1
|
Guan L, Zhong G, Fan S, Plisch EM, Presler R, Gu C, Babujee L, Pattinson D, Le Khanh Nguyen H, Hoang VMP, Le MQ, van Bakel H, Neumann G, Kawaoka Y. Highly Pathogenic H5 Influenza Viruses Isolated between 2016 and 2017 in Vietnamese Live Bird Markets. Viruses 2023; 15:1093. [PMID: 37243179 PMCID: PMC10223276 DOI: 10.3390/v15051093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Routine surveillance in live poultry markets in the northern regions of Vietnam from 2016 to 2017 resulted in the isolation of 27 highly pathogenic avian H5N1 and H5N6 viruses of 3 different clades (2.3.2.1c, 2.3.4.4f, and 2.3.4.4g). Sequence and phylogenetic analysis of these viruses revealed reassortment with various subtypes of low pathogenic avian influenza viruses. Deep-sequencing identified minor viral subpopulations encoding variants that may affect pathogenicity and sensitivity to antiviral drugs. Interestingly, mice infected with two different clade 2.3.2.1c viruses lost body weight rapidly and succumbed to virus infection, whereas mice infected with clade 2.3.4.4f or 2.3.4.4g viruses experienced non-lethal infections.
Collapse
Affiliation(s)
- Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Erin M. Plisch
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Robert Presler
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Chunyang Gu
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | | | | | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
- Division of Virology, Department of Microbiology and Immunology, and International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Infection and Advanced Research (UTOPIA) Center, The University of Tokyo, Pandemic Preparedness, Tokyo 108-8639, Japan
| |
Collapse
|
2
|
Genetic, Antigenic, and Pathobiological Characterization of H9 and H6 Low Pathogenicity Avian Influenza Viruses Isolated in Vietnam from 2014 to 2018. Microorganisms 2023; 11:microorganisms11020244. [PMID: 36838209 PMCID: PMC9962344 DOI: 10.3390/microorganisms11020244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The H9 and H6 subtypes of low pathogenicity avian influenza viruses (LPAIVs) cause substantial economic losses in poultry worldwide, including Vietnam. Herein, we characterized Vietnamese H9 and H6 LPAIVs to facilitate the control of avian influenza. The space-time representative viruses of each subtype were selected based on active surveillance from 2014 to 2018 in Vietnam. Phylogenetic analysis using hemagglutinin genes revealed that 54 H9 and 48 H6 Vietnamese LPAIVs were classified into the sublineages Y280/BJ94 and Group II, respectively. Gene constellation analysis indicated that 6 and 19 genotypes of the H9 and H6 subtypes, respectively, belonged to the representative viruses. The Vietnamese viruses are genetically related to the previous isolates and those in neighboring countries, indicating their circulation in poultry after being introduced into Vietnam. The antigenicity of these subtypes was different from that of viruses isolated from wild birds. Antigenicity was more conserved in the H9 viruses than in the H6 viruses. Furthermore, a representative H9 LPAIV exhibited systemic replication in chickens, which was enhanced by coinfection with avian pathogenic Escherichia coli O2. Although H9 and H6 were classified as LPAIVs, their characterization indicated that their silent spread might significantly affect the poultry industry.
Collapse
|
3
|
LE KT, ISODA N, NGUYEN LT, CHU DH, NGUYEN LV, PHAN MQ, NGUYEN DT, NGUYEN TN, TIEN TN, LE TT, HIONO T, MATSUNO K, OKAMATSU M, SAKODA Y. Risk profile of low pathogenicity avian influenza virus infections in farms in southern Vietnam. J Vet Med Sci 2022; 84:860-868. [PMID: 35570003 PMCID: PMC9246698 DOI: 10.1292/jvms.22-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The impact of low pathogenicity avian influenza (LPAI) has been confirmed mainly in
farms. Unlike apparent losses caused by the high pathogenicity avian influenza (HPAI), the
LPAI impact has been hardly evaluated due to underestimating its spread and damage. In
2019, a questionnaire study was conducted in southern Vietnam to identify the specific
risk factors of LPAI virus (LPAIV) circulation and to find associations between husbandry
activities and LPAI prevalence. A multilevel regression analysis indicated that keeping
Muscovy ducks during farming contributed to LPAIV positivity [Odds ratio=208.2 (95%
confidence interval: 13.4–1.1 × 104)]. In cluster analysis, farmers willing to
report avian influenza (AI) events and who agreed with the local AI control policy had a
slightly lower risk for LPAIV infection although there was no significance in the
correlation between farmer characteristics and LPAI occurrence. These findings indicated
that keeping Muscovy ducks without appropriate countermeasures might increase the risk of
LPAIV infection. Furthermore, specific control measures at the local level are effective
for LPAIV circulation, and the improvement of knowledge about biosecurity and attitude
contributes to reducing LPAI damage.
