1
|
Eom H, Choi YJ, Nandre R, Kim M, Oh YL, Kim S, Nakazawa T, Honda Y, Ro HS. Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in Ganoderma lucidum. Bioengineered 2025; 16:2458376. [PMID: 39879084 PMCID: PMC11781247 DOI: 10.1080/21655979.2025.2458376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 01/31/2025] Open
Abstract
Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs. Co-transformation of donor DNAs with RNP targeting the pyrG gene in Ganoderma lucidum yielded 184 transformants without homologous arms and 781 with 300-bp homologous arms (HR_donor DNAs). Restriction analysis and sequencing identified 122 hR_donor DNA transformants with complete donor DNA sequences, achieving 15.6% HDR efficiency (122/781), contrasting with 8 instances via NHEJ from the 184 transformants. These findings highlight the viability of HDR for precise genomic editing in mushrooms, enabling targeted modifications to enhance functionalities.
Collapse
Affiliation(s)
- Hyerang Eom
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yeon-Jae Choi
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Rutuja Nandre
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Minseek Kim
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Youn-Lee Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Sinil Kim
- Biological Resources Utilization Division, National Institute of Biological Resources(NIBR), Incheon, Republic of Korea
| | - Takehito Nakazawa
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoichi Honda
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hyeon-Su Ro
- Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Beijen EPW, van Maanen MH, van den Bergh ES, Brouns R, Marian IM, de Vries TJ, Vonk PJ, Ohm RA. Transcription factors Fst8, Ftr3 and Gat1 are regulators of the immune system of the mushroom Schizophyllum commune. Fungal Genet Biol 2025; 179:103987. [PMID: 40311743 DOI: 10.1016/j.fgb.2025.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/03/2025]
Abstract
Mushroom-forming fungi encounter numerous competitors during their lifecycle and have developed strategies to defend themselves. However, the regulation of this fungal immune system is largely unknown. We studied the role of transcription factors Fst8, Ftr3 and Gat1 during the interaction between the mushroom-forming fungus Schizophyllum commune and the ascomycete mycoparasites Trichoderma harzianum and Trichoderma aggressivum. These proteins are conserved to varying degrees in basidiomycetes, with a high degree of conservation in Agaricales. We showed that the regulators Fst8 and Ftr3 play a role in regulating the immune system, similar to Gat1 which we previously identified. Deletion of the fst8 and ftr3 genes led to varying degrees of defensive impairment in S. commune. A Δgat1Δfst8 double knockout strain was most affected, indicating that these regulators are likely involved in different pathways. We identified putative (direct or indirect) targets of these transcription factors using a transcriptomics approach. These genes include small secreted proteins and transporters. Combining data from the single deletion strains, we identified a core group of 18 putative targets, including thaumatins, cell wall modifiers, and detoxifiers. Combined, we identified the regulatory network initiated by the regulators Fst8, Ftr3 and Gat1 during interaction with fungal competitors.
Collapse
Affiliation(s)
- Erik P W Beijen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marieke H van Maanen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Esther S van den Bergh
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rose Brouns
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ioana M Marian
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Thomas J de Vries
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter Jan Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Robin A Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
3
|
Baek S, Kim B, Pathiraja D, Choi IG. Development of a Transposon-Based Genome Engineering Toolkit for Efficient and Adaptable Genetic Modifications in Wolfiporia cocos. ACS Synth Biol 2025; 14:1152-1160. [PMID: 40173021 DOI: 10.1021/acssynbio.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Advances in genome engineering of fungal strains are rapidly progressing, driven by the increasing interest in fungal biotechnology. Given the unique genomic and cellular complexity of fungi, each strain benefits from a tailored toolkit for efficient genome engineering. Here, we present a transposon-based engineering toolkit specifically optimized for Wolfiporia cocos, a species valued for its bioactive compounds. This toolkit significantly improves transformation efficiency, enabling multiplexed gene integration and facilitating rapid, flexible prototyping by assembling multiple genes into transposomes in a cocktail format, which bypasses the need for an intricate genetic circuit assembly. Engineered strains demonstrated stable expression across generations, as confirmed by successful genomic integration. Additionally, we identified six native W. cocos promoters from transcriptomic data, with two showing robust, constitutive expression in the mycelium of engineered strains. This transposon-based toolkit offers a versatile resource for synthetic biology, supporting efficient and adaptable genetic modifications within fungal systems.
Collapse
Affiliation(s)
- Seungwoo Baek
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul 02847, Republic of Korea
| | - Bogun Kim
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul 02847, Republic of Korea
| | - Duleepa Pathiraja
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - In-Geol Choi
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul 02847, Republic of Korea
| |
Collapse
|
4
|
Pullen R, Decker SR, Subramanian V, Adler MJ, Tobias AV, Perisin M, Sund CJ, Servinsky MD, Kozlowski MT. Considerations for Domestication of Novel Strains of Filamentous Fungi. ACS Synth Biol 2025; 14:343-362. [PMID: 39883596 PMCID: PMC11852223 DOI: 10.1021/acssynbio.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.
Collapse
Affiliation(s)
- Randi
M. Pullen
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Stephen R. Decker
- National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | | | - Meaghan J. Adler
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Alexander V. Tobias
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew Perisin
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Christian J. Sund
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew D. Servinsky
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Mark T. Kozlowski
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| |
Collapse
|
5
|
Shin HJ, Ro HS, Kawauchi M, Honda Y. Review on mushroom mycelium-based products and their production process: from upstream to downstream. BIORESOUR BIOPROCESS 2025; 12:3. [PMID: 39794674 PMCID: PMC11723872 DOI: 10.1186/s40643-024-00836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The global trend toward carbon neutrality and sustainability calls for collaborative efforts in both the basic and applied research sectors to utilize mushroom mycelia as environmentally friendly and sustainable materials. Fungi, along with animals and plants, are one of the major eukaryotic life forms. They have long been utilized in traditional biotechnology sectors, such as food fermentation, antibiotic production, and industrial enzyme production. Some fungi have also been consumed as major food crops, such as the fruiting bodies of various mushrooms. Recently, new trends have emerged, shifting from traditional applications towards the innovative use of mushroom mycelium as eco-friendly bioresources. This approach has gained attention in the development of alternative meats, mycofabrication of biocomposites, and production of mycelial leather and fabrics. These applications aim to replace animal husbandry and recycle agricultural waste for use in construction and electrical materials. This paper reviews current research trends on industrial applications of mushroom mycelia, covering strain improvements and molecular breeding as well as mycelial products and the production processes. Key findings, practical considerations, and valorization are also discussed.
Collapse
Affiliation(s)
- Hyun-Jae Shin
- Department of Biochemical Engineering, Chosun University, Gwangju, Republic of Korea.
| | - Hyeon-Su Ro
- Department of Bio and Medical Big Data (BK4 Program) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Moriyuki Kawauchi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoichi Honda
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Kim M, Oh M, Im JH, Lee EJ, Ryu H, Ro HS, Oh YL. Effect of a Mating Type Gene Editing in Lentinula edodes Using RNP/Nanoparticle Complex. J Fungi (Basel) 2024; 10:866. [PMID: 39728362 DOI: 10.3390/jof10120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Gene editing using CRISPR/Cas9 is an innovative tool for developing new mushroom strains, offering a promising alternative to traditional breeding methods that are time-consuming and labor-intensive. However, plasmid-based gene editing presents several challenges, including the need for selecting appropriate promoters for Cas9 expression, optimizing codons for the Cas9 gene, the unintended insertion of fragmented plasmid DNA into genomic DNA (gDNA), and regulatory concerns related to genetically modified organisms (GMOs). To address these issues, we utilized a Ribonucleoprotein (RNP) complex consisting of Cas9 and gRNA for gene editing to modify the A mating-type gene of Lentinula edodes. To overcome the challenges posed by the large size of the Cas9 protein, which limits its penetration through the protoplast membrane, and the susceptibility of sgRNA to degradation, we developed a nanoparticle complex using calcium phosphate and polyacrylic acid. This approach significantly improved gene editing efficiency. Consequently, we successfully edited the mating-controlling genes hd1 and hd2 in L. edodes and examined the effects of their disruption on mating. Disruption of the hd1 gene, which is known to influence mycelial growth, did not significantly affect growth or mating. In contrast, editing the hd2 gene disrupted mating with compatible partners, highlighting its critical role in the mating process. The RNP-based transformation technology presented here offers significant advancement over traditional plasmid-based methods, enhancing the efficiency of targeted gene modification while avoiding the insertion of foreign genetic material, thereby mitigating GMO-related regulatory concerns.
Collapse
Affiliation(s)
- Minseek Kim
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Minji Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Ji-Hoon Im
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Eun-Ji Lee
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyeon-Su Ro
- Department of Bio and Medical Bigdata (BK21), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Youn-Lee Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| |
Collapse
|
7
|
Beijen EPW, van Maanen MH, Marian IM, Klusener JX, van Roosmalen E, Herman KC, Koster MC, Ohm RA. Transcriptomics reveals the regulation of the immune system of the mushroom-forming fungus Schizophyllum commune during interaction with four competitors. Microbiol Res 2024; 289:127929. [PMID: 39413670 DOI: 10.1016/j.micres.2024.127929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Mushroom-forming fungi frequently encounter competitors during their lifecycle, but their defense mechanisms remain largely unexplored. We studied the response of the mushroom-forming fungus Schizophyllum commune during interaction with the fungal competitors Trichoderma harzianum, Trichoderma aggressivum and Purpureocillium lilacinum and the bacterial competitor Serratia quinivorans. Transcriptomics revealed 632 up-regulated genes in the direct interaction zone, which were enriched in small secreted proteins and transporters. A set of 26 genes were up-regulated during all interactions, indicating a core transcriptomic defense response. In the non-interacting edge of the mycelium of S. commune, there were 154 up-regulated genes, suggesting that there is a systemic response due to a signal that reaches unaffected areas. The GATA zinc finger transcription factor gene gat1 was up-regulated during interaction and a Δgat1 strain displayed increased colonization by T. harzianum. Previously linked to mushroom development, this transcription factor apparently has a dual role. Moreover, 138 genes were up-regulated during both interaction and mushroom development, indicating priming of the defense response during development to prepare the fruiting body for future interactions. Overall, we unveiled a defensive response of S. commune during interaction with fungal and bacterial competitors and identified a regulator of this response.
