1
|
Xu C, Xu X, Huang Y, Shang S, Ma L. RNA methylation: A new promising biomaker in cancer liquid biopsy. Biochim Biophys Acta Rev Cancer 2025; 1880:189337. [PMID: 40315965 DOI: 10.1016/j.bbcan.2025.189337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
RNA methylation is a vital epigenetic modification that regulates gene expression by influencing RNA processes such as transcription, degradation, translation, and transport. Aberrant methylation, including modifications like m6A, m5C, m1A, m7G, and m3C, is closely linked to tumorigenesis and progression. Liquid biopsy, a non-invasive technique analyzing tumor markers in body fluids, offers significant potential for early diagnosis and dynamic monitoring. In this context, RNA methylation, due to its tumor-specific properties, is emerging as a valuable marker. However, significant challenges remain in its clinical application. This review explores the roles of RNA methylation in cancer, recent advances in detection technologies, and its potential as a liquid biopsy marker in tumor management. It highlights its promising applications in cancer diagnosis, prognosis, and personalized treatment in the era of precision oncology.
Collapse
Affiliation(s)
- Chenxin Xu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin Xu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yiwen Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shuang Shang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
2
|
Shi J, Zhang Y, Li Y, Zhang L, Zhang X, Yan M, Chen Q, Zhang Y. Optimized identification and characterization of small RNAs with PANDORA-seq. Nat Protoc 2025:10.1038/s41596-025-01158-4. [PMID: 40181099 DOI: 10.1038/s41596-025-01158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/11/2025] [Indexed: 04/05/2025]
Abstract
Small noncoding RNAs (sncRNAs) are a diverse group of RNAs including small interfering RNAs, microRNAs, PIWI-interacting RNAs and RNAs derived from structured RNAs such as transfer RNAs, ribosomal RNAs and others. These sncRNAs have varied termini and RNA modifications, which can interfere with adaptor ligation and reverse transcription during cDNA library construction, hindering detection of many types of sncRNA by standard small RNA sequencing methods. To address this limitation, PANDORA sequencing introduces a refined methodology. The procedure includes sequential enzymatic treatments of size-selected RNAs with T4PNK and AlkB, which effectively circumvent the challenges presented by the ligation-blocking termini and reverse transcription-blocking RNA modifications, followed by tailored small RNA library construction protocols and deep sequencing. The obtained datasets are analyzed with the SPORTS pipeline, which can comprehensively analyze various types of sncRNA beyond the traditionally studied classes, to include those derived from various parental RNAs (for example, from transfer RNA and ribosomal RNA), as well as output the locations on the parental RNA from which these sncRNAs are derived. The entire protocol takes ~7 d, depending on the sample size and sequencing turnaround time. PANDORA sequencing provides a transformative tool to further our understanding of the expanding small RNA universe and to explore the uncharted functions of sncRNAs.
Collapse
Affiliation(s)
- Junchao Shi
- China National Center for Bioinformation and Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Sycamore Research Institute of Life Sciences, Shanghai, China.
| | - Yun Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liwen Zhang
- China National Center for Bioinformation and Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xudong Zhang
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Menghong Yan
- Pudong Medical Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Chen
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ying Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
3
|
Oberdoerffer S, Gilbert WV. All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies. Nat Rev Mol Cell Biol 2025; 26:237-248. [PMID: 39433914 DOI: 10.1038/s41580-024-00784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
RNA modifications are essential for human health - too much or too little of them leads to serious illnesses ranging from neurodevelopmental disorders to cancer. Technical advances in RNA modification sequencing are beginning to uncover the RNA targets of diverse RNA-modifying enzymes that are dysregulated in disease. However, the emerging transcriptome-wide maps of modified nucleosides installed by these enzymes should be considered as first drafts. In particular, a range of technical artefacts lead to false negatives - modified sites that are overlooked owing to technique-dependent, and often sequence-context-specific, 'blind spots'. In this Review, we discuss potential sources of false negatives in sequencing-based RNA modification maps, propose mitigation strategies and suggest guidelines for transparent reporting of sensitivity to detect modified sites in profiling studies. Important considerations for recognition and avoidance of false negatives include assessment and reporting of position-specific sequencing depth, identification of protocol-dependent RNA capture biases and applying controls for false negatives as well as for false positives. Despite their limitations, emerging maps of RNA modifications reveal exciting and largely uncharted potential for post-transcriptional control of all aspects of RNA function.
Collapse
Affiliation(s)
- Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Brooks TG, Lahens NF, Mrčela A, Yang J, Purohit S, Naik A, Ricciotti E, Sengupta S, Choi PS, Grant GR. Sources of non-uniform coverage in short-read RNA-Seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.634337. [PMID: 39975309 PMCID: PMC11838458 DOI: 10.1101/2025.01.30.634337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The origin of several normal cellular functions and related abnormalities can be traced back to RNA splicing. As such, RNA splicing is currently the focus of a vast array of studies. To quantify the transcriptome, short-read RNA-Seq remains the standard assay. The primary technical artifact of RNASeq library prep, which severely interferes with analysis, is extreme non-uniformity in coverage across transcripts. This non-uniformity is present in both bulk and single-cell RNA-Seq and is observed even when the sample contains only full-length transcripts. This issue dramatically affects the accuracy of isoform-level quantification of multi-isoform genes. Understanding the sources of this non-uniformity is critical to developing improved protocols and analysis methods. Here, we explore eight potential sources of non-uniformity. We demonstrate that it cannot be explained by one factor alone. We performed targeted experiments to investigate the effect of fragment length, PCR ramp rate, and ribosomal depletion. We assessed existing data sets with varying sample quality, PCR cycle number, reverse transcriptase, and technical or biological replicates. We found evidence that interference of reverse transcription by secondary structure is unlikely to be the major contributing factor, that rRNA pull-down methods do not cause non-uniformity, that PCR ramp rate does not substantially impact non-uniformity, and that shorter fragments do not reduce non-uniformity. All these findings contradict prior publications or recommendations.