Collapse
Affiliation(s)
- Kien Trung LE
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University
| | - Norikazu ISODA
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University
| | - Lam Thanh NGUYEN
- Department of Veterinary Medicine, College of Agriculture, Can Tho University
| | - Duc-Huy CHU
- Department of Animal Health, Ministry of Agriculture and Rural Development
| | - Long Van NGUYEN
- Department of Animal Health, Ministry of Agriculture and Rural Development
| | - Minh Quang PHAN
- Department of Animal Health, Ministry of Agriculture and Rural Development
| | - Diep Thi NGUYEN
- Department of Animal Health, Ministry of Agriculture and Rural Development
| | - Tien Ngoc NGUYEN
- Department of Animal Health, Ministry of Agriculture and Rural Development
| | - Tien Ngoc TIEN
- Regional Animal Health Office VII, Department of Animal Health, Ministry of Agriculture and Rural Development
| | - Tung Thanh LE
- Sub-Departments of Animal Health, Ministry of Agriculture and Rural Development
| | - Takahiro HIONO
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University
| | - Keita MATSUNO
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University
| | - Masatoshi OKAMATSU
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University
| | - Yoshihiro SAKODA
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University
| |
Collapse
|
4
|
Reassortant Highly Pathogenic H5N6 Avian Influenza Virus Containing Low Pathogenic Viral Genes in a Local Live Poultry Market, Vietnam. Curr Microbiol 2021; 78:3835-3842. [PMID: 34546415 PMCID: PMC8486720 DOI: 10.1007/s00284-021-02661-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
Sites of live poultry trade and marketing are hot spots for avian influenza virus (AIV) transmission. We conducted active surveillance at a local live poultry market (LPM) in northern Vietnamese provinces in December 2016. Feces samples from the market were collected and tested for AIV. A new reassorted AIV strain was isolated from female chickens, named A/chicken/Vietnam/AI-1606/2016 (H5N6), and was found to belong to group C of clade 2.3.4.4 H5N6 highly pathogenic (HP) AIVs. The neuraminidase gene belongs to the reassortant B type. The viral genome also contained polymerase basic 2 and polymerase acidic, which were most closely related to domestic-duck-origin low pathogenic AIVs in Japan (H3N8) and Mongolia (H4N6). The other six genes were most closely related to poultry-origin H5N6 HP AIVs in Vietnam and had over 97% sequence identity with human AIV isolate A/Guangzhou/39715/2014 (H5N6). The new reassorted AIV isolate A/chicken/Vietnam/AI-1606/2016 (H5N6) identified in this study exemplifies AIVs reassortment and evolution through contact among wild birds, poultry farms, and LPMs. Therefore, active surveillance of AIVs is necessary to prevent potential threats to human and animal health.
Collapse
|
5
|
Yeo SJ, Hoang VT, Duong TB, Nguyen NM, Tuong HT, Azam M, Sung HW, Park H. Emergence of a Novel Reassortant H5N3 Avian Influenza Virus in Korean Mallard Ducks in 2018. Intervirology 2021; 65:1-16. [PMID: 34438407 DOI: 10.1159/000517057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.
