1
|
Gupta H, Gupta A. Post-translational modifications of epigenetic modifier TIP60: their role in cellular functions and cancer. Epigenetics Chromatin 2025; 18:18. [PMID: 40186325 PMCID: PMC11969907 DOI: 10.1186/s13072-025-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/27/2025] [Indexed: 04/07/2025] Open
Abstract
TIP60 is a crucial lysine acetyltransferase protein that catalyzes the acetylation of histone and non-histone proteins. This enzyme plays a crucial role in maintaining genomic integrity, by participating in DNA damage repair, ensuring accurate chromosomal segregation, and regulating a myriad of cellular processes such as apoptosis, autophagy, and wound-induced cell migration. One of the primary mechanisms through which TIP60 executes these diverse cellular functions is via post-translational modifications (PTMs). Over the years, extensive studies have demonstrated the importance of PTMs in controlling protein functions. This review aims to summarize the findings on PTMs occurring on the TIP60 protein and their functional implications. We also discuss previously uncharacterized PTM sites identified on TIP60 and examine their relationship with cancer-associated mutations, with a particular focus on residues potentially modified by various PTMs, to understand the cause of deregulation of TIP60 in various cancers.
Collapse
Affiliation(s)
- Himanshu Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, deemed to be University, Delhi-NCR, 201314, Uttar Pradesh, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, deemed to be University, Delhi-NCR, 201314, Uttar Pradesh, India.
| |
Collapse
|
2
|
Yuan X, Rosen JM. Histone acetylation modulators in breast cancer. Breast Cancer Res 2025; 27:49. [PMID: 40165290 PMCID: PMC11959873 DOI: 10.1186/s13058-025-02006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide. Aberrant epigenetic reprogramming such as dysregulation of histone acetylation has been associated with the development of breast cancer. Histone acetylation modulators have been targeted as potential treatments for breast cancer. This review comprehensively discusses the roles of these modulators and the effects of their inhibitors on breast cancer. In addition, epigenetic reprogramming not only affects breast cancer cells but also the immunosuppressive myeloid cells, which can facilitate breast cancer progression. Therefore, the review also highlights the roles of these immunosuppressive myeloid cells and summarizes how histone acetylation modulators affect their functions and phenotypes. This review provides insights into histone acetylation modulators as potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
3
|
Pathikonda S, Amirmahani F, Mathew D, Muthukrishnan SD. Histone acetyltransferases as promising therapeutic targets in glioblastoma resistance. Cancer Lett 2024; 604:217269. [PMID: 39326554 DOI: 10.1016/j.canlet.2024.217269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Glioblastoma (GBM) is a fatal adult brain tumor with an extremely poor prognosis. GBM poses significant challenges for targeted therapies due to its intra- and inter-tumoral heterogeneity, a highly immunosuppressive microenvironment, diffuse infiltration into normal brain parenchyma, protection by the blood-brain barrier and acquisition of therapeutic resistance. Recent studies have implicated epigenetic modifiers as key players driving tumorigenesis, resistance, and progression of GBM. While the vast majority of GBM research on epigenetic modifiers thus far has focused predominantly on elucidating the functional roles and targeting of DNA methyltransferases and histone deacetylases, emerging evidence indicates that histone acetyltransferases (HATs) also play a key role in mediating plasticity and therapeutic resistance in GBM. Here, we will provide an overview of HATs, their dual roles and functions in cancer as both tumor suppressors and oncogenes and focus specifically on their implications in GBM resistance. We also discuss the technical challenges in developing selective HAT inhibitors and highlight their promise as potential anti-cancer therapeutics for treating intractable cancers such as GBM.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Farzaneh Amirmahani
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Diya Mathew
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Sree Deepthi Muthukrishnan
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| |
Collapse
|
4
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
5
|
