota metabolite pathways due to the genera of the antibiotic-responsive microbes (p < 0.01), especially the pathways relating to cell growth and death, immune system diseases, carbohydrate metabolism, and nucleotide metabolism. Oral treatment with enrofloxacin, diclazuril, and their mixture modified the gut microbiota composition and the microbial metabolic profiles in chickens, with persistent effects (during the withdrawal period) that prevented the return to the original community and led to the formation of a new community.
Collapse
Affiliation(s)
- Abdelmotaleb A. Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Khaled F.M. Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt;
| | - Hafiz I. Ahmad
- Department of Livestock Production, University of Veterinary and Animal sciences, Ravi Campus, Pattoki 55300, Pakistan;
| | - Yuanhu Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
- Correspondence: ; Tel.: +86-27-8738-7480; Fax: +86-27-8728-0408
| |
Collapse
|
28
|
Valburg C, Sonti A, Stern JN, Najjar S, Harel A. Dietary factors in experimental autoimmune encephalomyelitis and multiple sclerosis: A comprehensive review. Mult Scler 2020; 27:494-502. [PMID: 32406797 DOI: 10.1177/1352458520923955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dietary intervention in multiple sclerosis carries potential therapeutic implications. While studies utilizing animal models of multiple sclerosis (MS) have demonstrated intriguing findings, well-designed clinical trials are few in number. OBJECTIVE The objective of this study is to review the animal model and clinical literature regarding dietary factors in experimental autoimmune encephalitis (EAE) and MS. METHODS This manuscript provides a comprehensive review of current animal model and clinical knowledge related to dietary factors in MS. RESULTS While there is currently little data for any specific diet in MS, there is growing evidence that certain dietary factors may influence the disease. CONCLUSIONS Definitive information regarding dietary factors as a modifiable risk factor in MS will require larger randomized clinical trials.
Collapse
Affiliation(s)
- Claire Valburg
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Anup Sonti
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Joel Nh Stern
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA/Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA/Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Souhel Najjar
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA/Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA/Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Asaff Harel
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA/Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA/Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| |
Collapse
|
29
|
Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne) 2020; 11:25. [PMID: 32082260 PMCID: PMC7005631 DOI: 10.3389/fendo.2020.00025] [Citation(s) in RCA: 1531] [Impact Index Per Article: 306.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
A substantial body of evidence supports that the gut microbiota plays a pivotal role in the regulation of metabolic, endocrine and immune functions. In recent years, there has been growing recognition of the involvement of the gut microbiota in the modulation of multiple neurochemical pathways through the highly interconnected gut-brain axis. Although amazing scientific breakthroughs over the last few years have expanded our knowledge on the communication between microbes and their hosts, the underpinnings of microbiota-gut-brain crosstalk remain to be determined. Short-chain fatty acids (SCFAs), the main metabolites produced in the colon by bacterial fermentation of dietary fibers and resistant starch, are speculated to play a key role in neuro-immunoendocrine regulation. However, the underlying mechanisms through which SCFAs might influence brain physiology and behavior have not been fully elucidated. In this review, we outline the current knowledge about the involvement of SCFAs in microbiota-gut-brain interactions. We also highlight how the development of future treatments for central nervous system (CNS) disorders can take advantage of the intimate and mutual interactions of the gut microbiota with the brain by exploring the role of SCFAs in the regulation of neuro-immunoendocrine function.