Collapse
Affiliation(s)
- Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea,
| | - Vui Thi Hoang
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Tuan Bao Duong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Ngoc Minh Nguyen
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hien Thi Tuong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Mudsser Azam
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun Park
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
6
|
Subclinical Infection and Transmission of Clade 2.3.4.4 H5N6 Highly Pathogenic Avian Influenza Virus in Mandarin Duck ( Aix galericulata) and Domestic Pigeon ( Columbia livia domestica). Viruses 2021; 13:v13061069. [PMID: 34199847 PMCID: PMC8227613 DOI: 10.3390/v13061069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/29/2023] Open
Abstract
Since 2014, H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses (HPAIV) have caused outbreaks in wild birds and poultry in multiple continents, including Asia, Europe, Africa, and North America. Wild birds were suspected to be the sources of the local and global spreads of HPAIV. This study evaluated the infectivity, pathogenicity, and transmissibility of clade 2.3.4.4 H5N6 HPAIV in mandarin ducks (Aixgalericulata) and domestic pigeons (Columbia livia domestica). None of the birds used in this study, 20 mandarin ducks or 8 pigeons, showed clinical signs or mortality due to H5N6 HPAI infection. Two genotypes of H5N6 HPAIV showed replication and transmission by direct and indirect contact between mandarin ducks. H5N6 HPAIV replicated and transmitted by direct contact between pigeons, although the viral shedding titer and duration were relatively lower and shorter than those in mandarin ducks. Influenza virus antigen was detected in various internal organs of infected mandarin ducks and pigeons, indicating systemic infection. Therefore, our results indicate mandarin ducks and pigeons can be subclinically infected with clade 2.3.4.4 H5N6 HPAIV and transfer the virus to adjacent birds. The role of mandarin ducks and pigeons in the spread and prevalence of clade 2.3.4.4 H5N6 viruses should be carefully monitored.
Collapse
|
7
|
Abstract
The HA protein of influenza A viruses is the major viral antigen. In this study, we simultaneously introduced mutations at 17 amino acid positions of an H5 HA expected to affect antigenicity. Viruses with ≥13 amino acid changes in HA were viable, and some had altered antigenic properties. H5 HA can therefore accommodate many mutations in regions that affect antigenicity. The substantial plasticity of H5 HA may facilitate the emergence of novel antigenic variants. Since the emergence of highly pathogenic avian influenza viruses of the H5 subtype, the major viral antigen, hemagglutinin (HA), has undergone constant evolution, resulting in numerous genetic and antigenic (sub)clades. To explore the consequences of amino acid changes at sites that may affect the antigenicity of H5 viruses, we simultaneously mutated 17 amino acid positions of an H5 HA by using a synthetic gene library that, theoretically, encodes all combinations of the 20 amino acids at the 17 positions. All 251 mutant viruses sequenced possessed ≥13 amino acid substitutions in HA, demonstrating that the targeted sites can accommodate a substantial number of mutations. Selection with ferret sera raised against H5 viruses of different clades resulted in the isolation of 39 genotypes. Further analysis of seven variants demonstrated that they were antigenically different from the parental virus and replicated efficiently in mammalian cells. Our data demonstrate the substantial plasticity of the influenza virus H5 HA protein, which may lead to novel antigenic variants.
Collapse
|
8
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
9
|
Park YR, Lee YN, Lee DH, Si YJ, Baek YG, Bunnary S, Theary R, Tum S, Kye SJ, Lee MH, Park CK, Lee YJ. Phylogeographic analysis of H5N1 highly pathogenic avian influenza virus isolated in Cambodia from 2018 to 2019. INFECTION GENETICS AND EVOLUTION 2020; 86:104599. [PMID: 33096302 DOI: 10.1016/j.meegid.2020.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/09/2022]
Abstract
Since 2004, several outbreaks of highly pathogenic avian influenza (HPAI) have been reported in Cambodia. Until 2013, all H5N1 viruses identified in Cambodia belonged to clade 1 and its subclades. H5N1 HPAI viruses belonging to clade 2.3.2.1c have been dominant since the beginning of 2014, with various genotypes (KH1-KH5) reported. Here, we isolated nine H5N1 HPAI viruses from domestic poultry farms and slaughterhouses in Cambodia during 2018-2019 and performed phylogenetic analysis of whole genome sequences. All isolates were classified as H5 clade 2.3.2.1c viruses and all harbored multi-basic amino acid sequences (PQRERRRKR/GLF) at the haemagglutinin (HA) cleavage site. Phylogenetic analysis revealed that the H5N1 isolates in this study belonged to the KH2 genotype, the dominant genotype in Cambodia in 2015. Phylogenetic analysis of the HA gene showed that the isolates were divided into two groups (A and B). The results of Bayesian discrete phylogeography analysis revealed that the viral migration pathways from Vietnam to Cambodia (Bayes factor value: 734,039.01; posterior probability: 1.00) and from Cambodia to Vietnam (Bayes factor value: 26,199.95; posterior probability: 1.00) were supported by high statistical values. These well-supported viral migrations between Vietnam and Cambodia demonstrate that viral transmission continued in both directions. Several factors may have contributed to this, including the free-grazing duck system and movement of poultry-related products. Thus, the results emphasize the need for an enhanced international surveillance program to better understand transboundary infection and evolution of H5N1 HPAI viruses, along with implementation of more stringent international trade controls on poultry and poultry products.