Collapse
Affiliation(s)
- Thomas G Brooks
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Antonijo Mrčela
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jianing Yang
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Souparna Purohit
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amruta Naik
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaon Sengupta
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter S Choi
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Ferguson L, Upton HE, Pimentel SC, Jeans C, Ingolia NT, Collins K. Improved precision, sensitivity, and adaptability of ordered two-template relay cDNA library preparation for RNA sequencing. RNA (NEW YORK, N.Y.) 2025; 31:224-244. [PMID: 39626888 PMCID: PMC11789487 DOI: 10.1261/rna.080318.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
Sequencing RNAs that are biologically processed or degraded to less than ∼100 nt typically involves multistep, low-yield protocols with bias and information loss inherent to ligation and/or polynucleotide tailing. We recently introduced ordered two-template relay (OTTR), a method that captures obligatorily end-to-end sequences of input molecules and, in the same reverse transcription step, also appends 5' and 3' sequencing adapters of choice. OTTR has been thoroughly benchmarked for optimal production of microRNA, tRNA and tRNA fragments, and ribosome-protected mRNA footprint libraries. Here we sought to characterize, quantify, and ameliorate any remaining bias or imprecision in the end-to-end capture of RNA sequences. We introduce new metrics for the evaluation of sequence capture and use them to optimize reaction buffers, reverse transcriptase sequence, adapter oligonucleotides, and overall workflow. Modifications of the reverse transcriptase and adapter oligonucleotides increased the 3' and 5' end-precision of sequence capture and minimized overall library bias. Improvements in recombinant expression and purification of the truncated Bombyx mori R2 reverse transcriptase used in OTTR reduced nonproductive sequencing reads by minimizing bacterial nucleic acids that compete with low-input RNA molecules for cDNA synthesis, such that with miRNA input of 3 pg (<1 fmol), fewer than 10% of sequencing reads are bacterial nucleic acid contaminants. We also introduce a rapid, automation-compatible OTTR protocol that enables gel-free, length-agnostic enrichment of cDNA duplexes from unwanted adapter-only side products. Overall, this work informs considerations for unbiased end-to-end capture and annotation of RNAs independent of their sequence, structure, or posttranscriptional modifications.
Collapse
Affiliation(s)
- Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Sydney C Pimentel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Chris Jeans
- MacroLab, University of California, Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Li Q, Vetter L, Veith Y, Christ E, Végvári Á, Sahin C, Ribacke U, Wahlgren M, Ankarklev J, Larsson O, Chun-Leung Chan S. tRNA regulation and amino acid usage bias reflect a coordinated metabolic adaptation in Plasmodium falciparum. iScience 2024; 27:111167. [PMID: 39524331 PMCID: PMC11544085 DOI: 10.1016/j.isci.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
An adaptive feature of malaria-causing parasites is the digestion of host hemoglobin (HB) to acquire amino acids (AAs). Here, we describe a link between nutrient availability and translation dependent regulation of gene expression as an adaptive strategy. We show that tRNA expression in Plasmodium falciparum does not match the decoding need expected for optimal translation. A subset of tRNAs decoding AAs that are insufficiently provided by HB are lowly expressed, wherein the abundance of a protein-coding transcript is negatively correlated with the decoding requirement of these tRNAs. Proliferation-related genes have evolved a high requirement of these tRNAs, thereby proliferation can be modulated by repressing protein synthesis of these genes during nutrient stress. We conclude that the parasite modulates translation elongation by maintaining a discordant tRNA profile to exploit variations in AA-composition among genes as an adaptation strategy. This study exemplifies metabolic adaptation as an important driving force for protein evolution.