Collapse
Affiliation(s)
- Erik P W Beijen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Marieke H van Maanen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Ioana M Marian
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Janieke X Klusener
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Emmeline van Roosmalen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Koen C Herman
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Margot C Koster
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Robin A Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
8
|
Leal K, Rojas E, Madariaga D, Contreras MJ, Nuñez-Montero K, Barrientos L, Goméz-Espinoza O, Iturrieta-González I. Unlocking Fungal Potential: The CRISPR-Cas System as a Strategy for Secondary Metabolite Discovery. J Fungi (Basel) 2024; 10:748. [PMID: 39590667 PMCID: PMC11595728 DOI: 10.3390/jof10110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 11/28/2024] Open
Abstract
Natural products (NPs) are crucial for the development of novel antibiotics, anticancer agents, and immunosuppressants. To highlight the ability of fungi to produce structurally diverse NPs, this article focuses on the impact of genome mining and CRISPR-Cas9 technology in uncovering and manipulating the biosynthetic gene clusters (BGCs) responsible for NP synthesis. The CRISPR-Cas9 system, originally identified as a bacterial adaptive immune mechanism, has been adapted for precise genome editing in fungi, enabling targeted modifications, such as gene deletions, insertions, and transcription modulation, without altering the genomic sequence. This review elaborates on various CRISPR-Cas9 systems used in fungi, notably the Streptococcus pyogenes type II Cas9 system, and explores advancements in different Cas proteins for fungal genome editing. This review discusses the methodologies employed in CRISPR-Cas9 genome editing of fungi, including guide RNA design, delivery methods, and verification of edited strains. The application of CRISPR-Cas9 has led to enhanced production of secondary metabolites in filamentous fungi, showcasing the potential of this system in biotechnology, medical mycology, and plant pathology. Moreover, this article emphasizes the integration of multi-omics data (genomics, transcriptomics, proteomics, and metabolomics) to validate CRISPR-Cas9 editing effects in fungi. This comprehensive approach aids in understanding molecular changes, identifying off-target effects, and optimizing the editing protocols. Statistical and machine learning techniques are also crucial for analyzing multi-omics data, enabling the development of predictive models and identification of key molecular pathways affected by CRISPR-Cas9 editing. In conclusion, CRISPR-Cas9 technology is a powerful tool for exploring fungal NPs with the potential to accelerate the discovery of novel bioactive compounds. The integration of CRISPR-Cas9 with multi-omics approaches significantly enhances our ability to understand and manipulate fungal genomes for the production of valuable secondary metabolites and for promising new applications in medicine and industry.
Collapse
Affiliation(s)
- Karla Leal
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.L.); (D.M.); (M.J.C.)
| | - Edwind Rojas
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectiology and Clinical Immunology, Center of Excellence in Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile;
| | - David Madariaga
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.L.); (D.M.); (M.J.C.)
| | - María José Contreras
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.L.); (D.M.); (M.J.C.)
| | - Kattia Nuñez-Montero
- Instituto de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.N.-M.); (L.B.)
| | - Leticia Barrientos
- Instituto de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.N.-M.); (L.B.)
| | - Olman Goméz-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile;
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Isabel Iturrieta-González
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectiology and Clinical Immunology, Center of Excellence in Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile;
- Jeffrey Modell Center of Diagnosis and Research in Primary Immunodeficiencies, Center of Excellence in Translational Medicine, Medicine Faculty, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
9
|
Chen J, Qu R, Chen Q, Zhang Z, Wu S, Bao M, Wang X, Liu L, Lyu S, Tian J, Lyu L, Yu C, Yuan S, Liu Z. Characterization of linoleate dioxygenases in basidiomycetes and the functional role of CcLdo1 in regulating fruiting body development in Coprinopsis cinerea. Fungal Genet Biol 2024; 173:103911. [PMID: 38960372 DOI: 10.1016/j.fgb.2024.103911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.
Collapse
Affiliation(s)
- Jing Chen
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Rong Qu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiurong Chen
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ziyu Zhang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Siting Wu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengyu Bao
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinyue Wang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Lei Liu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Siqi Lyu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jialu Tian
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Linna Lyu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Cigang Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Sheng Yuan
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
10
|
Jain D, Kalia A, Sharma S, Manchanda P. Genome editing tools based improved applications in macrofungi. Mol Biol Rep 2024; 51:873. [PMID: 39080117 DOI: 10.1007/s11033-024-09809-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 02/06/2025]
Abstract
Macrofungi commonly referred to as Mushrooms are distributed worldwide and well known for their nutritional, medicinal, and organoleptic properties. Strain improvement in mushrooms is lagging due to paucity of efficient genome modification techniques. Thus, for advanced developments in research and commercial or economical viability and benefit, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) emerged as an efficient genome editing tool. The higher efficiency and precision of the desired genetic modification(s) are the most valuable attributes of this recent technology. The present review comprehensively summarizes various conventional methods utilized for strain improvement in mushrooms including hybridization, protoplast fusion, and di-mon mating. Furthermore, the problems associated with these techniques have been discussed besides providing the potential recluses. The significance of CRISPR/Cas9 strategies employed for improvement in various mushroom genera has been deliberated, as these strategies will paves the way forward for obtaining improved strain and effective cultivation methods for enhancing the yield and quality of the fruit bodies.
Collapse
Affiliation(s)
- Deepali Jain
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| | - Shivani Sharma
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
11
|
Tarafder E, Nizamani MM, Karunarathna SC, Das D, Zeng X, Rind RA, Wang Y, Tian F. Advancements in genetic studies of mushrooms: a comprehensive review. World J Microbiol Biotechnol 2024; 40:275. [PMID: 39034336 DOI: 10.1007/s11274-024-04079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Genetic studies in mushrooms, driven by innovations such as CRISPR-Cas9 genome editing and RNA interference, transform our understanding of these enigmatic fungi and their multifaceted roles in agriculture, medicine, and conservation. This comprehensive review explores the rationale and significance of genetic research in mushrooms, delving into the ethical, regulatory, and ecological dimensions of this field. CRISPR-Cas9 emerges as a game-changing technology, enabling precise genome editing, targeted gene knockouts, and pathway manipulation. RNA interference complements these efforts by downregulating genes for improved crop yield and enhanced pest and disease resistance. Genetic studies also contribute to the conservation of rare species and developing more robust mushroom strains, fostering sustainable cultivation practices. Moreover, they unlock the potential for discovering novel medicinal compounds, offering new horizons in pharmaceuticals and nutraceuticals. As emerging technologies and ethical considerations shape the future of mushroom research, these studies promise to revolutionize our relationship with these fungi, paving the way for a more sustainable and innovative world.
Collapse
Affiliation(s)
- Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Diptosh Das
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Xiangyu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Raza Ali Rind
- Department of Plant Breeding and Genetics, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| | - Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
12
|
Li W, Zou G, Bao D, Wu Y. Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects. J Fungi (Basel) 2024; 10:311. [PMID: 38786666 PMCID: PMC11121823 DOI: 10.3390/jof10050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.
Collapse
Affiliation(s)
- Wenyun Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Shen Q, Ruan H, Zhang H, Wu T, Zhu K, Han W, Dong R, Ming T, Qi H, Zhang Y. Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality. Front Microbiol 2024; 15:1375120. [PMID: 38605715 PMCID: PMC11007153 DOI: 10.3389/fmicb.2024.1375120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Filamentous fungi play a crucial role in environmental pollution control, protein secretion, and the production of active secondary metabolites. The evolution of gene editing technology has significantly improved the study of filamentous fungi, which in the past was laborious and time-consuming. But recently, CRISPR-Cas systems, which utilize small guide RNA (sgRNA) to mediate clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas), have demonstrated considerable promise in research and application for filamentous fungi. The principle, function, and classification of CRISPR-Cas, along with its application strategies and research progress in filamentous fungi, will all be covered in the review. Additionally, we will go over general matters to take into account when editing a genome with the CRISPR-Cas system, including the creation of vectors, different transformation methodologies, multiple editing approaches, CRISPR-mediated transcriptional activation (CRISPRa) or interference (CRISPRi), base editors (BEs), and Prime editors (PEs).
Collapse
Affiliation(s)
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Maini Rekdal V, van der Luijt CRB, Chen Y, Kakumanu R, Baidoo EEK, Petzold CJ, Cruz-Morales P, Keasling JD. Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit. Nat Commun 2024; 15:2099. [PMID: 38485948 PMCID: PMC10940619 DOI: 10.1038/s41467-024-46314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Filamentous fungi are critical in the transition to a more sustainable food system. While genetic modification of these organisms has promise for enhancing the nutritional value, sensory appeal, and scalability of fungal foods, genetic tools and demonstrated use cases for bioengineered food production by edible strains are lacking. Here, we develop a modular synthetic biology toolkit for Aspergillus oryzae, an edible fungus used in fermented foods, protein production, and meat alternatives. Our toolkit includes a CRISPR-Cas9 method for gene integration, neutral loci, and tunable promoters. We use these tools to elevate intracellular levels of the nutraceutical ergothioneine and the flavor-and color molecule heme in the edible biomass. The strain overproducing heme is red in color and is readily formulated into imitation meat patties with minimal processing. These findings highlight the promise of synthetic biology to enhance fungal foods and provide useful genetic tools for applications in food production and beyond.