Collapse
Affiliation(s)
- Yu-Ri Park
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea; College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Young-Jae Si
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yoon-Gi Baek
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Seng Bunnary
- Department of Animal Health and Production, National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Ren Theary
- Department of Animal Health and Production, National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Sothyra Tum
- Department of Animal Health and Production, National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Soo-Jeong Kye
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Myoung-Heon Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea.
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| |
Collapse
|
10
|
Soda K, Kashiwabara M, Miura K, Ung TTH, Nguyen HLK, Ito H, Le MQ, Ito T. Characterization of H3 subtype avian influenza viruses isolated from poultry in Vietnam. Virus Genes 2020; 56:712-723. [PMID: 32996077 DOI: 10.1007/s11262-020-01797-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Abstract
To date, avian influenza viruses (AIVs) have persisted in domestic poultry in wet markets in East Asian countries. We have performed ongoing virus surveillance in poultry populations in Vietnam since 2011, with the goal of controlling avian influenza. Throughout this study, 110 H3 AIVs were isolated from 2760 swab samples of poultry in markets and duck farms. H3 hemagglutinin (HA) genes of the isolates were phylogenetically classified into eight groups (I-VIII). Genetic diversity was also observed in the other seven gene segments. Groups I-IV also included AIVs from wild waterbirds. The epidemic strains in poultry switched from groups I-III and VI to groups I, IV, V, and VIII around 2013. H3 AIVs in groups I and V were maintained in poultry until at least 2016, which likely accompanied their dissemination from the northern to the southern regions of Vietnam. Groups VI-VIII AIVs were antigenically distinct from the other groups. Some H3 AIV isolates had similar N6 neuraminidase and matrix genes as H5 highly pathogenic avian influenza viruses (HPAIVs). These results reveal that genetically and antigenically different H3 AIVs have been co-circulating in poultry in Vietnam. Poultry is usually reared outside in this country and is at risk of infection with wild waterbird-originating AIVs. In poultry flocks, the intruded H3 AIVs must have experienced antigenic drift/shift and genetic reassortment, which could contribute to the emergence of H5 HPAIVs with novel gene constellations.
Collapse
Affiliation(s)
- Kosuke Soda
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan.,Faculty of Agriculture, Avian Zoonosis Research Center, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan
| | - Mina Kashiwabara
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan
| | - Kozue Miura
- Vietnam Research Station, Nagasaki University, c/o National Institute of Hygiene and Epidemiology, No. 1 Yersin Street, Hanoi, Vietnam
| | - Trang T H Ung
- Department of Virology, National Institute of Hygiene and Epidemiology, No. 1 Yersin Street, Hanoi, Vietnam
| | - Hang L K Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, No. 1 Yersin Street, Hanoi, Vietnam
| | - Hiroshi Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan.,Faculty of Agriculture, Avian Zoonosis Research Center, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan
| | - Mai Q Le
- Department of Virology, National Institute of Hygiene and Epidemiology, No. 1 Yersin Street, Hanoi, Vietnam
| | - Toshihiro Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan. .,Faculty of Agriculture, Avian Zoonosis Research Center, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8553, Japan.