Collapse
Affiliation(s)
- Qian Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Leonie Vetter
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ylva Veith
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elena Christ
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chun-Leung Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Ferguson L, Upton HE, Pimentel SC, Jeans C, Ingolia NT, Collins K. Improved precision, sensitivity, and adaptability of Ordered Two-Template Relay cDNA library preparation for RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622813. [PMID: 39574714 PMCID: PMC11581009 DOI: 10.1101/2024.11.09.622813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sequencing RNAs that are biologically processed or degraded to less than ~100 nucleotides typically involves multi-step, low-yield protocols with bias and information loss inherent to ligation and/or polynucleotide tailing. We recently introduced Ordered Two-Template Relay (OTTR), a method that captures obligatorily end-to-end sequences of input molecules and, in the same reverse transcription step, also appends 5' and 3' sequencing adapters of choice. OTTR has been thoroughly benchmarked for optimal production of microRNA, tRNA and tRNA fragments, and ribosome-protected mRNA footprint libraries. Here we sought to characterize, quantify, and ameliorate any remaining bias or imprecision in the end-to-end capture of RNA sequences. We introduce new metrics for the evaluation of sequence capture and use them to optimize reaction buffers, reverse transcriptase sequence, adapter oligonucleotides, and overall workflow. Modifications of the reverse transcriptase and adapter oligonucleotides increased the 3' and 5' end-precision of sequence capture and minimized overall library bias. Improvements in recombinant expression and purification of the truncated Bombyx mori R2 reverse transcriptase used in OTTR reduced non-productive sequencing reads by minimizing bacterial nucleic acids that compete with low-input RNA molecules for cDNA synthesis, such that with miRNA input of 3 picograms (less than 1 fmol), fewer than 10% of sequencing reads are bacterial nucleic acid contaminants. We also introduce a rapid, automation-compatible OTTR protocol that enables gel-free, length-agnostic enrichment of cDNA duplexes from unwanted adapter-only side products. Overall, this work informs considerations for unbiased end-to-end capture and annotation of RNAs independent of their sequence, structure, or post-transcriptional modifications.
Collapse
Affiliation(s)
- Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Present address: Addition Therapeutics, 201 Haskins Way, South San Francisco, CA 94080
| | - Sydney C Pimentel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Present address: NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016
| | - Chris Jeans
- MacroLab, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, USA
| |
Collapse
|
8
|
Hu Y, Lopez VA, Xu H, Pfister JP, Song B, Servage KA, Sakurai M, Jones BT, Mendell JT, Wang T, Wu J, Lambowitz AM, Tomchick DR, Pawłowski K, Tagliabracci VS. Biochemical and structural insights into a 5' to 3' RNA ligase reveal a potential role in tRNA ligation. Proc Natl Acad Sci U S A 2024; 121:e2408249121. [PMID: 39388274 PMCID: PMC11494293 DOI: 10.1073/pnas.2408249121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
ATP-grasp superfamily enzymes contain a hand-like ATP-binding fold and catalyze a variety of reactions using a similar catalytic mechanism. More than 30 protein families are categorized in this superfamily, and they are involved in a plethora of cellular processes and human diseases. Here, we identify C12orf29 (RLIG1) as an atypical ATP-grasp enzyme that ligates RNA. Human RLIG1 and its homologs autoadenylate on an active site Lys residue as part of a reaction intermediate that specifically ligates RNA halves containing a 5'-phosphate and a 3'-hydroxyl. RLIG1 binds tRNA in cells and can ligate tRNA within the anticodon loop in vitro. Transcriptomic analyses of Rlig1 knockout mice revealed significant alterations in global tRNA levels in the brains of female mice, but not in those of male mice. Furthermore, crystal structures of a RLIG1 homolog from Yasminevirus bound to nucleotides revealed a minimal and atypical RNA ligase fold with a conserved active site architecture that participates in catalysis. Collectively, our results identify RLIG1 as an RNA ligase and suggest its involvement in tRNA biology.
Collapse
Affiliation(s)
- Yingjie Hu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Victor A. Lopez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hengyi Xu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- Department of Oncology, University of Texas at Austin, Austin, TX78712
| | - James P. Pfister
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Bing Song
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX75390
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Benjamin T. Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- Department of Oncology, University of Texas at Austin, Austin, TX78712
| | - Diana R. Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Vincent S. Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
9
|
Scacchetti A, Shields EJ, Trigg NA, Lee GS, Wilusz JE, Conine CC, Bonasio R. A ligation-independent sequencing method reveals tRNA-derived RNAs with blocked 3' termini. Mol Cell 2024; 84:3843-3859.e8. [PMID: 39096899 PMCID: PMC11455606 DOI: 10.1016/j.molcel.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/12/2023] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Despite the numerous sequencing methods available, the diversity in RNA size and chemical modification makes it difficult to capture all RNAs in a cell. We developed a method that combines quasi-random priming with template switching to construct sequencing libraries from RNA molecules of any length and with any type of 3' modifications, allowing for the sequencing of virtually all RNA species. Our ligation-independent detection of all types of RNA (LIDAR) is a simple, effective tool to identify and quantify all classes of coding and non-coding RNAs. With LIDAR, we comprehensively characterized the transcriptomes of mouse embryonic stem cells, neural progenitor cells, mouse tissues, and sperm. LIDAR detected a much larger variety of tRNA-derived RNAs (tDRs) compared with traditional ligation-dependent sequencing methods and uncovered tDRs with blocked 3' ends that had previously escaped detection. Therefore, LIDAR can capture all RNAs in a sample and uncover RNA species with potential regulatory functions.