Collapse
Affiliation(s)
- Vayu Maini Rekdal
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Casper R B van der Luijt
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA.
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
15
|
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl Microbiol Biotechnol 2024; 108:217. [PMID: 38372792 PMCID: PMC10876731 DOI: 10.1007/s00253-024-13034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuitsu Otsuka
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junxian Han
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Kim Schiphof
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
16
|
Tan Y, Yu X, Zhang Z, Tian J, Feng N, Tang C, Zou G, Zhang J. An Efficient CRISPR/Cas9 Genome Editing System for a Ganoderma lucidum Cultivated Strain by Ribonucleoprotein Method. J Fungi (Basel) 2023; 9:1170. [PMID: 38132771 PMCID: PMC10745038 DOI: 10.3390/jof9121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
The CRISPR/Cas9 system has become a popular approach to genome editing. Compared with the plasmid-dependent CRISPR system, the ribonucleoprotein (RNP) complex formed by the in vitro assembly of Cas9 and single-guide RNA (sgRNA) has many advantages. However, only a few examples have been reported and the editing efficiency has been relatively low. In this study, we developed and optimized an RNP-mediated CRISPR/Cas9 genome editing system for the monokaryotic strain L1 from the Ganoderma lucidum cultivar 'Hunong No. 1'. On selective media containing 5-fluoroorotic acid (5-FOA), the targeting efficiency of the genomic editing reached 100%. The editing efficiency of the orotidine 5'-monophosphate decarboxylase gene (ura3) was greater than 35 mutants/107 protoplasts, surpassing the previously reported G. lucidum CRISPR systems. Through insertion or substitution, 35 mutants introduced new sequences of 10-569 bp near the cleavage site of ura3 in the L1 genome, and the introduced sequences of 22 mutants (62.9%) were derived from the L1 genome itself. Among the 90 mutants, 85 mutants (94.4%) repaired DNA double-strand breaks (DSBs) through non-homologous end joining (NHEJ), and five mutants (5.6%) through microhomology-mediated end joining (MMEJ). This study revealed the repair characteristics of DSBs induced by RNA-programmed nuclease Cas9. Moreover, the G. lucidum genes cyp512a3 and cyp5359n1 have been edited using this system. This study is of significant importance for the targeted breeding and synthetic metabolic regulation of G. lucidum.
Collapse
Affiliation(s)
- Yi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.T.); (N.F.)
| | - Xianglin Yu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (J.T.)
| | - Zhigang Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Jialin Tian
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (J.T.)
| | - Na Feng
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.T.); (N.F.)
| | - Chuanhong Tang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.T.); (N.F.)
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.T.); (N.F.)
| | - Jingsong Zhang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Y.T.); (N.F.)
| |
Collapse
|
17
|
Pepe M, Hesami M, de la Cerda KA, Perreault ML, Hsiang T, Jones AMP. A journey with psychedelic mushrooms: From historical relevance to biology, cultivation, medicinal uses, biotechnology, and beyond. Biotechnol Adv 2023; 69:108247. [PMID: 37659744 DOI: 10.1016/j.biotechadv.2023.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Psychedelic mushrooms containing psilocybin and related tryptamines have long been used for ethnomycological purposes, but emerging evidence points to the potential therapeutic value of these mushrooms to address modern neurological, psychiatric health, and related disorders. As a result, psilocybin containing mushrooms represent a re-emerging frontier for mycological, biochemical, neuroscience, and pharmacology research. This work presents crucial information related to traditional use of psychedelic mushrooms, as well as research trends and knowledge gaps related to their diversity and distribution, technologies for quantification of tryptamines and other tryptophan-derived metabolites, as well as biosynthetic mechanisms for their production within mushrooms. In addition, we explore the current state of knowledge for how psilocybin and related tryptamines are metabolized in humans and their pharmacological effects, including beneficial and hazardous human health implications. Finally, we describe opportunities and challenges for investigating the production of psychedelic mushrooms and metabolic engineering approaches to alter secondary metabolite profiles using biotechnology integrated with machine learning. Ultimately, this critical review of all aspects related to psychedelic mushrooms represents a roadmap for future research efforts that will pave the way to new applications and refined protocols.
Collapse
Affiliation(s)
- Marco Pepe
- Department of Plant Agriculture, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Karla A de la Cerda
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Melissa L Perreault
- Departments of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | | |
Collapse
|
18
|
Fukaya M, Nagamine S, Ozaki T, Liu Y, Ozeki M, Matsuyama T, Miyamoto K, Kawagishi H, Uchiyama M, Oikawa H, Minami A. Total Biosynthesis of Melleolides from Basidiomycota Fungi: Mechanistic Analysis of the Multifunctional GMC Oxidase Mld7. Angew Chem Int Ed Engl 2023; 62:e202308881. [PMID: 37534412 DOI: 10.1002/anie.202308881] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Mushroom terpenoids are biologically and chemically diverse fungal metabolites. Among them, melleolides are representative sesquiterpenoids with a characteristic protoilludane skeleton. In this study, we applied a recently established hot spot knock-in method to elucidate the biosynthetic pathway leading to 1α-hydroxymelleolide. The biosynthesis of the sesquiterpene core involves the cytochrome P450 catalyzing stepwise hydroxylation of the Δ6 -protoilludene framework and a stereochemical inversion process at the C5 position catalyzed by short-chain dehydrogenase/reductase family proteins. The highlight of the biosynthesis is that the flavoprotein Mld7 catalyzes an oxidation-triggered double-bond shift accompanying dehydration and acyl-group-assisted substitution with two different nucleophiles at the C6 position to afford the Δ7 -protoilludene derivatives, such as melleolide and armillarivin. The complex reaction mechanism was proposed by DFT calculations. Of particular importance is that product distribution is regulated by interaction with the cell membrane.
Collapse
Affiliation(s)
- Mitsunori Fukaya
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Shota Nagamine
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yaping Liu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Miina Ozeki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Taro Matsuyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8526, Japan
- Research Institute for Mushroom Science, Shizuoka, 422-8529, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
19
|
Liu Q, Meng G, Wang M, Li X, Liu M, Wang F, Yang Y, Dong C. Safe-Harbor-Targeted CRISPR/Cas9 System and Cmhyd1 Overexpression Enhances Disease Resistance in Cordyceps militaris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15249-15260. [PMID: 37807760 DOI: 10.1021/acs.jafc.3c05131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Fungal disease of mushroomCordyceps militaris (CM) caused byCalcarisporium cordycipiticola (CC) is destructive to fruiting body cultivation, resulting in significant economic loss and potential food safety risks. CRISPR/Cas9 genome editing has proven to be a powerful tool for crop improvement but seldom succeeded in mushrooms. Here, the first genomic safe-harbor site, CmSH1 locus, was identified in the CM genome. A safe-harbor-targeted CRISPR/Cas9 system based on an autonomously replicating plasmid was designed to facilitate alien gene integration at the CmSH1 locus. Cmhyd1, one of the hydrophobin genes, was confirmed as a defensive factor against CC infection, and Cmhyd1 overexpression by this system showed enhancement of disease resistance with negligible effect on the agronomic traits of CM. No off-target events and residues of plasmid sequence were tested by PCR and genome resequencing. This study provided the first safe harbor site for genetic manipulations, a safe harbor-targeted CRISPR/Cas9 system, and the first disease-resistant gene-editing breeding system in mushrooms.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei Province, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
20
|
Eom H, Choi YJ, Nandre R, Han HG, Kim S, Kim M, Oh YL, Nakazawa T, Honda Y, Ro HS. The Cas9-gRNA ribonucleoprotein complex-mediated editing of pyrG in Ganoderma lucidum and unexpected insertion of contaminated DNA fragments. Sci Rep 2023; 13:11133. [PMID: 37429890 DOI: 10.1038/s41598-023-38331-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Gene editing is a promising alternative to traditional breeding for the generation of new mushroom strains. However, the current approach frequently uses Cas9-plasmid DNA to facilitate mushroom gene editing, which can leave residual foreign DNA in the chromosomal DNA raising concerns regarding genetically modified organisms. In this study, we successfully edited pyrG of Ganoderma lucidum using a preassembled Cas9-gRNA ribonucleoprotein complex, which primarily induced a double-strand break (DSB) at the fourth position prior to the protospacer adjacent motif. Of the 66 edited transformants, 42 had deletions ranging from a single base to large deletions of up to 796 bp, with 30 being a single base deletion. Interestingly, the remaining 24 contained inserted sequences with variable sizes at the DSB site that originated from the fragmented host mitochondrial DNA, E. coli chromosomal DNA, and the Cas9 expression vector DNA. The latter two were thought to be contaminated DNAs that were not removed during the purification process of the Cas9 protein. Despite this unexpected finding, the study demonstrated that editing G. lucidum genes using the Cas9-gRNA complex is achievable with comparable efficiency to the plasmid-mediated editing system.