Zohourian N, Brown JAL. Current trends in clinical trials and the development of small molecule epigenetic inhibitors as cancer therapeutics. Epigenomics 2024; 16:671-680. [PMID: 38639711 PMCID: PMC11233149 DOI: 10.2217/epi-2023-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Epigenetic mechanisms control and regulate normal chromatin structure and gene expression patterns, with epigenetic dysregulation observed in many different cancer types. Importantly, epigenetic modifications are reversible, offering the potential to silence oncogenes and reactivate tumor suppressors. Small molecule drugs manipulating these epigenetic mechanisms are at the leading edge of new therapeutic options for cancer treatment. The clinical use of histone deacetyltransferases inhibitors (HDACi) demonstrates the effectiveness of targeting epigenetic mechanisms for cancer treatment. Notably, the development of new classes of inhibitors, including lysine acetyltransferase inhibitors (KATi), are the future of epigenetic-based therapeutics. We outline the progress of current classes of small molecule epigenetic drugs for use against cancer (preclinical and clinical) and highlight the potential market growth in epigenetic-based therapeutics.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | - James AL Brown
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
6
|
Wang H, Breadner DA, Deng K, Niu J. CircRHOT1 restricts gastric cancer cell ferroptosis by epigenetically regulating GPX4. J Gastrointest Oncol 2023; 14:1715-1725. [PMID: 37720433 PMCID: PMC10502555 DOI: 10.21037/jgo-23-550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Background Gastric cancer (GC) is a malignant form of cancer that severely threatens human health. Despite developments on treatment, the prognosis of patients with advanced GC remains poor. Hence, the identification of detailed molecular mechanisms and potential therapeutic targets is of great importance for GC study. In recent years, circular RNAs have been widely reported to be important regulators in cancer initiation and progression. This study sought to evaluate the function of circRHOT1 in GC development. Methods Clinical specimens were collected from patients with GC to detect the level of circRHOT1. The expression of circRHOT1 in several GC cell lines was detected by quantitative real-time polymerase chain reaction. Cell Counting Kit 8 (CCK-8), colony formation, and xenograft tumor growth experiments were performed to check cell proliferation. Cell ferroptosis was determined by the levels of intracellular iron, Fe2+ (Divalent iron ion), lipid reactive oxygen species, malondialdehyde, and glutathione. The protein levels of SLC7A11 and glutathione peroxidase-4 (GPX4) were detected by western blot assays. The epigenetic regulation of the GPX4 gene was analyzed by chromatin immunoprecipitation assays. Results CircRHOT1 was more highly expressed in the GC tumors than the adjacent non-tumor tissues. The knockdown of circRHOT1 significantly suppressed cell growth (P<0.05) and stimulated the ferroptosis of the GC cells (P<0.05). CircRHOT1 recruited KAT5 (Acetyltransferase Tip60) to promote the acetylation of lysine 27 on histone H3 protein subunit (H3k27Ac) of the GPX4 gene and stimulated gene transcription. The overexpression of KAT5 and GPX4 notably reversed the anti-proliferation effect of circRHOT1 depletion (P<0.05). Conclusions CircRHOT1 promoted GC progression and suppressed ferroptosis by recruiting KAT5 to initiate GPX4 transcription. Our findings showed that cirRHOT1 is a promising target for GC treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Daniel Adam Breadner
- Department of Oncology, Schulich School of Medicine and Dentistry at Western University, London, ON, Canada
| | - Ke Deng
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jing Niu
- Health Management Center, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
7
|
Serman T, Chiang C, Liu G, Sayyad Z, Pandey S, Volcic M, Lee H, Muppala S, Acharya D, Goins C, Stauffer SR, Sparrer KMJ, Gack MU. Acetylation of the NS3 helicase by KAT5γ is essential for flavivirus replication. Cell Host Microbe 2023; 31:1317-1330.e10. [PMID: 37478852 PMCID: PMC10782998 DOI: 10.1016/j.chom.2023.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023]
Abstract
Direct targeting of essential viral enzymes such as proteases, polymerases, and helicases has long been the major focus of antiviral drug design. Although successful for some viral enzymes, targeting viral helicases is notoriously difficult to achieve, demanding alternative strategies. Here, we show that the NS3 helicase of Zika virus (ZIKV) undergoes acetylation in its RNA-binding tunnel. Regulation of the acetylated state of K389 in ZIKV NS3 modulates RNA binding and unwinding and is required for efficient viral replication. NS3 acetylation is mediated by a specific isoform of the host acetyltransferase KAT5 (KAT5γ), which translocates from the nucleus to viral replication complexes upon infection. NS3 acetylation by KAT5γ and its proviral role are also conserved in West Nile virus (WNV), dengue virus (DENV), and yellow fever virus (YFV). Our study provides molecular insight into how a cellular acetyltransferase regulates viral helicase functions, unveiling a previously unknown target for antiviral drug development.