Collapse
Affiliation(s)
- Alessandro Scacchetti
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Urology and Institute of Neuropathology, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Natalie A Trigg
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Grace S Lee
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colin C Conine
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Yao J, Xu H, Ferrick-Kiddie EA, Nottingham RM, Wu DC, Ares M, Lambowitz AM. Human cells contain myriad excised linear intron RNAs with links to gene regulation and potential utility as biomarkers. PLoS Genet 2024; 20:e1011416. [PMID: 39325823 PMCID: PMC11460701 DOI: 10.1371/journal.pgen.1011416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/08/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
A previous study using Thermostable Group II Intron Reverse Transcriptase sequencing (TGIRT-seq) found human plasma contains short (≤300 nt) structured full-length excised linear intron (FLEXI) RNAs with potential to serve as blood-based biomarkers. Here, TGIRT-seq identified >9,000 different FLEXI RNAs in human cell lines, including relatively abundant FLEXIs with cell-type-specific expression patterns. Analysis of public CLIP-seq datasets identified 126 RNA-binding proteins (RBPs) that have binding sites within the region corresponding to the FLEXI or overlapping FLEXI splice sites in pre-mRNAs, including 53 RBPs with binding sites for ≥30 different FLEXIs. These included splicing factors, transcription factors, a chromatin remodeling protein, cellular growth regulators, and proteins with cytoplasmic functions. Analysis of ENCODE datasets identified subsets of these RBPs whose knockdown impacted FLEXI host gene mRNA levels or proximate alternative splicing, indicating functional interactions. Hierarchical clustering identified six subsets of RBPs whose FLEXI binding sites were co-enriched in six subsets of functionally related host genes: AGO1-4 and DICER, including but not limited to agotrons or mirtron pre-miRNAs; DKC1, NOLC1, SMNDC1, and AATF (Apoptosis Antagonizing Transcription Factor), including but not limited to snoRNA-encoding FLEXIs; two subsets of alternative splicing factors; and two subsets that included RBPs with cytoplasmic functions (e.g., LARP4, PABPC4, METAP2, and ZNF622) together with regulatory proteins. Cell fractionation experiments showed cytoplasmic enrichment of FLEXI RNAs with binding sites for RBPs with cytoplasmic functions. The subsets of host genes encoding FLEXIs with binding sites for different subsets of RBPs were co-enriched with non-FLEXI other short and long introns with binding sites for the same RBPs, suggesting overarching mechanisms for coordinately regulating expression of functionally related genes. Our findings identify FLEXIs as a previously unrecognized large class of cellular RNAs and provide a comprehensive roadmap for further analyzing their biological functions and the relationship of their RBPs to cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Jun Yao
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Hengyi Xu
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Elizabeth A. Ferrick-Kiddie
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Ryan M. Nottingham
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Douglas C. Wu
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| | - Manuel Ares
- Department of Molecular, Cell, and Developmental Biology University of California, Santa Cruz, California, United States of America
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin, Texas, United States of America
| |
Collapse
|
11
|
Wen X, Xu H, Woolley PR, Conway OM, Yao J, Matouschek A, Lambowitz AM, Paull TT. Senataxin deficiency disrupts proteostasis through nucleolar ncRNA-driven protein aggregation. J Cell Biol 2024; 223:e202309036. [PMID: 38717338 PMCID: PMC11080644 DOI: 10.1083/jcb.202309036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.
Collapse
Affiliation(s)
- Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hengyi Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Phillip R. Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Olivia M. Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Scheepbouwer C, Aparicio-Puerta E, Gómez-Martin C, van Eijndhoven MA, Drees EE, Bosch L, de Jong D, Wurdinger T, Zijlstra JM, Hackenberg M, Gerber A, Pegtel DM. Full-length tRNAs lacking a functional CCA tail are selectively sorted into the lumen of extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593148. [PMID: 38765958 PMCID: PMC11100784 DOI: 10.1101/2024.05.12.593148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Small extracellular vesicles (sEVs) are heterogenous lipid membrane particles typically less than 200 nm in size and secreted by most cell types either constitutively or upon activation signals. sEVs isolated from biofluids contain RNAs, including small non-coding RNAs (ncRNAs), that can be either encapsulated within the EV lumen or bound to the EV surface. EV-associated microRNAs (miRNAs) are, despite a relatively low abundance, extensively investigated for their selective incorporation and their role in cell-cell communication. In contrast, the sorting of highly-structured ncRNA species is understudied, mainly due to technical limitations of traditional small RNA sequencing protocols. Here, we adapted ALL-tRNAseq to profile the relative abundance of highly structured and potentially methylated small ncRNA species, including transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and Y RNAs in bulk EV preparations. We determined that full-length tRNAs, typically 75 to 90 nucleotides in length, were the dominant small ncRNA species (>60% of all reads in the 18-120 nucleotides size-range) in all cell culture-derived EVs, as well as in human plasma-derived EV samples, vastly outnumbering 21 nucleotides-long miRNAs. Nearly all EV-associated tRNAs were protected from external RNAse treatment, indicating a location within the EV lumen. Strikingly, the vast majority of luminal-sorted, full-length, nucleobase modification-containing EV-tRNA sequences, harbored a dysfunctional 3' CCA tail, 1 to 3 nucleotides truncated, rendering them incompetent for amino acid loading. In contrast, in non-EV associated extracellular particle fractions (NVEPs), tRNAs appeared almost exclusively fragmented or 'nicked' into tRNA-derived small RNAs (tsRNAs) with lengths between 18 to 35 nucleotides. We propose that in mammalian cells, tRNAs that lack a functional 3' CCA tail are selectively sorted into EVs and shuttled out of the producing cell, offering a new perspective into the physiological role of secreted EVs and luminal cargo-selection.