Collapse
Affiliation(s)
- Hyerang Eom
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yeon-Jae Choi
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Rutuja Nandre
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hui-Gang Han
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sinil Kim
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Minseek Kim
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 27709, Republic of Korea
| | - Youn-Lee Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 27709, Republic of Korea
| | - Takehito Nakazawa
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hyeon-Su Ro
- Department of Bio&Medical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
21
|
Effects of glutamate oxaloacetate transaminase on reactive oxygen species in Ganoderma lucidum. Appl Microbiol Biotechnol 2023; 107:1845-1861. [PMID: 36754884 DOI: 10.1007/s00253-023-12417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
Nitrogen metabolism can regulate mycelial growth and secondary metabolism in Ganoderma lucidum. As an important enzyme in intracellular amino acid metabolism, glutamate oxaloacetate transaminase (GOT) has many physiological functions in animals and plants, but its function in fungi has been less studied. In the present study, two GOT isoenzymes were found in G. lucidum; one is located in the mitochondria (GOT1), and the other is located in the cytoplasm (GOT2). The reactive oxygen species (ROS) level was increased in got1 silenced strains and was approximately 1.5-fold higher than that in the wild-type (WT) strain, while silencing got2 did not affect the ROS level. To explore how GOT affects ROS in G. lucidum, experiments related to the generation and elimination of intracellular ROS were conducted. First, compared with that in the WT strain, the glutamate content, one of the substrates of GOT, decreased when got1 or got2 was knocked down, and the glutathione (l-γ-glutamyl-l-cysteinylglycine) (GSH) content decreased by approximately 38.6%, 19.3%, and 40.1% in got1 silenced strains, got2 silenced strains, and got1/2 co-silenced strains respectively. Second, GOT also affects glucose metabolism. The pyruvate (PA), acetyl-CoA and α-ketoglutarate (α-KG) contents decreased in got1 and got2 silenced strains, and the transcription levels of most genes involved in the glycolytic pathway and the tricarboxylic acid cycle increased. The NADH content was increased in got1 silenced strains and got2 silenced strains, and the NAD+/NADH ratio was decreased, which might result in mitochondrial ROS production. Compared with the WT strain, the mitochondrial ROS level was approximately 1.5-fold higher in the got1 silenced strains. In addition, silencing of got1 or got2 resulted in a decrease in antioxidant enzymes, including superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase. Finally, ganoderic acid (GA) was increased by approximately 40% in got1 silenced strains compared with the WT strain, while silencing of got2 resulted in a 10% increase in GA biosynthesis. These findings provide new insights into the effect of GOT on ROS and secondary metabolism in fungi. KEY POINTS: • GOT plays important roles in ROS level in Ganoderma lucidum. • Silencing of got1 resulted in decrease in GSH content and antioxidant enzymes activities, but an increase in mitochondrial ROS level in G. lucidum. • Silencing of got1 and got2 resulted in an increase in ganoderic acid biosynthesis in G. lucidum.
Collapse
|
22
|
Jiang W, Wang J, Pan H, Yang R, Ma F, Luo J, Han C. Advances in Mechanism and Application of Molecular Breeding of Medicinal Mushrooms: A Review. Int J Med Mushrooms 2023; 25:65-74. [PMID: 37831513 DOI: 10.1615/intjmedmushrooms.2023050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the development of molecular biology and genomics technology, mushroom breeding methods have changed from single traditional breeding to molecular breeding. Compared with traditional breeding methods, molecular breeding has the advantages of short time and high efficiency. It breaks through the restrictive factors of conventional breeding and improves the accuracy of breeding. Molecular breeding technology is gradually applied to mushroom breeding. This paper summarizes the concept of molecular breeding and the application progress of various molecular breeding technologies in mushroom breeding, in order to provide reference for future research on mushroom breeding.
Collapse
Affiliation(s)
- Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Hongyu Pan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, P.R. China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
23
|
Vogt E, Sonderegger L, Chen YY, Segessemann T, Künzler M. Structural and Functional Analysis of Peptides Derived from KEX2-Processed Repeat Proteins in Agaricomycetes Using Reverse Genetics and Peptidomics. Microbiol Spectr 2022; 10:e0202122. [PMID: 36314921 PMCID: PMC9769878 DOI: 10.1128/spectrum.02021-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Bioactivities of fungal peptides are of interest for basic research and therapeutic drug development. Some of these peptides are derived from "KEX2-processed repeat proteins" (KEPs), a recently defined class of precursor proteins that contain multiple peptide cores flanked by KEX2 protease cleavage sites. Genome mining has revealed that KEPs are widespread in the fungal kingdom. Their functions are largely unknown. Here, we present the first in-depth structural and functional analysis of KEPs in a basidiomycete. We bioinformatically identified KEP-encoding genes in the genome of the model agaricomycete Coprinopsis cinerea and established a detection protocol for the derived peptides by overexpressing the C. cinerea KEPs in the yeast Pichia pastoris. Using this protocol, which includes peptide extraction and mass spectrometry with data analysis using the search engine Mascot, we confirmed the presence of several KEP-derived peptides in C. cinerea, as well as in the edible mushrooms Lentinula edodes, Pleurotus ostreatus, and Pleurotus eryngii. While CRISPR-mediated knockout of C. cinerea kep genes did not result in any detectable phenotype, knockout of kex genes caused defects in mycelial growth and fruiting body formation. These results suggest that KEP-derived peptides may play a role in the interaction of C. cinerea with the biotic environment and that the KEP-processing KEX proteases target a variety of substrates in agaricomycetes, including some important for mycelial growth and differentiation. IMPORTANCE Two recent bioinformatics studies have demonstrated that KEX2-processed repeat proteins are widespread in the fungal kingdom. However, despite the prevalence of KEPs in fungal genomes, only few KEP-derived peptides have been detected and studied so far. Here, we present a protocol for the extraction and structural characterization of KEP-derived peptides from fungal culture supernatants and tissues. The protocol was successfully used to detect several linear and minimally modified KEP-derived peptides in the agaricomycetes C. cinerea, L. edodes, P. ostreatus, and P. eryngii. Our study establishes a new protocol for the targeted search of KEP-derived peptides in fungi, which will hopefully lead to the discovery of more of these interesting fungal peptides and allow a further characterization of KEPs.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Lukas Sonderegger
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Ying-Yu Chen
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Tina Segessemann
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| |
Collapse
|
24
|
Pareek M, Hegedüs B, Hou Z, Csernetics Á, Wu H, Virágh M, Sahu N, Liu XB, Nagy L. Preassembled Cas9 Ribonucleoprotein-Mediated Gene Deletion Identifies the Carbon Catabolite Repressor and Its Target Genes in Coprinopsis cinerea. Appl Environ Microbiol 2022; 88:e0094022. [PMID: 36374019 PMCID: PMC9746306 DOI: 10.1128/aem.00940-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cre1 is an important transcription factor that regulates carbon catabolite repression (CCR) and is widely conserved across fungi. The cre1 gene has been extensively studied in several Ascomycota species, whereas its role in gene expression regulation in the Basidiomycota species remains poorly understood. Here, we identified and investigated the role of cre1 in Coprinopsis cinerea, a basidiomycete model mushroom that can efficiently degrade lignocellulosic plant wastes. We used a rapid and efficient gene deletion approach based on PCR-amplified split-marker DNA cassettes together with in vitro assembled Cas9-guide RNA ribonucleoproteins (Cas9 RNPs) to generate C. cinerea cre1 gene deletion strains. Gene expression profiling of two independent C. cinerea cre1 mutants showed significant deregulation of carbohydrate metabolism, plant cell wall degrading enzymes (PCWDEs), plasma membrane transporter-related and several transcription factor-encoding genes, among others. Our results support the notion that, like reports in the ascomycetes, Cre1 of C. cinerea orchestrates CCR through a combined regulation of diverse genes, including PCWDEs, transcription factors that positively regulate PCWDEs, and membrane transporters which could import simple sugars that can induce the expression of PWCDEs. Somewhat paradoxically, though in accordance with other Agaricomycetes, genes related to lignin degradation were mostly downregulated in cre1 mutants, indicating they fall under different regulation than other PCWDEs. The gene deletion approach and the data presented here will expand our knowledge of CCR in the Basidiomycota and provide functional hypotheses on genes related to plant biomass degradation. IMPORTANCE Mushroom-forming fungi include some of the most efficient lignocellulosic plant biomass degraders. They degrade dead plant materials by a battery of lignin-, cellulose-, hemicellulose-, and pectin-degrading enzymes, the encoding genes of which are under tight transcriptional control. One of the highest-level regulations of these metabolic enzymes is known as carbon catabolite repression, which is orchestrated by the transcription factor Cre1, and ensures that costly lignocellulose-degrading enzyme genes are expressed only when simple carbon sources (e.g., glucose) are not available. Here, we identified the Cre1 ortholog in a litter decomposer Agaricomycete, Coprinopsis cinerea, knocked it out, and characterized transcriptional changes in the mutants. We identified several dozen lignocellulolytic enzyme genes as well as membrane transporters and other transcription factors as putative target genes of C. cinerea cre1. These results extend knowledge on carbon catabolite repression to litter decomposer Basidiomycota.
Collapse
Affiliation(s)
- Manish Pareek
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Botond Hegedüs
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zhihao Hou
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Árpád Csernetics
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Hongli Wu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Máté Virágh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Neha Sahu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Xiao-Bin Liu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - László Nagy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
25
|
Wu T, Chen J, Jiao C, Hu H, Wu Q, Xie Y. Identification of Long Non-Coding RNAs and Their Target Genes from Mycelium and Primordium in Model Mushroom Schizophyllum commune. MYCOBIOLOGY 2022; 50:357-365. [PMID: 36404904 PMCID: PMC9645281 DOI: 10.1080/12298093.2022.2116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Schizophyllum commune has emerged as the most promising model mushroom to study developmental stages (mycelium, primordium), which are two primary processes of fruit body development. Long non-coding RNA (lncRNA) has been proved to participate in fruit development and sex differentiation in fungi. However, potential lncRNAs have not been identified in S. commune from mycelium to primordium developmental stages. In this study, lncRNA-seq was performed in S. commune and 61.56 Gb clean data were generated from mycelium and primordium developmental stages. Furthermore, 191 lncRNAs had been obtained and a total of 49 lncRNAs were classified as differently expressed lncRNAs. Additionally, 26 up-regulated differently expressed lncRNAs and 23 down-regulated between mycelium and primordia libraries were detected. Further, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed lncRNAs target genes from the MAPK pathway, phosphatidylinositol signal, ubiquitin-mediated proteolysis, autophagy, and cell cycle. This study provides a new resource for further research on the relationship between lncRNA and two developmental stages (mycelium, primordium) in S. commune.