Collapse
Affiliation(s)
- Taryn Serman
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA; Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Shanti Pandey
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Haejeong Lee
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Santoshi Muppala
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Christopher Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA; Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Liang F, Li X, Shen X, Yang R, Chen C. Expression profiles and functional prediction of histone acetyltransferases of the MYST family in kidney renal clear cell carcinoma. BMC Cancer 2023; 23:586. [PMID: 37365518 DOI: 10.1186/s12885-023-11076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Histone acetyltransferases (HATs) of the MYST family are associated with a variety of human cancers. However, the relationship between MYST HATs and their clinical significance in kidney renal clear cell carcinoma (KIRC) has not yet been evaluated. METHODS The bioinformatics method was used to investigate the expression patterns and prognostic value of MYST HATs. Western blot was used to detect the expression of MYST HATs in KIRC. RESULTS The expression levels of MYST HATs except KAT8 (KAT5, KAT6A, KAT6B, and KAT7) were significantly reduced in KIRC tissues compared to normal renal tissues, and the western blot results of the KIRC samples also confirmed the result. Reduced expression levels of MYST HATs except KAT8 were significantly associated with high tumor grade and advanced TNM stage in KIRC, and showed a significant association with an unfavorable prognosis in patients with KIRC. We also found that the expression levels of MYST HATs were closely related to each other. Subsequently, gene set enrichment analysis showed that the function of KAT5 was different from that of KAT6A, KAT6B and KAT7. The expression levels of KAT6A, KAT6B and KAT7 had significant positive correlations with cancer immune infiltrates such as B cells, CD4+ T cells and CD8+ T cells. CONCLUSIONS Our results indicated that MYST HATs, except KAT8, play a beneficial role in KIRC.
Collapse
Affiliation(s)
- Fan Liang
- School of Basic Medicine, Weifang Medical University, Weifang, 261000, Shandong, P.R. China
| | - Xiangke Li
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China
| | - Xiaoman Shen
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China
| | - Runlei Yang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
| | - Chuan Chen
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China.
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
| |
Collapse
|
9
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
10
|
Zhang Y, Zhang Q, Zhang Y, Han J. The Role of Histone Modification in DNA Replication-Coupled Nucleosome Assembly and Cancer. Int J Mol Sci 2023; 24:ijms24054939. [PMID: 36902370 PMCID: PMC10003558 DOI: 10.3390/ijms24054939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 03/08/2023] Open
Abstract
Histone modification regulates replication-coupled nucleosome assembly, DNA damage repair, and gene transcription. Changes or mutations in factors involved in nucleosome assembly are closely related to the development and pathogenesis of cancer and other human diseases and are essential for maintaining genomic stability and epigenetic information transmission. In this review, we discuss the role of different types of histone posttranslational modifications in DNA replication-coupled nucleosome assembly and disease. In recent years, histone modification has been found to affect the deposition of newly synthesized histones and the repair of DNA damage, further affecting the assembly process of DNA replication-coupled nucleosomes. We summarize the role of histone modification in the nucleosome assembly process. At the same time, we review the mechanism of histone modification in cancer development and briefly describe the application of histone modification small molecule inhibitors in cancer therapy.
Collapse
|
11
|
L Hardison K, M Hawk T, A Bouley R, C Petreaca R. KAT5 histone acetyltransferase mutations in cancer cells. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000676. [PMID: 36530474 PMCID: PMC9748724 DOI: 10.17912/micropub.biology.000676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 01/25/2023]
Abstract
Cancer cells are characterized by accumulation of mutations due to improperly repaired DNA damage. The DNA double strand break is one of the most severe form of damage and several redundant mechanisms have evolved to facilitate accurate repair. During DNA replication and in mitosis, breaks are primarily repaired by homologous recombination which is facilitated by several genes. Key to this process is the breast cancer susceptibility genes BRCA1 and BRCA2 as well as the accessory RAD52 gene. Proper chromatin remodeling is also essential for repair and the KAT5 histone acetyltransferase facilitates histone removal at the break. Here we undertook a pan cancer analysis to investigate mutations within the KAT5 gene in cancer cells. We employed two standard artificial algorithms to classify mutations as either driver (CHASMPlus algorithm) or pathogenic (VEST4 algorithm). We find that most predicted driver and disease-causing mutations occur in the catalytic site or within key regulatory domains. In silico analysis of protein structure using AlphaFold shows that these mutations are likely to destabilize the function of KAT5 or interactions with DNA or its other partners. The data presented here, although preliminary, could be used to inform clinical strategies.