| |
Collapse
|
11
|
Genetic and antigenic characterization of H5 and H7 avian influenza viruses isolated from migratory waterfowl in Mongolia from 2017 to 2019. Virus Genes 2020; 56:472-479. [PMID: 32430568 PMCID: PMC7235438 DOI: 10.1007/s11262-020-01764-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 05/05/2020] [Indexed: 11/12/2022]
Abstract
The circulation of highly pathogenic avian influenza viruses (HPAIVs) of various subtypes (e.g., H5N1, H5N6, H5N8, and H7N9) in poultry remains a global concern for animal and public health. Migratory waterfowls play important roles in the transmission of these viruses across countries. To monitor virus spread by wild birds, active surveillance for avian influenza in migratory waterfowl was conducted in Mongolia from 2015 to 2019. In total, 5000 fecal samples were collected from lakesides in central Mongolia, and 167 influenza A viruses were isolated. Two H5N3, four H7N3, and two H7N7 viruses were characterized in this study. The amino acid sequence at hemagglutinin (HA) cleavage site of those isolates suggested low pathogenicity in chickens. Phylogenetic analysis revealed that all H5 and H7 viruses were closely related to recent H5 and H7 low pathogenic avian influenza viruses (LPAIVs) isolated from wild birds in Asia and Europe. Antigenicity of H7Nx was similar to those of typical non-pathogenic avian influenza viruses (AIVs). While HPAIVs or A/Anhui/1/2013 (H7N9)-related LPAIVs were not detected in migratory waterfowl in Mongolia, sporadic introductions of AIVs including H5 and H7 viruses into Mongolia through the wild bird migration were identified. Thus, continued monitoring of H5 and H7 AIVs in both domestic and wild birds is needed for the early detection of HPAIVs spread into the country.
Collapse
|
12
|
Hoang HTT, Nguyen CH, Nguyen NTT, Pham AD, Nguyen HTT, Le TH, Tran HX, Chu HH, Nguyen NT. Immunization with the H5N1 Recombinant Vaccine Candidate Induces High Protection in Chickens against Vietnamese Highly Pathogenic Avian Influenza Virus Strains. Vaccines (Basel) 2020; 8:vaccines8020159. [PMID: 32252383 PMCID: PMC7348806 DOI: 10.3390/vaccines8020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
Vietnam is one of the countries most affected worldwide by the highly pathogenic avian influenza (HPAI) virus, which caused enormous economic loss and posed threats to public health. Over nearly two decades, with the antigenic changes in the diversified H5Ny viruses, the limited protective efficacy of the available vaccines was encountered. Therefore, it is necessary to approach a technology platform for the country to accelerate vaccine production that enables quick response to new influenza subtypes. This study utilized a powerful reverse genetics technique to successfully generate a recombinant H5N1 vaccine strain (designated as IBT-RG02) containing two surface proteins (haemagglutinin (HA) and neuraminidase (NA)) from the HPAI H5N1 (A/duck/Vietnam/HT2/2014(H5N1)) of the dominant clade 2.3.2.1c in Vietnam during 2012–2014. Importantly, the IBT-RG02 vaccine candidate has elicited high antibody titres in chickens (geometric mean titre (GMT) of 6.42 and 6.92, log2 on day 14 and day 28 p.i., respectively). To test the efficacy, immunized chickens were challenged with the circulating virulent strains. As results, there was a high protection rate of 91.6% chickens against the virulent A/DK/VN/Bacninh/NCVD-17A384/2017 of the same clade and a cross-protection of 83.3% against A/duck/TG/NAVET(3)/2013 virus of clade 1.1. Our promising results showed that we can independently master the reverse genetics technology for generation of highly immunogenic vaccine candidates, and henceforth, it is a timely manner to reformulate avian influenza virus vaccines against variable H5 clade HPAI viruses in Vietnam.