Collapse
Affiliation(s)
- Tuheng Wu
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jian Chen
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
26
|
Dong Y, Miao R, Feng R, Wang T, Yan J, Zhao X, Han X, Gan Y, Lin J, Li Y, Gan B, Zhao J. Edible and medicinal fungi breeding techniques, a review: Current status and future prospects. Curr Res Food Sci 2022; 5:2070-2080. [PMID: 36387595 PMCID: PMC9640942 DOI: 10.1016/j.crfs.2022.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Mushrooms of the edible and medicinal which are highly nutritious and environmentally friendly crops carry numerous medicinal benefits. For the abundant and high diversity of bioactive metabolites they possess, which are considered to be an important pool of bioresources. The efficient breeding technique is always a challenging task in mushrooms for obtaining better character strains, which are essential for developing healthy products and even consumption. This review comprehensively summarizes the breeding techniques applied to the edible and medicinal mushrooms. Including the traditional mutagenesis method, and even modern gene-editing breeding techniques, the effects of each method, and the comparison of each breeding technique are systematic illustrations. Strategies for mushroom breeding techniques in the future are also discussed in this review paper. With the ongoing sequencing of the mushroom genome, knowledge of the gene background of the strains and functions can be available for developing better markers for gene-editing breeding as CRISPR/Cas9 systems. Combine the metabolism engineering and in-silico tools analysis was the rational design of the novel strains. Modern physical mutagenesis techniques such as the ARTP and the combination of the other physical, and chemical breeding mutagens with cross-breeding techniques or the protoplasts fusion will also lead to superior strains for cultivation and pave the way for higher quality and yield.
Collapse
Affiliation(s)
- Yating Dong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
- Gansu Academy of Agricultural Engineering Technology, 234 Xinzhen Road, Huangyang Town, Liangzhou District, Wuwei City, Gansu Province, 733006, China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Ying Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Yujia Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Jin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| |
Collapse
|
27
|
Meng G, Wang X, Liu M, Wang F, Liu Q, Dong C. Efficient CRISPR/Cas9 system based on autonomously replicating plasmid with an AMA1 sequence and precisely targeted gene deletion in the edible fungus, Cordyceps militaris. Microb Biotechnol 2022; 15:2594-2606. [PMID: 35829671 PMCID: PMC9518986 DOI: 10.1111/1751-7915.14107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cordyceps militaris is a popular edible fungus with important economic value worldwide. In this study, an efficient CRISPR/Cas9 genome-editing system based on an autonomously replicating plasmid with an AMA1 sequence was constructed. Further, a precisely targeted gene deletion via homology-directed repair was effectively introduced in C. militaris. Gene editing was successful, with efficiencies of 55.1% and 89% for Cmwc-1 and Cmvvd, respectively. Precisely targeted gene deletion was achieved at an efficiency of 73.9% by a single guide RNA supplementation with donor DNAs. Double genes, Cmwc-1 and Cmvvd, were edited simultaneously with an efficiency of 10%. Plasmid loss was observed under non-selective culture conditions, which could permit recycling of the selectable marker and avoid the adverse effects of the CRISPR/Cas9 system on the fungus, which is beneficial for the generation of new cultivars. RNA Pol III promoters, endogenous tRNAPro of C. militaris, and chimeric AfU6-tRNAGly can be used to improve the efficiency. Polyethylene glycol-mediated protoplast transformation was markedly more efficient than Agrobacterium tumefaciens-mediated transformation of C. militaris. To our knowledge, this is the first description of genome editing and precisely targeted gene deletion in mushrooms based on AMA1 plasmids. Our findings will enable the modification of multiple genes in both functional genomics research and strain breeding.
Collapse
Affiliation(s)
- Guoliang Meng
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuping Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- China National Research Institute of Food and Fermentation Industries Co., LtdBeijingChina
| | - Mengqian Liu
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fen Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Qizheng Liu
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Caihong Dong
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
28
|
Wang PA, Zhang JM, Zhong JJ. CRISPR-Cas9 assisted in-situ complementation of functional genes in the basidiomycete Ganoderma lucidum. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Liu J, Cui H, Wang R, Xu Z, Yu H, Song C, Lu H, Li Q, Xing D, Tan Q, Sun W, Zou G, Shang X. A Simple and Efficient CRISPR/Cas9 System Using A Ribonucleoprotein Method for Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8101000. [PMID: 36294565 PMCID: PMC9604558 DOI: 10.3390/jof8101000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR/Cas9 systems were established in some edible fungi based on in vivo expressed Cas9 and guide RNA. Compared with those systems, the in vitro assembled Cas9 and sgRNA ribonucleoprotein complexes (RNPs) have more advantages, but only a few examples were reported, and the editing efficiency is relatively low. In this study, we developed and optimized a CRISPR/Cas9 genome-editing method based on in vitro assembled ribonucleoprotein complexes in the mushroom Flammulina filiformis. The surfactant Triton X-100 played a critical role in the optimal method, and the targeting efficiency of the genomic editing reached 100% on a selective medium containing 5-FOA. This study is the first to use an RNP complex delivery to establish a CRISPR/Cas9 genome-editing system in F. filiformis. Moreover, compared with other methods, this method avoids the use of any foreign DNA, thus saving time and labor when it comes to plasmid construction.
Collapse
Affiliation(s)
- Jianyu Liu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Haiyang Cui
- College of Marine Resources and Environment, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
| | - Ruijuan Wang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhen Xu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hailong Yu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chunyan Song
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huan Lu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qiaozhen Li
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Danrun Xing
- College of Marine Resources and Environment, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Weiming Sun
- College of Marine Resources and Environment, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
- Correspondence: (W.S.); (G.Z.); (X.S.); Tel.: +86-335-8058992 (W.S.); +86-13671512909 (G.Z.); +86-21-62209760 (X.S.)
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (W.S.); (G.Z.); (X.S.); Tel.: +86-335-8058992 (W.S.); +86-13671512909 (G.Z.); +86-21-62209760 (X.S.)
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (W.S.); (G.Z.); (X.S.); Tel.: +86-335-8058992 (W.S.); +86-13671512909 (G.Z.); +86-21-62209760 (X.S.)
| |
Collapse
|
30
|
Chen B, Xue L, Wei T, Wang N, Zhong J, Ye Z, Guo L, Lin J. Multiplex gene precise editing and large DNA fragment deletion by the CRISPR-Cas9-TRAMA system in edible mushroom Cordyceps militaris. Microb Biotechnol 2022; 15:2982-2991. [PMID: 36134724 PMCID: PMC9733643 DOI: 10.1111/1751-7915.14147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022] Open
Abstract
The medicinal mushroom Cordyceps militaris contains abundant valuable bioactive ingredients that have attracted a great deal of attention in the pharmaceutical and cosmetic industries. However, the development of this valuable mushroom faces the obstacle of lacking powerful genomic engineering tools. Here, by excavating the endogenous tRNA-processed element, introducing the extrachromosomal plasmid and alongside with homologous template, we develop a marker-free CRISPR-Cas9-TRAMA genomic editing system to achieve the multiplex gene precise editing and large synthetic cluster deletion in C. militaris. We further operated editing in the synthetases of cordycepin and ergothioneine to demonstrate the application of Cas9-TRAMA system in protein modification, promoter strength evaluation and 10 kb metabolic synthetic cluster deletion. The Cas9-TRAMA system provides a scalable method for excavating the valuable metabolic resource of medicinal mushrooms and constructing a mystical cellular pathway to elucidate the complex cell behaviours of the edible mushroom.
Collapse
Affiliation(s)
- Bai‐Xiong Chen
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Ling‐Na Xue
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Tao Wei
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Na Wang
- Guangzhou Alchemy Biotechnology Co., LtdGuangzhouChina
| | - Jing‐Ru Zhong
- Guangzhou Alchemy Biotechnology Co., LtdGuangzhouChina
| | - Zhi‐Wei Ye
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Li‐Qiong Guo
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Jun‐Fang Lin
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| |
Collapse
|
31
|
Liu X, Dong J, Liao J, Tian L, Qiu H, Wu T, Ge F, Zhu J, Shi L, Jiang A, Yu H, Zhao M, Ren A. Establishment of CRISPR/Cas9 Genome-Editing System Based on Dual sgRNAs in Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8070693. [PMID: 35887449 PMCID: PMC9318071 DOI: 10.3390/jof8070693] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Flammulina filiformis, previously known as Asian Flammulina velutipes, is one of the most commercially important edible fungi, with nutritional value and medicinal properties worldwide. However, precision genome editing using CRISPR/Cas9, which is a revolutionary technology and provides a powerful tool for molecular breeding, has not been established in F. filiformis. Here, plasmids harboring expression cassettes of Basidiomycete codon-optimized Cas9 and dual sgRNAs targeting pyrG under the control of the gpd promoter and FfU6 promoter, respectively, were delivered into protoplasts of F. filiformis Dan3 strain through PEG-mediated transformation. The results showed that an efficient native U6 promoter of F. filiformis was identified, and ultimately several pyrG mutants exhibiting 5-fluorooric acid (5-FOA) resistance were obtained. Additionally, diagnostic PCR followed by Sanger sequencing revealed that fragment deletion between the two sgRNA target sites or small insertions and deletions (indels) were introduced in these pyrG mutants through the nonhomologous end joining (NHEJ) pathway, resulting in heritable changes in genomic information. Taken together, this is the first report in which a successful CRISPR/Cas9 genome-editing system based on dual sgRNAs was established in F. filiformis, which broadens the application of this advanced tool in Basidiomycetes.