Collapse
|
12
|
Lu J, He X, Zhang L, Zhang R, Li W. Acetylation in Tumor Immune Evasion Regulation. Front Pharmacol 2021; 12:771588. [PMID: 34880761 PMCID: PMC8645962 DOI: 10.3389/fphar.2021.771588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Acetylation is considered as one of the most common types of epigenetic modifications, and aberrant histone acetylation modifications are associated with the pathological process of cancer through the regulation of oncogenes and tumor suppressors. Recent studies have shown that immune system function and tumor immunity can also be affected by acetylation modifications. A comprehensive understanding of the role of acetylation function in cancer is essential, which may help to develop new therapies to improve the prognosis of cancer patients. In this review, we mainly discussed the functions of acetylase and deacetylase in tumor, immune system and tumor immunity, and listed the information of drugs targeting these enzymes in tumor immunotherapy.
Collapse
Affiliation(s)
- Jun Lu
- Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Zhang
- Hunan Normal University School of Medicine, Changsha, China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Idrissou M, Boisnier T, Sanchez A, Houfaf Khoufaf FZ, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Implementation of the TIP60/P400/H4K12ac Structure in Breast Cancer Cell Lines. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 25:202-205. [PMID: 33337282 DOI: 10.1089/omi.2020.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, UFR de medécine, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Tiphanie Boisnier
- Department of Oncogenetics, Centre Jean Perrin, UFR de medécine, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, UFR de medécine, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Fatma Zohra Houfaf Khoufaf
- Department of Oncogenetics, Centre Jean Perrin, UFR de medécine, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, UFR de medécine, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, UFR de medécine, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| |
Collapse
|
14
|
Li Z, Rasmussen LJ. TIP60 in aging and neurodegeneration. Ageing Res Rev 2020; 64:101195. [PMID: 33091598 DOI: 10.1016/j.arr.2020.101195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic modification of chromatin, including histone methylation and acetylation, plays critical roles in eukaryotic cells and has a significant impact on chromatin structure/accessibility, gene regulation and, susceptibility to aging, neurodegenerative disease, cancer, and other age-related diseases. This article reviews the current advances on TIP60/KAT5, a major histone acetyltransferase with diverse functions in eukaryotes, with emphasis on its regulation of autophagy, proteasome-dependent protein turnover, RNA transcription, DNA repair, circadian rhythms, learning and memory, and other neurological functions implicated in aging and neurodegeneration. Moreover, the promising therapeutic potential of TIP60 is discussed to target Alzheimer's disease and other neurological diseases.
Collapse
|
15
|
Wu D, Qiu Y, Jiao Y, Qiu Z, Liu D. Small Molecules Targeting HATs, HDACs, and BRDs in Cancer Therapy. Front Oncol 2020; 10:560487. [PMID: 33262941 PMCID: PMC7686570 DOI: 10.3389/fonc.2020.560487] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Evidence for research over the past decade shows that epigenetic regulation mechanisms run through the development and prognosis of tumors. Therefore, small molecular compounds targeting epigenetic regulation have become a research hotspot in the development of cancer therapeutic drugs. According to the obvious abnormality of histone acetylation when tumors occur, it suggests that histone acetylation modification plays an important role in the process of tumorigenesis. Currently, as a new potential anti-cancer therapeutic drugs, many active small molecules that target histone acetylation regulatory enzymes or proteins such as histone deacetylases (HDACs), histone acetyltransferase (HATs) and bromodomains (BRDs) have been developed to restore abnormal histone acetylation levels to normal. In this review, we will focus on summarizing the changes of histone acetylation levels during tumorigenesis, as well as the possible pharmacological mechanisms of small molecules that target histone acetylation in cancer treatment.