Collapse
Affiliation(s)
- Hang Thi Thu Hoang
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
- Graduate University of Science and Technology (GUST), VAST, Hanoi 100000, Vietnam
| | - Chi Hung Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
| | - Ngan Thi Thuy Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
| | - An Dang Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
| | | | - Thanh Hoa Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
| | - Hanh Xuan Tran
- National Veterinary Joint Stock Company (NAVETCO), 29 Nguyen Dinh Chieu, Dist 1, Ho Chi Minh City 700000, Vietnam;
| | - Ha Hoang Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
- Graduate University of Science and Technology (GUST), VAST, Hanoi 100000, Vietnam
| | - Nam Trung Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
- Graduate University of Science and Technology (GUST), VAST, Hanoi 100000, Vietnam
- Correspondence: ; Tel.: +84-24-37910065
| |
Collapse
|
13
|
Park YR, Lee YN, Lee DH, Baek YG, Si YJ, Meeduangchanh P, Theppangna W, Douangngeun B, Kye SJ, Lee MH, Park CK, Lee YJ. Genetic and pathogenic characteristics of clade 2.3.2.1c H5N1 highly pathogenic avian influenza viruses isolated from poultry outbreaks in Laos during 2015-2018. Transbound Emerg Dis 2019; 67:947-955. [PMID: 31769586 DOI: 10.1111/tbed.13430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Since 2004, there have been multiple outbreaks of H5 highly pathogenic avian influenza (HPAI) viruses in Laos. Here, we isolated H5N1 HPAI viruses from poultry outbreaks in Laos during 2015-2018 and investigated their genetic characteristics and pathogenicity in chickens. Phylogenetic analysis revealed that the isolates belonged to clade 2.3.2.1c and that they differed from previous Laos viruses with respect to genetic composition. In particular, the isolates were divided into two genotypes, each of which had a different NS segments. The results of possible migration analysis suggested a high likelihood that the Laos isolates were introduced from neighbouring countries, particularly Vietnam. The recent Laos isolate, A/Duck/Laos/NL-1504599/2018, had an intravenous pathogenicity index score of 3.0 and showed a 50% chicken lethal dose of 102.5 EID50 /0.1 ml, indicating high pathogenicity. The isolated viruses exhibited no critical substitution in the markers associated with mammalian adaptation, but possess markers related to neuraminidase inhibitor resistance. These results emphasize the need for ongoing surveillance of circulating influenza virus in South-East Asia, including Laos, to better prepare for and mitigate global spread of H5 HPAI.
Collapse
Affiliation(s)
- Yu-Ri Park
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea.,College of Veterinary Medicine, Animal Disease Intervention Center, Kyungpook National University, Daegu, Korea
| | - Yu-Na Lee
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Yoon-Gi Baek
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Young-Jae Si
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | | | | | | | - Soo-Jeong Kye
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Myoung-Heon Lee
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Animal Disease Intervention Center, Kyungpook National University, Daegu, Korea
| | - Youn-Jeong Lee
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| |
Collapse
|
14
|
Novel Mutations Evading Avian Immunity around the Receptor Binding Site of the Clade 2.3.2.1c Hemagglutinin Gene Reduce Viral Thermostability and Mammalian Pathogenicity. Viruses 2019; 11:v11100923. [PMID: 31600990 PMCID: PMC6832455 DOI: 10.3390/v11100923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
Since 2007, highly pathogenic clade 2.3.2 H5N1 avian influenza A (A(H5N1)) viruses have evolved to clade 2.3.2.1a, b, and c; currently only 2.3.2.1c A(H5N1) viruses circulate in wild birds and poultry. During antigenic evolution, clade 2.3.2.1a and c A(H5N1) viruses acquired both S144N and V223I mutations around the receptor binding site of hemagglutinin (HA), with S144N generating an N-glycosylation sequon. We introduced single or combined reverse mutations, N144S and/or I223V, into the HA gene of the clade 2.3.2.1c A(H5N1) virus and generated PR8-derived, 2 + 6 recombinant A(H5N1) viruses. When we compared replication efficiency in embryonated chicken eggs, mammalian cells, and mice, the recombinant virus containing both N144S and I223V mutations showed increased replication efficiency in avian and mammalian hosts and pathogenicity in mice. The N144S mutation significantly decreased avian receptor affinity and egg white inhibition, but not all mutations increased mammalian receptor affinity. Interestingly, the combined reverse mutations dramatically increased the thermostability of HA. Therefore, the adaptive mutations possibly acquired to evade avian immunity may decrease viral thermostability as well as mammalian pathogenicity.
Collapse
|