Collapse
Affiliation(s)
- Xiaotian Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jianghan Dong
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jian Liao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Li Tian
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Hao Qiu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Tao Wu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Feng Ge
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jing Zhu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Ailiang Jiang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Hanshou Yu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Mingwen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China
- Correspondence: ; Tel./Fax: +86-25-84395602
| |
Collapse
|
32
|
The Transcription Factor Roc1 Is a Key Regulator of Cellulose Degradation in the Wood-Decaying Mushroom
Schizophyllum commune. mBio 2022; 13:e0062822. [PMID: 35604096 PMCID: PMC9239231 DOI: 10.1128/mbio.00628-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wood-degrading fungi in the phylum Basidiomycota play a crucial role in nutrient recycling by breaking down all components of wood. Fungi have evolved transcriptional networks that regulate expression of wood-degrading enzymes, allowing them to prioritize one nutrient source over another.
Collapse
|
33
|
Application of recyclable CRISPR/Cas9 tools for targeted genome editing in the postharvest pathogenic fungi Penicillium digitatum and Penicillium expansum. Curr Genet 2022; 68:515-529. [PMID: 35298666 DOI: 10.1007/s00294-022-01236-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023]
Abstract
Penicillium digitatum and Penicillium expansum are plant pathogenic fungi that cause the green and blue mold diseases, respectively, leading to serious postharvest economic losses worldwide. Moreover, P. expansum can produce mycotoxins, which are hazardous compounds to human and animal health. The development of tools that allow multiple and precise genetic manipulation of these species is crucial for the functional characterization of their genes. In this sense, CRISPR/Cas9 represents an excellent opportunity for genome editing due to its efficiency, accuracy and versatility. In this study, we developed protoplast generation and transformation protocols and applied them to implement the CRISPR/Cas9 technology in both species for the first time. For this, we used a self-replicative, recyclable AMA1-based plasmid which allows unlimited number of genomic modifications without the limitation of integrative selection markers. As test case, we successfully targeted the wetA gene, which encodes a regulator of conidiophore development. Finally, CRISPR/Cas9-derived ΔwetA strains were analyzed. Mutants showed reduced axenic growth, differential pathogenicity and altered conidiogenesis and germination. Additionally, P. digitatum and P. expansum ΔwetA mutants showed distinct sensitivity to fungal antifungal proteins (AFPs), which are small, cationic, cysteine-rich proteins that have become interesting antifungals to be applied in agriculture, medicine and in the food industry. With this work, we demonstrate the feasibility of the CRISPR/Cas9 system, expanding the repertoire of genetic engineering tools available for these two important postharvest pathogens and open up the possibility to adapt them to other economically relevant phytopathogenic fungi, for which toolkits for genetic modifications are often limited.
Collapse
|
34
|
Chmelová D, Legerská B, Kunstová J, Ondrejovič M, Miertuš S. The production of laccases by white-rot fungi under solid-state fermentation conditions. World J Microbiol Biotechnol 2022; 38:21. [PMID: 34989891 DOI: 10.1007/s11274-021-03207-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Laccases (E.C. 1.10.3.2) produced by white-rot fungi (WRF) can be widely used, but the high cost prevents their use in large-scale industrial processes. Finding a solution to the problem could involve laccase production by solid-state fermentation (SSF) simulating the natural growth conditions for WRF. SSF offers several advantages over conventional submerged fermentation (SmF), such as higher efficiency and productivity of the process and pollution reduction. The aim of this review is therefore to provide an overview of the current state of knowledge about the laccase production by WRF under SSF conditions. The focus is on variations in the up-stream process, fermentation and down-stream process and their impact on laccase activity. The variations of up-stream processing involve inoculum preparation, inoculation of the medium and formulation of the propagation and production media. According to the studies, the production process can be shortened to 5-7 days by the selection of a suitable combination of lignocellulosic material and laccase producer without the need for any additional components of the culture medium. Efficient laccase production was achieved by valorisation of wastes as agro-food, municipal wastes or waste generated from wood processing industries. This leads to a reduction of costs and an increase in competitiveness compared to other commonly used methods and/or procedures. There will be significant challenges and opportunities in the future, where SSF could become more efficient and bring the enzyme production to a higher level, especially in new biorefineries, bioreactors and biomolecular/genetic engineering.
Collapse
Affiliation(s)
- Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Jana Kunstová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic.
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| |
Collapse
|
35
|
Vandelook S, Elsacker E, Van Wylick A, De Laet L, Peeters E. Current state and future prospects of pure mycelium materials. Fungal Biol Biotechnol 2021; 8:20. [PMID: 34930476 PMCID: PMC8691024 DOI: 10.1186/s40694-021-00128-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
In the context of the ongoing transition from a linear to a circular economy, ecologically friendly renewable solutions are put in place. Filamentous fungi can be grown on various organic feedstocks and functionalized into a range of diverse material types which are biobased and thus more sustainable in terms of their production, use and recycling. Pure mycelium materials, consisting only of mycelial biomass, can adopt versatile properties and appear promising as a substitute for current petrochemically produced polymeric materials or, in the case of myco-leather, as a substitute for animal-based leather. In recent years, a handful of private companies have been innovating to bring products based on pure mycelium materials to the market while scientific interest in these promising biomaterials is now starting to gain momentum. In this primer, we introduce pure mycelium materials, frame different production methods, review existing and potential future applications, thereby offering a vision on future advances for this emerging fungi-based technology.
Collapse
Affiliation(s)
- Simon Vandelook
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Elise Elsacker
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
- Research Group of Architectural Engineering, Department of Architectural Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
- Hub for Biotechnology in the Built Environment, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Aurélie Van Wylick
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
- Research Group of Architectural Engineering, Department of Architectural Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Lars De Laet
- Research Group of Architectural Engineering, Department of Architectural Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| |
Collapse
|
36
|
Abdulsalam O, Ueberschaar N, Krause K, Kothe E. Geosmin synthase ges1 knock-down by siRNA in the dikaryotic fungus Tricholoma vaccinum. J Basic Microbiol 2021; 62:109-115. [PMID: 34923651 DOI: 10.1002/jobm.202100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/08/2022]
Abstract
Genetic manipulation for generating knock-out experiments is essential in deciphering the precise function of a gene. However, dikaryotic fungi pose the inherent challenge of having two allelic versions of each gene, one in each nucleus. In addition, they often are slow-growing and do not withstand protoplasting, which is why Agrobacterium tumefaciens-mediated transformation has been adapted. To obtain knock-out strains, however, is not feasible with a mere deletion construct transformation and screening for deletions in both nuclear copies. Hence, a convenient method using chemically synthesized dicer substrate interfering RNA (DsiRNA) for posttranscriptional interference of targeted mRNA was developed, based on the fungal dicer/argonaute system inherent in fungi for sequence recognition and degradation. A proof-of-principle using this newly established method for knock-down of the volatile geosmin is presented in the dikaryotic fungus Tricholoma vaccinum that is forming ectomycorrhizal symbiosis with spruce trees. The gene ges1, a terpene synthase, was transcribed with a 50-fold reduction in transcript levels in the knockdown strain. The volatile geosmin was slightly reduced, but not absent in the fungus carrying the knockdown construct pointing at low specificity in other terpene synthases known for that class of enzymes.
Collapse
Affiliation(s)
- Oluwatosin Abdulsalam
- Faculty for Biosciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Deutschland, Germany
| | - Nico Ueberschaar
- Faculty for Chemistry and Earth Sciences, Mass Spectrometry Platform, Friedrich Schiller University Jena, Jena, Germany
| | - Katrin Krause
- Faculty for Biosciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Deutschland, Germany
| | - Erika Kothe
- Faculty for Biosciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Deutschland, Germany
| |
Collapse
|
37
|
Moon S, An JY, Choi YJ, Oh YL, Ro HS, Ryu H. Construction of a CRISPR/Cas9-Mediated Genome Editing System in Lentinula edodes. MYCOBIOLOGY 2021; 49:599-603. [PMID: 35035251 PMCID: PMC8725921 DOI: 10.1080/12298093.2021.2006401] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
CRISPR/Cas9 genome editing systems have been established in a broad range of eukaryotic species. Herein, we report the first method for genetic engineering in pyogo (shiitake) mushrooms (Lentinula edodes) using CRISPR/Cas9. For in vivo expression of guide RNAs (gRNAs) targeting the mating-type gene HD1 (LeA1), we identified an endogenous LeU6 promoter in the L. edodes genome. We constructed a plasmid containing the LeU6 and glyceraldehyde-3-phosphate dehydrogenase (LeGPD) promoters to express the Cas9 protein. Among the eight gRNAs we tested, three successfully disrupted the LeA1 locus. Although the CRISPR-Cas9-induced alleles did not affect mating with compatible monokaryotic strains, disruption of the transcription levels of the downstream genes of LeHD1 and LeHD2 was detected. Based on this result, we present the first report of a simple and powerful genetic manipulation tool using the CRISPR/Cas9 toolbox for the scientifically and industrially important edible mushroom, L. edodes.