Collapse
Affiliation(s)
- Donglu Wu
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Ye Qiu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yunshuang Jiao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China.,School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
16
|
Idrissou M, Lebert A, Boisnier T, Sanchez A, Houfaf Khoufaf FZ, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Digging Deeper into Breast Cancer Epigenetics: Insights from Chemical Inhibition of Histone Acetyltransferase TIP60 In Vitro. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:581-591. [PMID: 32960142 DOI: 10.1089/omi.2020.0104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancer is often sporadic due to several factors. Among them, the deregulation of epigenetic proteins may be involved. TIP60 or KAT5 is an acetyltransferase that regulates gene transcription through the chromatin structure. This pleiotropic protein acts in several cellular pathways by acetylating proteins. RNA and protein expressions of TIP60 were shown to decrease in some breast cancer subtypes, particularly in triple-negative breast cancer (TNBC), where a low expression of TIP60 was exhibited compared with luminal subtypes. In this study, the inhibition of the residual activity of TIP60 in breast cancer cell lines was investigated by using two chemical inhibitors, TH1834 and NU9056, first on the acetylation of the specific target, lysine 4 of histone 3 (H3K4) by immunoblotting, and second, by chromatin immunoprecipitation (ChIP)-qPCR (-quantitative Polymerase Chain Reaction). Subsequently, significant decreases or a trend toward decrease of H3K4ac in the different chromatin compartments were observed. In addition, the expression of 48 human nuclear receptors was studied with TaqMan Low-Density Array in these breast cancer cell lines treated with TIP60 inhibitors. The statistical analysis allowed us to comprehensively characterize the androgen receptor and NR3C2 receptors in TNBC cell lines after TH1834 or NU9056 treatment. The understanding of the residual activity of TIP60 in the evolution of breast cancer might be a major asset in the fight against this disease, and could allow TIP60 to be used as a biomarker or therapeutic target for breast cancer progression in the future.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Andre Lebert
- University Blaise Pascal, Institut Pascal UMR 6602 CNRS/UBP, Aubière, France
| | - Tiphanie Boisnier
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Fatma Zohra Houfaf Khoufaf
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| |
Collapse
|
17
|
Tan KN, Avery VM, Carrasco-Pozo C. Metabolic Roles of Androgen Receptor and Tip60 in Androgen-Dependent Prostate Cancer. Int J Mol Sci 2020; 21:ijms21186622. [PMID: 32927797 PMCID: PMC7555377 DOI: 10.3390/ijms21186622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023] Open
Abstract
Androgen receptor (AR)-mediated signaling is essential for the growth and differentiation of the normal prostate and is the primary target for androgen deprivation therapy in prostate cancer. Tat interactive protein 60 kDa (Tip60) is a histone acetyltransferase that is critical for AR activation. It is well known that cancer cells rewire their metabolic pathways in order to sustain aberrant proliferation. Growing evidence demonstrates that the AR and Tip60 modulate key metabolic processes to promote the survival of prostate cancer cells, in addition to their classical roles. AR activation enhances glucose metabolism, including glycolysis, tricarboxylic acid cycle and oxidative phosphorylation, as well as lipid metabolism in prostate cancer. The AR also interacts with other metabolic regulators, including calcium/calmodulin-dependent kinase kinase 2 and mammalian target of rapamycin. Several studies have revealed the roles of Tip60 in determining cell fate indirectly by modulating metabolic regulators, such as c-Myc, hypoxia inducible factor 1α (HIF-1α) and p53 in various cancer types. Furthermore, Tip60 has been shown to regulate the activity of key enzymes in gluconeogenesis and glycolysis directly through acetylation. Overall, both the AR and Tip60 are master metabolic regulators that mediate cellular energy metabolism in prostate cancer, providing a framework for the development of novel therapeutic targets in androgen-dependent prostate cancer.
Collapse
Affiliation(s)
- Kah Ni Tan
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia; (K.N.T.); (V.M.A.)
- CRC for Cancer Therapeutics, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Vicky M. Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia; (K.N.T.); (V.M.A.)
- CRC for Cancer Therapeutics, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia; (K.N.T.); (V.M.A.)
- CRC for Cancer Therapeutics, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- Correspondence: ; Tel.: +617-3735-6034
| |
Collapse
|
18
|
Abstract
Lysine (or histone) acetyltransferases plays a key role in genome maintenance and gene regulation and dysregulation of acetylation is a recognized feature of many diseases, including several cancers. Here, the patent landscape surrounding lysine acetyltransferase inhibitors (KATi or HATi), with a focus on small-molecule compounds, is outlined and assessed. Overall, the 36 KATi-specific patents found were categorized into two distinct groups: specific small-molecule inhibitors (compounds and molecules) and patents applying KATi for targeted disease treatment. These patents recognize the emergent potential of KATi to significantly impact on the management of many diseases (including multiple cancer types, neurological disorders and immunological syndromes), improving the range of treatments (and drug classes) available for personalized medicine.