Collapse
Affiliation(s)
- Chantal Scheepbouwer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Ernesto Aparicio-Puerta
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Cristina Gómez-Martin
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Monique A.J. van Eijndhoven
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Esther E.E. Drees
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Leontien Bosch
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Daphne de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Josée M. Zijlstra
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Michael Hackenberg
- Bioinformatics Laboratory, Biomedical Research Centre (CIBM), Biotechnology Institute, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Genetics Department, Faculty of Science, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain
| | - Alan Gerber
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
| | - D. Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
13
|
Pawar K, Kawamura T, Kirino Y. The tRNA Val half: A strong endogenous Toll-like receptor 7 ligand with a 5'-terminal universal sequence signature. Proc Natl Acad Sci U S A 2024; 121:e2319569121. [PMID: 38683985 PMCID: PMC11087793 DOI: 10.1073/pnas.2319569121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
- Department of Life Sciences, School of Natural Science, Shiv Nadar Institution of Eminence Deemed to be University, Delhi National Capital Region, Greater Noida201314, India
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
14
|
Shen Z, Naveed M, Bao J. Untacking small RNA profiling and RNA fragment footprinting: Approaches and challenges in library construction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1852. [PMID: 38715192 DOI: 10.1002/wrna.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Small RNAs (sRNAs) with sizes ranging from 15 to 50 nucleotides (nt) are critical regulators of gene expression control. Prior studies have shown that sRNAs are involved in a broad range of biological processes, such as organ development, tumorigenesis, and epigenomic regulation; however, emerging evidence unveils a hidden layer of diversity and complexity of endogenously encoded sRNAs profile in eukaryotic organisms, including novel types of sRNAs and the previously unknown post-transcriptional RNA modifications. This underscores the importance for accurate, unbiased detection of sRNAs in various cellular contexts. A multitude of high-throughput methods based on next-generation sequencing (NGS) are developed to decipher the sRNA expression and their modifications. Nonetheless, distinct from mRNA sequencing, the data from sRNA sequencing suffer frequent inconsistencies and high variations emanating from the adapter contaminations and RNA modifications, which overall skew the sRNA libraries. Here, we summarize the sRNA-sequencing approaches, and discuss the considerations and challenges for the strategies and methods of sRNA library construction. The pros and cons of sRNA sequencing have significant implications for implementing RNA fragment footprinting approaches, including CLIP-seq and Ribo-seq. We envision that this review can inspire novel improvements in small RNA sequencing and RNA fragment footprinting in future. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Zhaokang Shen
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Muhammad Naveed
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianqiang Bao
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| |
Collapse
|
15
|
Hu Y, Lopez VA, Xu H, Pfister JP, Song B, Servage KA, Sakurai M, Jones BT, Mendell JT, Wang T, Wu J, Lambowitz AM, Tomchick DR, Pawłowski K, Tagliabracci VS. Biochemical and structural insights into a 5' to 3' RNA ligase reveal a potential role in tRNA ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590974. [PMID: 38712170 PMCID: PMC11071452 DOI: 10.1101/2024.04.24.590974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
ATP-grasp superfamily enzymes contain a hand-like ATP-binding fold and catalyze a variety of reactions using a similar catalytic mechanism. More than 30 protein families are categorized in this superfamily, and they are involved in a plethora of cellular processes and human diseases. Here we identify C12orf29 as an atypical ATP-grasp enzyme that ligates RNA. Human C12orf29 and its homologs auto-adenylate on an active site Lys residue as part of a reaction intermediate that specifically ligates RNA halves containing a 5'-phosphate and a 3'-hydroxyl. C12orf29 binds tRNA in cells and can ligate tRNA within the anticodon loop in vitro. Genetic depletion of c12orf29 in female mice alters global tRNA levels in brain. Furthermore, crystal structures of a C12orf29 homolog from Yasminevirus bound to nucleotides reveal a minimal and atypical RNA ligase fold with a unique active site architecture that participates in catalysis. Collectively, our results identify C12orf29 as an RNA ligase and suggest its involvement in tRNA biology.
Collapse
Affiliation(s)
- Yingjie Hu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Victor A. Lopez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hengyi Xu
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas 78712, USA
| | - James P. Pfister
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bing Song
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Benjamin T. Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Diana R. Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Vincent S. Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
16
|
Mohr G, Yao J, Park SK, Markham L, Lambowitz AM. Mechanisms used for cDNA synthesis and site-specific integration of RNA into DNA genomes by a reverse transcriptase-Cas1 fusion protein. SCIENCE ADVANCES 2024; 10:eadk8791. [PMID: 38608016 PMCID: PMC11014452 DOI: 10.1126/sciadv.adk8791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024]
Abstract
Reverse transcriptase-Cas1 (RT-Cas1) fusion proteins found in some CRISPR systems enable spacer acquisition from both RNA and DNA, but the mechanism of RNA spacer acquisition has remained unclear. Here, we found that Marinomonas mediterranea RT-Cas1/Cas2 adds short 3'-DNA (dN) tails to RNA protospacers, enabling their direct integration into CRISPR arrays as 3'-dN-RNAs or 3'-dN-RNA/cDNA duplexes at rates comparable to similarly configured DNAs. Reverse transcription of RNA protospacers is initiated at 3' proximal sites by multiple mechanisms, including recently described de novo initiation, protein priming with any dNTP, and use of short exogenous or synthesized DNA oligomer primers, enabling synthesis of near full-length cDNAs of diverse RNAs without fixed sequence requirements. The integration of 3'-dN-RNAs or single-stranded DNAs (ssDNAs) is favored over duplexes at higher protospacer concentrations, potentially relevant to spacer acquisition from abundant pathogen RNAs or ssDNA fragments generated by phage defense nucleases. Our findings reveal mechanisms for site-specifically integrating RNA into DNA genomes with potential biotechnological applications.