Collapse
Affiliation(s)
- Suyun Moon
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| | | | - Yeon-Jae Choi
- Department of Bio & Medical Big Data and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Youn-Lee Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Hyeon-Su Ro
- Department of Bio & Medical Big Data and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
38
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
39
|
Targeted Gene Insertion and Replacement in the Basidiomycete Ganoderma lucidum by Inactivation of Nonhomologous End Joining Using CRISPR/Cas9. Appl Environ Microbiol 2021; 87:e0151021. [PMID: 34524900 DOI: 10.1128/aem.01510-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted gene insertion or replacement is a promising genome-editing tool for molecular breeding and gene engineering. Although CRISPR/Cas9 works well for gene disruption and deletion in Ganoderma lucidum, targeted gene insertion and replacement remain a serious challenge due to the low efficiency of homologous recombination (HR) in this species. In this work, we demonstrate that the DNA double-strand breaks induced by Cas9 were mainly repaired via the nonhomologous end joining (NHEJ) pathway, at a frequency of 96.7%. To establish an efficient target gene insertion and replacement tool in Ganoderma, we first inactivated the NHEJ pathway via disruption of the Ku70 gene (ku70) using a dual single guide RNA (sgRNA)-directed gene deletion method. Disruption of the ku70 gene significantly decreased NHEJ activity in G. lucidum. Moreover, ku70 disruption strains exhibited 96.3% and 93.1% frequencies of targeted gene insertion and replacement, respectively, when target DNA with the orotidine 5'-monophosphate decarboxylase (ura3) gene and 1.5-kb homologous 5'- and 3'-flanking sequences was used as a donor template, compared to 3.3% and 0%, respectively, at these targeted sites for a control strain (Cas9 strain). Our results indicated that ku70 disruption strains were efficient recipients for targeted gene insertion and replacement. This tool will advance our understanding of functional genomics in G. lucidum. IMPORTANCE Functional genomic studies in Ganoderma have been hindered by the absence of adequate genome-engineering tools. Although CRISPR/Cas9 works well for gene disruption and deletion in G. lucidum, targeted gene insertion and replacement have remained a serious challenge due to the low efficiency of HR in these species, although such precise genome modifications, including site mutations, site-specific integrations, and allele or promoter replacements, would be incredibly valuable. In this work, we inactivated the NHEJ repair mechanism in G. lucidum by disrupting the ku70 gene using the CRISPR/Cas9 system. Moreover, we established a target gene insertion and replacement method in ku70-disrupted G. lucidum that possessed high-efficiency gene targeting. This technology will advance our understanding of the functional genomics of G. lucidum.
Collapse
|
40
|
Kowalczyk JE, Saha S, Mäkelä MR. Application of CRISPR/Cas9 Tools for Genome Editing in the White-Rot Fungus Dichomitus squalens. Biomolecules 2021; 11:1526. [PMID: 34680159 PMCID: PMC8533725 DOI: 10.3390/biom11101526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Dichomitus squalens is an emerging reference species that can be used to investigate white-rot fungal plant biomass degradation, as it has flexible physiology to utilize different types of biomass as sources of carbon and energy. Recent comparative (post-) genomic studies on D. squalens resulted in an increasingly detailed knowledge of the genes and enzymes involved in the lignocellulose breakdown in this fungus and showed a complex transcriptional response in the presence of lignocellulose-derived compounds. To fully utilize this increasing amount of data, efficient and reliable genetic manipulation tools are needed, e.g., to characterize the function of certain proteins in vivo and facilitate the construction of strains with enhanced lignocellulolytic capabilities. However, precise genome alterations are often very difficult in wild-type basidiomycetes partially due to extremely low frequencies of homology directed recombination (HDR) and limited availability of selectable markers. To overcome these obstacles, we assessed various Cas9-single guide RNA (sgRNA) ribonucleoprotein (RNP) -based strategies for selectable homology and non-homologous end joining (NHEJ) -based gene editing in D. squalens. We also showed an induction of HDR-based genetic modifications by using single-stranded oligodeoxynucleotides (ssODNs) in a basidiomycete fungus for the first time. This paper provides directions for the application of targeted CRISPR/Cas9-based genome editing in D. squalens and other wild-type (basidiomycete) fungi.
Collapse
Affiliation(s)
| | | | - Miia R. Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland; (J.E.K.); (S.S.)
| |
Collapse
|
41
|
Boontawon T, Nakazawa T, Xu H, Kawauchi M, Sakamoto M, Honda Y. Gene targeting using pre-assembled Cas9 ribonucleoprotein and split-marker recombination in Pleurotus ostreatus. FEMS Microbiol Lett 2021; 368:6307511. [PMID: 34156066 DOI: 10.1093/femsle/fnab080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/20/2021] [Indexed: 12/23/2022] Open
Abstract
Until recently, classical breeding has been used to generate improved commercial mushroom strains; however, classical breeding remains to be laborious and time-consuming. In this study, we performed gene mutagenesis using Cas9 ribonucleoprotein (Cas9 RNP) as a plasmid-free genome editing in Pleurotus ostreatus, which is one of the most economically important cultivated mushrooms. The pre-assembled Cas9/sgRNA targeting pyrG was introduced into protoplasts of a wild-type monokaryotic P. ostreatus strain PC9, which resulted in a generation of strains exhibiting resistance to 5-fluoroorotic acid. Small insertions/deletions at the target site were identified using genomic PCR followed by sequencing. The results showed Cas9 RNP-assisted gene mutagenesis could be applied for the molecular breeding in P. ostreatus and in other edible mushroom strains. Furthermore, gene disruption via split-marker recombination using the Cas9 RNP system was also successfully demonstrated in wild-type P. ostreatus PC9. This method could overcome the disadvantages of NHEJ-deficiency in conventional studies with gene targeting, and also difficulty in gene targeting in various non-model agaricomycetes.
Collapse
Affiliation(s)
- Tatpong Boontawon
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haibo Xu
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
42
|
Boontawon T, Nakazawa T, Horii M, Tsuzuki M, Kawauchi M, Sakamoto M, Honda Y. Functional analyses of Pleurotus ostreatus pcc1 and clp1 using CRISPR/Cas9. Fungal Genet Biol 2021; 154:103599. [PMID: 34153439 DOI: 10.1016/j.fgb.2021.103599] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Understanding the molecular mechanisms controlling dikaryon formation in Agaricomycetes, which is basically controlled by A and B mating-type loci, contributes to improving mushroom cultivation and breeding. In Coprinopsis cinerea, various mutations in the SRY-type high mobility group protein-encoding gene, pcc1, were shown to activate the A-regulated pathway to induce pseudoclamp (clamp cells without clamp connection) and fruiting body formation in monokaryons. The formation of clamp cells was blocked in AmutBmut strain 326 with clp1-1 mutation in C. cinerea. However, considering the diverse mechanisms of sexual development among Agaricomycetes, it remains unclear whether similar phenotypes are also observed in clp1 or pcc1 mutants in cultivated mushrooms. Therefore, phenotypic analyses of Pleurotus ostreatus pcc1 or clp1 (Popcc1 or Poclp1) mutants generated using CRISPR/Cas9 were performed in this study. Plasmids with Cas9 expression cassette and different single guide RNAs targeting Popcc1 or Poclp1 were individually introduced into a monokaryotic P. ostreatus strain PC9 to obtain the mutants. Unlike in C. cinerea, the pseudoclamp cell was not observed in monokaryotic Popcc1 mutants, but it was observed after crossing two compatible strains with Popcc1 mutations. In Poclp1 mutants, dikaryosis was impaired as clamp cells were not observed after crossing, suggesting that Poclp1 functions may be essential for clamp cell formation, like in C. cinerea. These results provided a clue with respect to conserved and diverse mechanisms underlying sexual development in Agaricomycetes (at least between C. cinerea and P. ostreatus).
Collapse
Affiliation(s)
- Tatpong Boontawon
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Masato Horii
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masami Tsuzuki
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
43
|
Lim FH, Rasid OA, Idris AS, As'wad AWM, Vadamalai G, Parveez GKA, Wong MY. Enhanced polyethylene glycol (PEG)-mediated protoplast transformation system for the phytopathogenic fungus, Ganoderma boninense. Folia Microbiol (Praha) 2021; 66:677-688. [PMID: 34041694 DOI: 10.1007/s12223-021-00852-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
The basidiomycete fungus, Ganoderma boninense, has been identified as the main causal agent of oil palm basal stem rot (BSR) disease which has caused significant economic losses to the industry especially in Malaysia and Indonesia. Various efforts have been initiated to understand the disease and this plant pathogen especially at the molecular level. This is the first study of its kind on the development of a polyethylene glycol (PEG)-mediated protoplast transformation system for G. boninense. Based on the minimal inhibitory concentration study, 60 µg/mL and above of hygromycin were effective to completely inhibit G. boninense growth. Approximately 5.145 × 107 cells/mL of protoplasts with the viability of 97.24% was successfully obtained from G. boninense mycelium tissue. The PEG-mediated G. boninense protoplast transformation using 1 µg of transformation vector, 25% of PEG solution, 10 min of pre-transformation incubation, and 30 min of post-transformation incubation has improved the transformation rate as compared with the previous reported protocols for other basidiomycete fungi. Optimization of four transformation parameters has improved the transformation efficiency of G. boninense from an average of 2 to 67 putative transformants. The presence of hygromycin phosphotransferase (hpt) and enhanced green fluorescent protein (eGFP) genes in the putative transformants was detected by PCR and verified by gene sequence analysis. Southern hybridization result further confirmed the integration of hpt gene in G. boninense transformants, and the green fluorescent signal was detected in the G. boninense transformants under the microscopic analysis. The establishment of this transformation system will accelerate the gene function studies of G. boninense especially those genes that may contribute to the pathogenesis of this fungus in oil palm.