Collapse
|
19
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 673] [Impact Index Per Article: 112.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Kim CH, Lee DH. KAT5 Negatively regulates the proliferation of prostate cancer LNCaP cells via the caspase 3-dependent apoptosis pathway. Anim Cells Syst (Seoul) 2019; 23:253-259. [PMID: 31489246 PMCID: PMC6711033 DOI: 10.1080/19768354.2019.1644372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/18/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is one of the most common cancers in men over the age of sixty. Lysine acetyltransferase 5 (KAT5) is a histone acetyltransferase involved in transcriptional regulation, DNA repair, and cell signaling pathways. Previous studies have shown that KAT5 expression is reduced in the cytoplasm of the prostate cancer cell line LNCaP when exposed to androgen. Moreover, KAT5 has been reported to have a role in the molecular pathway leading to androgen-independent prostate cancer after long-term androgen deprivation therapy. Here, we showed that KAT5 expression was significantly reduced in prostate cancer tissues and cell lines by using the public databases Oncomine and Human Protein Atlas. Reduced KAT5 expression was significantly associated with high mortality in prostate cancer patients. Furthermore, KAT5 overexpression increased the level of apoptotic markers, such as cleaved-caspase 3, in LNCaP cells, thus enhancing the apoptotic death of LNCaP cells. Taken together, KAT5 induced apoptosis in prostate cancer cells via the caspase-3 pathway, indicating that KAT5 could be a gene therapy target for prostate cancer.
Collapse
Affiliation(s)
- Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Dong Ho Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Casey MC, Prakash A, Holian E, McGuire A, Kalinina O, Shalaby A, Curran C, Webber M, Callagy G, Bourke E, Kerin MJ, Brown JA. Quantifying Argonaute 2 (Ago2) expression to stratify breast cancer. BMC Cancer 2019; 19:712. [PMID: 31324173 PMCID: PMC6642579 DOI: 10.1186/s12885-019-5884-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Argonaute-2 (Ago2) is an essential component of microRNA biogenesis implicated in tumourigenesis. However Ago2 expression and localisation in breast cancer remains undetermined. The aim was to define Ago2 expression (mRNA and protein) and localisation in breast cancer, and investigate associations with clinicopathological details. METHODS Ago2 protein was stained in breast cancer cell lines and tissue microarrays (TMAs), with intensity and localization assessed. Staining intensity was correlated with clinicopathological details. Using independent databases, Ago2 mRNA expression and gene alterations in breast cancer were investigated. RESULTS In the breast cancer TMAs, 4 distinct staining intensities were observed (Negative, Weak, Moderate, Strong), with 64.2% of samples stained weak or negatively for Ago2 protein. An association was found between strong Ago2 staining and, the Her2 positive or basal subtypes, and between Ago2 intensity and receptor status (Estrogen or Progesterone). In tumours Ago2 mRNA expression correlated with reduced relapse free survival. Conversely, Ago2 mRNA was expressed significantly lower in SK-BR-3 (HER2 positive) and BT-20 (Basal/Triple negative) cell lines. Interestingly, high levels of Ago2 gene amplification (10-27%) were observed in breast cancer across multiple patient datasets. Importantly, knowledge of Ago2 expression improves predictions of breast cancer subtype by 20%, ER status by 15.7% and PR status by 17.5%. CONCLUSIONS Quantification of Ago2 improves the stratification of breast cancer and suggests a differential role for Ago2 in breast cancer subtypes, based on levels and cellular localisation. Further investigation of the mechanisms affecting Ago2 dysregulation will reveal insights into the molecular differences underpinning breast cancer subtypes.
Collapse
Affiliation(s)
- M C Casey
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - A Prakash
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - E Holian
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - A McGuire
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - O Kalinina
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - A Shalaby
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - C Curran
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - M Webber
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - G Callagy
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - E Bourke
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - M J Kerin
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland
| | - J A Brown
- Discipline of Surgery, School of Medicine, Lambe institute for Translational Research, National University of Ireland, Galway, Ireland.
| |
Collapse
|