Collapse
Affiliation(s)
- Georg Mohr
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Laura Markham
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
17
|
Tosar JP, Castellano M, Costa B, Cayota A. Small RNA structural biochemistry in a post-sequencing era. Nat Protoc 2024; 19:595-602. [PMID: 38057624 DOI: 10.1038/s41596-023-00936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/25/2023] [Indexed: 12/08/2023]
Abstract
High-throughput sequencing has had an enormous impact on small RNA research during the past decade. However, sequencing only offers a one-dimensional view of the transcriptome and is often highly biased. Additionally, the 'sequence, map and annotate' approach, used widely in small RNA research, can lead to flawed interpretations of the data, lacking biological plausibility, due in part to database issues. Even in the absence of technical biases, the loss of three-dimensional information is a major limitation to understanding RNA stability, turnover and function. For example, noncoding RNA-derived fragments seem to exist mainly as dimers, tetramers or as nicked forms of their parental RNAs, contrary to widespread assumptions. In this perspective, we will discuss main sources of bias during small RNA-sequencing, present several useful bias-reducing strategies and provide guidance on the interpretation of small RNA-sequencing results, with emphasis on RNA fragmentomics. As sequencing offers a one-dimensional projection of a four-dimensional reality, prior structure-level knowledge is often needed to make sense of the data. Consequently, while less-biased sequencing methods are welcomed, integration of orthologous experimental techniques is also strongly recommended.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la República, Montevideo, Uruguay.
| | - Mauricio Castellano
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Biochemistry Department, School of Science, Universidad de la República, Montevideo, Uruguay
| | - Bruno Costa
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la República, Montevideo, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
18
|
Vill AC, Rice EJ, De Vlaminck I, Danko CG, Brito IL. Precision run-on sequencing (PRO-seq) for microbiome transcriptomics. Nat Microbiol 2024; 9:241-250. [PMID: 38172625 PMCID: PMC11059318 DOI: 10.1038/s41564-023-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Bacteria respond to environmental stimuli through precise regulation of transcription initiation and elongation. Bulk RNA sequencing primarily characterizes mature transcripts, so to identify actively transcribed loci we need to capture RNA polymerase (RNAP) complexed with nascent RNA. However, such capture methods have only previously been applied to culturable, genetically tractable organisms such as E. coli and B. subtilis. Here we apply precision run-on sequencing (PRO-seq) to profile nascent transcription in cultured E. coli and diverse uncultured bacteria. We demonstrate that PRO-seq can characterize the transcription of small, structured, or post-transcriptionally modified RNAs, which are often absent from bulk RNA-seq libraries. Applying PRO-seq to the human microbiome highlights taxon-specific RNAP pause motifs and pause-site distributions across non-coding RNA loci that reflect structure-coincident pausing. We also uncover concurrent transcription and cleavage of CRISPR guide RNAs and transfer RNAs. We demonstrate the utility of PRO-seq for exploring transcriptional dynamics in diverse microbial communities.
Collapse
Affiliation(s)
- Albert C Vill
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
19
|
Chen Q, Zhou T. Emerging functional principles of tRNA-derived small RNAs and other regulatory small RNAs. J Biol Chem 2023; 299:105225. [PMID: 37673341 PMCID: PMC10562873 DOI: 10.1016/j.jbc.2023.105225] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Recent advancements in small RNA sequencing have unveiled a previously hidden world of regulatory small noncoding RNAs (sncRNAs) that extend beyond the well-studied small interfering RNAs, microRNAs, and piwi-interacting RNAs. This exploration, starting with tRNA-derived small RNAs, has led to the discovery of a diverse universe of sncRNAs derived from various longer structured RNAs such as rRNAs, small nucleolar RNAs, small nuclear RNAs, Y RNAs, and vault RNAs, with exciting uncharted functional possibilities. In this perspective, we discuss the emerging functional principles of sncRNAs beyond the well-known RNAi-like mechanisms, focusing on those that operate independent of linear sequence complementarity but rather function in an aptamer-like fashion. Aptamers use 3D structure for specific interactions with ligands and are modulated by RNA modifications and subcellular environments. Given that aptamer-like sncRNA functions are widespread and present in species lacking RNAi, they may represent an ancient functional principle that predates RNAi. We propose a rethinking of the origin of RNAi and its relationship with these aptamer-like functions in sncRNAs and how these complementary mechanisms shape biological processes. Lastly, the aptamer-like function of sncRNAs highlights the need for caution in using small RNA mimics in research and therapeutics, as their specificity is not restricted solely to linear sequence.