Collapse
Affiliation(s)
- Fook-Hwa Lim
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | - Omar Abd Rasid
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abu Seman Idris
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abdul Wahab Mohd As'wad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Ganesan Vadamalai
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
44
|
H3K4me2 ChIP-Seq reveals the epigenetic landscape during mushroom formation and novel developmental regulators of Schizophyllum commune. Sci Rep 2021; 11:8178. [PMID: 33854169 PMCID: PMC8046757 DOI: 10.1038/s41598-021-87635-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Mushroom formation represents the most complex multicellular development in fungi. In the model mushroom Schizophyllum commune, comparative genomics and transcriptomics have previously resulted in a regulatory model of mushroom development. However, little is known about the role of epigenetic regulation. We used chromatin immunoprecipitation sequencing (ChIP-Seq) to determine the distribution of dimethylation of lysine 4 on histone H3 (H3K4me2), a mark for transcriptionally active genes, during monokaryotic and dikaryotic development. We identified a total of 6032 and 5889 sites during monokaryotic and dikaryotic development, respectively. The sites were strongly enriched near translation initiation sites of genes. Although the overall epigenetic landscape was similar between both conditions, we identified 837 sites of differential enrichment during monokaryotic or dikaryotic development, associated with 965 genes. Six transcription factor genes were enriched in H3K4me2 during dikaryotic development, indicating that these are epigenetically regulated during development. Deletion of two of these genes (fst1 and zfc7) resulted in arrested development of fruiting bodies, resulting in immature mushrooms. Together these results indicate that H3K4me2 ChIP-Seq is a powerful new tool to map the restructuring of the epigenetic landscape during mushroom development. Moreover, it can be used to identify novel developmental regulators.
Collapse
|
45
|
Yu G, Sun Y, Han H, Yan X, Wang Y, Ge X, Qiao B, Tan L. Coculture, An Efficient Biotechnology for Mining the Biosynthesis Potential of Macrofungi via Interspecies Interactions. Front Microbiol 2021; 12:663924. [PMID: 33815350 PMCID: PMC8010659 DOI: 10.3389/fmicb.2021.663924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Macrofungi, which are also known as mushrooms, can produce various bioactive constituents and have become promising resources as lead drugs and foods rich in nutritional value. However, the production of these bioactive constituents under standard laboratory conditions is inefficiency due to the silent expression of their relevant genes. Coculture, as an important activation strategy that simulates the natural living conditions of macrofungi, can activate silent genes or clusters through interspecific interactions. Coculturing not only can trigger the biosynthesis of diverse secondary metabolites and enzymes of macrofungi, but is also useful for uncovering the mechanisms of fungal interspecific interactions and novel gene functions. In this paper, coculturing among macrofungi or between macrofungi and other microorganisms, the triggering and upregulation of secondary metabolites and enzymes, the potential medicinal applications, and the fungal-fungal interaction mechanisms are reviewed. Finally, future challenges and perspectives in further advancing coculture systems are discussed.
Collapse
Affiliation(s)
- Guihong Yu
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yuman Sun
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Heyang Han
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xiu Yan
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxuan Ge
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Bin Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lingling Tan
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
46
|
Boontawon T, Nakazawa T, Inoue C, Osakabe K, Kawauchi M, Sakamoto M, Honda Y. Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus. AMB Express 2021; 11:30. [PMID: 33609205 PMCID: PMC7897337 DOI: 10.1186/s13568-021-01193-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Pleurotus ostreatus is one of the most commercially produced edible mushrooms worldwide. Improved cultivated strains with more useful traits have been obtained using classical breeding, which is laborious and time-consuming. Here, we attempted efficient gene mutagenesis using plasmid-based CRISPR/Cas9 as the first step for non-genetically modified (non-GM) P. ostreatus generation. Plasmids harboring expression cassettes of Cas9 and different single guide RNAs targeting fcy1 and pyrG were individually transferred into fungal protoplasts of the PC9 strain, which generated some strains exhibiting resistance to 5-fluorocytosine and 5-fluoroorotic acid, respectively. Genomic PCR followed by sequencing revealed small insertions/deletions or insertion of a fragment from the plasmid at the target site in some of the drug-resistant strains. The results demonstrated efficient CRISPR/Cas9-assisted genome editing in P. ostreatus, which could contribute to the molecular breeding of non-GM cultivated strains in the future. Furthermore, a mutation in fcy1 via homology-directed repair using this CRISPR/Cas9 system was also efficiently introduced, which could be applied not only for precise gene disruption, but also for insertions leading to heterologous gene expression in this fungus.
Collapse
|
47
|
Wang T, Yue S, Jin Y, Wei H, Lu L. Advances allowing feasible pyrG gene editing by a CRISPR-Cas9 system for the edible mushroom Pleurotus eryngii. Fungal Genet Biol 2021; 147:103509. [PMID: 33400990 DOI: 10.1016/j.fgb.2020.103509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
For decades, the edible mushroom Pleurotus eryngii (P. eryngii) has been cultivated as important raw materials for food and pharmaceutical industries in most of Asian countries, especially in China. Unfortunately, the generation and improvement of new cultivars are very difficult since there are many barriers which have not been solved thoroughly by gene editing tools, even though the CRISPR-Cas9 technique has been widely applied in other species. In this study, we identified the point-mutated variant of the endogenous sdhB gene (cbxr) as a more stable selection marker than hygromycin B resistance gene (hph) in P. eryngii. Furthermore, using a codon-optimized Cas9, a predicted native U6 promoter-guided sgRNA, as well as an optimized protoplast transformation system, a highly efficient pyrG gene editing system was established in P. eryngii, that incorporated varied insertions and deletions (indels) by non-homologous end joining (NHEJ) and homology-directed repair (HDR). Findings for a successful targeted gene editing strategy in the edible mushroom P. eryngii may open a new chapter for the improvement of edible mushroom cultivars.
Collapse
Affiliation(s)
- Tingli Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shang Yue
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yating Jin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hua Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
48
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
49
|
Alberti F, Kaleem S, Weaver JA. Recent developments of tools for genome and metabolome studies in basidiomycete fungi and their application to natural product research. Biol Open 2020; 9:bio056010. [PMID: 33268478 PMCID: PMC7725599 DOI: 10.1242/bio.056010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Basidiomycota are a large and diverse phylum of fungi. They can make bioactive metabolites that are used or have inspired the synthesis of antibiotics and agrochemicals. Terpenoids are the most abundant class of natural products encountered in this taxon. Other natural product classes have been described, including polyketides, peptides, and indole alkaloids. The discovery and study of natural products made by basidiomycete fungi has so far been hampered by several factors, which include their slow growth and complex genome architecture. Recent developments of tools for genome and metabolome studies are allowing researchers to more easily tackle the secondary metabolome of basidiomycete fungi. Inexpensive long-read whole-genome sequencing enables the assembly of high-quality genomes, improving the scaffold upon which natural product gene clusters can be predicted. CRISPR/Cas9-based engineering of basidiomycete fungi has been described and will have an important role in linking natural products to their genetic determinants. Platforms for the heterologous expression of basidiomycete genes and gene clusters have been developed, enabling natural product biosynthesis studies. Molecular network analyses and publicly available natural product databases facilitate data dereplication and natural product characterisation. These technological advances combined are prompting a revived interest in natural product discovery from basidiomycete fungi.This article has an associated Future Leader to Watch interview with the first author of the paper.
Collapse
Affiliation(s)
- Fabrizio Alberti
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Saraa Kaleem
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jack A Weaver
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
50
|
Liu XB, Xia EH, Li M, Cui YY, Wang PM, Zhang JX, Xie BG, Xu JP, Yan JJ, Li J, Nagy LG, Yang ZL. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis. PLoS One 2020; 15:e0239890. [PMID: 33064719 PMCID: PMC7567395 DOI: 10.1371/journal.pone.0239890] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Mushroom-forming fungi are complex multicellular organisms that form the basis of a large industry, yet, our understanding of the mechanisms of mushroom development and its responses to various stresses remains limited. The winter mushroom (Flammulina filiformis) is cultivated at a large commercial scale in East Asia and is a species with a preference for low temperatures. This study investigated fruiting body development in F. filiformis by comparing transcriptomes of 4 developmental stages, and compared the developmental genes to a 200-genome dataset to identify conserved genes involved in fruiting body development, and examined the response of heat sensitive and -resistant strains to heat stress. Our data revealed widely conserved genes involved in primordium development of F. filiformis, many of which originated before the emergence of the Agaricomycetes, indicating co-option for complex multicellularity during evolution. We also revealed several notable fruiting-specific genes, including the genes with conserved stipe-specific expression patterns and the others which related to sexual development, water absorption, basidium formation and sporulation, among others. Comparative analysis revealed that heat stress induced more genes in the heat resistant strain (M1) than in the heat sensitive one (XR). Of particular importance are the hsp70, hsp90 and fes1 genes, which may facilitate the adjustment to heat stress in the early stages of fruiting body development. These data highlighted novel genes involved in complex multicellular development in fungi and aid further studies on gene function and efforts to improve the productivity and heat tolerance in mushroom-forming fungi.
Collapse
Affiliation(s)
- Xiao-Bin Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Meng Li
- Yunnan Tobacco Science Research Institute, Kunming, China
| | - Yang-Yang Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Pan-Meng Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Jin-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Ping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Szeged, Hungary
| | - Zhu L. Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|