Collapse
Affiliation(s)
- Ygor Parladore Silva
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rudimar Luiz Frozza
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Rudimar Luiz Frozza
| |
Collapse
|
30
|
Antibiotic effects on gut microbiota, metabolism, and beyond. Appl Microbiol Biotechnol 2019; 103:9277-9285. [PMID: 31701196 DOI: 10.1007/s00253-019-10165-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/21/2019] [Accepted: 09/28/2019] [Indexed: 02/08/2023]
Abstract
Current advances on gut microbiota have broadened our view on host-microbiota interactions. As a microbiota-targeted approach, the use of antibiotics has been widely adopted to explore the role of gut microbiota in vivo. Antibiotics can change the microbial composition, resulting in varied effects, depending on the antibiotic class, dosage, and duration. Antibiotic intervention in early life leads to life-long phenotype alterations, including obesity. Antibiotic-induced changes in gut microbiota affect the epithelial utilization of both macronutrients (e.g., amino acids) and micronutrients (e.g., copper, vitamin E) and the redox homeostasis. Of particular interest is the regulation of gut anaerobiosis and aerobiosis by oxygen availability, which is closely related to epithelial metabolism. Additionally, antibiotic interventions enable to identify novel roles of gut microbiota in gut-liver axis and gut-brain axis. Indigenous antimicrobial molecules are produced by certain microbes, and they have the potential to affect function through eliciting changes in the gut microbiota. This review discusses at length these findings to gain a better and novel insight into microbiota-host interactions and the mechanisms involved.
Collapse
|
31
|
Massacci FR, Tofani S, Forte C, Bertocchi M, Lovito C, Orsini S, Tentellini M, Marchi L, Lemonnier G, Luise D, Blanc F, Castinel A, Bevilacqua C, Rogel-Gaillard C, Pezzotti G, Estellé J, Trevisi P, Magistrali CF. Host genotype and amoxicillin administration affect the incidence of diarrhoea and faecal microbiota of weaned piglets during a natural multiresistant ETEC infection. J Anim Breed Genet 2019; 137:60-72. [PMID: 31482656 DOI: 10.1111/jbg.12432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the aetiological agent of postweaning diarrhoea (PWD) in piglets. The SNPs located on the Mucine 4 (MUC4) and Fucosyltransferase 1 (FUT1) genes have been associated with the susceptibility to ETEC F4 and ETEC F18, respectively. The interplay between the MUC4 and FUT1 genotypes to ETEC infection and the use of amoxicillin in modifying the intestinal microbiota during a natural infection by multiresistant ETEC strains have never been investigated. The aim of this study was to evaluate the effects of the MUC4 and FUT1 genotypes and the administration of amoxicillin through different routes on the presence of diarrhoea and the faecal microbiota composition in piglets naturally infected with ETEC. Seventy-one piglets were divided into three groups: two groups differing by amoxicillin administration routes-parenteral (P) or oral (O) and a control group without antibiotics (C). Faecal scores, body weight, presence of ETEC F4 and F18 were investigated 4 days after the arrival in the facility (T0), at the end of the amoxicillin administration (T1) and after the withdrawal period (T2). The faecal bacteria composition was assessed by sequencing the 16S rRNA gene. We described that MUC4 and FUT1 genotypes were associated with the presence of ETEC F4 and ETEC F18. The faecal microbiota was influenced by the MUC4 genotypes at T0. We found the oral administration to be associated with the presence of diarrhoea at T1 and T2. Furthermore, the exposure to amoxicillin resulted in significant alterations of the faecal microbiota. Overall, MUC4 and FUT1 were confirmed as genetic markers for the susceptibility to ETEC infections in pigs. Moreover, our data highlight that group amoxicillin treatment may produce adverse outcomes on pig health in course of multiresistant ETEC infection. Therefore, alternative control measures able to maintain a healthy faecal microbiota in weaners are recommended.
Collapse
Affiliation(s)
- Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy.,Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Silvia Tofani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Claudio Forte
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Micol Bertocchi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Carmela Lovito
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Serenella Orsini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Michele Tentellini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Lucia Marchi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Gaetan Lemonnier
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Fany Blanc
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Adrien Castinel
- GeT-PlaGe, Genotoul, INRA US1426, Castanet-Tolosan Cedex, France
| | - Claudia Bevilacqua
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Giovanni Pezzotti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Jordi Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|