Collapse
Affiliation(s)
- Qi Chen
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.
| |
Collapse
|
20
|
Mohr G, Yao J, Park SK, Markham LM, Lambowitz AM. Mechanisms used for cDNA synthesis and site-specific integration of RNA into DNA genomes by a reverse transcriptase-Cas1 fusion protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555893. [PMID: 37693417 PMCID: PMC10491204 DOI: 10.1101/2023.09.01.555893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Reverse transcriptase-Cas1 (RT-Cas1) fusion proteins found in some CRISPR systems enable spacer acquisition from both RNA and DNA, but the mechanism of RNA spacer acquisition has remained unclear. Here, we found Marinomonas mediterranea RT-Cas1/Cas2 adds short 3'-DNA (dN) tails to RNA protospacers enabling their direct integration into CRISPR arrays as 3'-dN-RNA/cDNA duplexes or 3'-dN-RNAs at rates comparable to similarly configured DNAs. Reverse transcription of RNA protospacers occurs by multiple mechanisms, including recently described de novo initiation, protein priming with any dNTP, and use of short exogenous or synthesized DNA oligomer primers, enabling synthesis of cDNAs from diverse RNAs without fixed sequence requirements. The integration of 3'-dN-RNAs or single-stranded (ss) DNAs is favored over duplexes at higher protospacer concentrations, potentially relevant to spacer acquisition from abundant pathogen RNAs or ssDNA fragments generated by phage-defense nucleases. Our findings reveal novel mechanisms for site-specifically integrating RNA into DNA genomes with potential biotechnological applications.
Collapse
Affiliation(s)
- Georg Mohr
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin TX, 78712
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin TX, 78712
| | | | - Laura M. Markham
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin TX, 78712
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology University of Texas at Austin Austin TX, 78712
| |
Collapse
|
21
|
Bergeron D, Faucher-Giguère L, Emmerichs AK, Choquet K, Song KS, Deschamps-Francoeur G, Fafard-Couture É, Rivera A, Couture S, Churchman LS, Heyd F, Abou Elela S, Scott MS. Intronic small nucleolar RNAs regulate host gene splicing through base pairing with their adjacent intronic sequences. Genome Biol 2023; 24:160. [PMID: 37415181 PMCID: PMC10324135 DOI: 10.1186/s13059-023-03002-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Small nucleolar RNAs (snoRNAs) are abundant noncoding RNAs best known for their involvement in ribosomal RNA maturation. In mammals, most expressed snoRNAs are embedded in introns of longer genes and produced through transcription and splicing of their host. Intronic snoRNAs were long viewed as inert passengers with little effect on host expression. However, a recent study reported a snoRNA influencing the splicing and ultimate output of its host gene. Overall, the general contribution of intronic snoRNAs to host expression remains unclear. RESULTS Computational analysis of large-scale human RNA-RNA interaction datasets indicates that 30% of detected snoRNAs interact with their host transcripts. Many snoRNA-host duplexes are located near alternatively spliced exons and display high sequence conservation suggesting a possible role in splicing regulation. The study of the model SNORD2-EIF4A2 duplex indicates that the snoRNA interaction with the host intronic sequence conceals the branch point leading to decreased inclusion of the adjacent alternative exon. Extended SNORD2 sequence containing the interacting intronic region accumulates in sequencing datasets in a cell-type-specific manner. Antisense oligonucleotides and mutations that disrupt the formation of the snoRNA-intron structure promote the splicing of the alternative exon, shifting the EIF4A2 transcript ratio away from nonsense-mediated decay. CONCLUSIONS Many snoRNAs form RNA duplexes near alternative exons of their host transcripts, placing them in optimal positions to control host output as shown for the SNORD2-EIF4A2 model system. Overall, our study supports a more widespread role for intronic snoRNAs in the regulation of their host transcript maturation.
Collapse
Affiliation(s)
- Danny Bergeron
- Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Laurence Faucher-Giguère
- Département de Microbiologie Et d'infectiologie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Ann-Kathrin Emmerichs
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Kristina Sungeun Song
- Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Gabrielle Deschamps-Francoeur
- Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Étienne Fafard-Couture
- Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Andrea Rivera
- Département de Microbiologie Et d'infectiologie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Sonia Couture
- Département de Microbiologie Et d'infectiologie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Sherif Abou Elela
- Département de Microbiologie Et d'infectiologie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
22
|
Verwilt J, Mestdagh P, Vandesompele J. Artifacts and biases of the reverse transcription reaction in RNA sequencing. RNA (NEW YORK, N.Y.) 2023; 29:889-897. [PMID: 36990512 DOI: 10.1261/rna.079623.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
RNA sequencing has spurred a significant number of research areas in recent years. Most protocols rely on synthesizing a more stable complementary DNA (cDNA) copy of the RNA molecule during the reverse transcription reaction. The resulting cDNA pool is often wrongfully assumed to be quantitatively and molecularly similar to the original RNA input. Sadly, biases and artifacts confound the resulting cDNA mixture. These issues are often overlooked or ignored in the literature by those that rely on the reverse transcription process. In this review, we confront the reader with intra- and intersample biases and artifacts caused by the reverse transcription reaction during RNA sequencing experiments. To fight the reader's despair, we also provide solutions to most issues and inform on good RNA sequencing practices. We hope the reader can use this review to their advantage, thereby contributing to scientifically sound RNA studies.
Collapse
Affiliation(s)
- Jasper Verwilt
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
23
|
Scacchetti A, Shields EJ, Trigg NA, Wilusz JE, Conine CC, Bonasio R. A ligation-independent sequencing method reveals tRNA-derived RNAs with blocked 3' termini. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543899. [PMID: 37333231 PMCID: PMC10274639 DOI: 10.1101/2023.06.06.543899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Despite the numerous sequencing methods available, the vast diversity in size and chemical modifications of RNA molecules makes the capture of the full spectrum of cellular RNAs a difficult task. By combining quasi-random hexamer priming with a custom template switching strategy, we developed a method to construct sequencing libraries from RNA molecules of any length and with any type of 3' terminal modification, allowing the sequencing and analysis of virtually all RNA species. Ligation-independent detection of all types of RNA (LIDAR) is a simple, effective tool to comprehensively characterize changes in small non-coding RNAs and mRNAs simultaneously, with performance comparable to separate dedicated methods. With LIDAR, we comprehensively characterized the coding and non-coding transcriptome of mouse embryonic stem cells, neural progenitor cells, and sperm. LIDAR detected a much larger variety of tRNA-derived RNAs (tDRs) compared to traditional ligation-dependent sequencing methods, and uncovered the presence of tDRs with blocked 3' ends that had previously escaped detection. Our findings highlight the potential of LIDAR to systematically detect all RNAs in a sample and uncover new RNA species with potential regulatory functions.
Collapse
Affiliation(s)
- Alessandro Scacchetti
- Epigenetics Institute and Department of Cell and Developmental Biology; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily J. Shields
- Epigenetics Institute and Department of Cell and Developmental Biology; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Urology and Institute of Neuropathology, Medical Center–University of Freiburg, 79106 Freiburg, Germany
| | - Natalie A. Trigg
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women’s Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeremy E. Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colin C. Conine
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women’s Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Homberger C, Hayward RJ, Barquist L, Vogel J. Improved Bacterial Single-Cell RNA-Seq through Automated MATQ-Seq and Cas9-Based Removal of rRNA Reads. mBio 2023; 14:e0355722. [PMID: 36880749 PMCID: PMC10127585 DOI: 10.1128/mbio.03557-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 03/08/2023] Open
Abstract
Bulk RNA sequencing technologies have provided invaluable insights into host and bacterial gene expression and associated regulatory networks. Nevertheless, the majority of these approaches report average expression across cell populations, hiding the true underlying expression patterns that are often heterogeneous in nature. Due to technical advances, single-cell transcriptomics in bacteria has recently become reality, allowing exploration of these heterogeneous populations, which are often the result of environmental changes and stressors. In this work, we have improved our previously published bacterial single-cell RNA sequencing (scRNA-seq) protocol that is based on multiple annealing and deoxycytidine (dC) tailing-based quantitative scRNA-seq (MATQ-seq), achieving a higher throughput through the integration of automation. We also selected a more efficient reverse transcriptase, which led to reduced cell loss and higher workflow robustness. Moreover, we successfully implemented a Cas9-based rRNA depletion protocol into the MATQ-seq workflow. Applying our improved protocol on a large set of single Salmonella cells sampled over different growth conditions revealed improved gene coverage and a higher gene detection limit compared to our original protocol and allowed us to detect the expression of small regulatory RNAs, such as GcvB or CsrB at a single-cell level. In addition, we confirmed previously described phenotypic heterogeneity in Salmonella in regard to expression of pathogenicity-associated genes. Overall, the low percentage of cell loss and high gene detection limit makes the improved MATQ-seq protocol particularly well suited for studies with limited input material, such as analysis of small bacterial populations in host niches or intracellular bacteria. IMPORTANCE Gene expression heterogeneity among isogenic bacteria is linked to clinically relevant scenarios, like biofilm formation and antibiotic tolerance. The recent development of bacterial single-cell RNA sequencing (scRNA-seq) enables the study of cell-to-cell variability in bacterial populations and the mechanisms underlying these phenomena. Here, we report a scRNA-seq workflow based on MATQ-seq with increased robustness, reduced cell loss, and improved transcript capture rate and gene coverage. Use of a more efficient reverse transcriptase and the integration of an rRNA depletion step, which can be adapted to other bacterial single-cell workflows, was instrumental for these improvements. Applying the protocol to the foodborne pathogen Salmonella, we confirmed transcriptional heterogeneity across and within different growth phases and demonstrated that our workflow captures small regulatory RNAs at a single-cell level. Due to low cell loss and high transcript capture rates, this protocol is uniquely suited for experimental settings in which the starting material is limited, such as infected tissues.
Collapse
Affiliation(s)
- Christina Homberger
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Regan J. Hayward
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Cui H, Diedrich JK, Wu DC, Lim JJ, Nottingham RM, Moresco JJ, Yates JR, Blencowe BJ, Lambowitz AM, Schimmel P. Arg-tRNA synthetase links inflammatory metabolism to RNA splicing and nuclear trafficking via SRRM2. Nat Cell Biol 2023; 25:592-603. [PMID: 37059883 DOI: 10.1038/s41556-023-01118-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/27/2023] [Indexed: 04/16/2023]
Abstract
Cells respond to perturbations such as inflammation by sensing changes in metabolite levels. Especially prominent is arginine, which has known connections to the inflammatory response. Aminoacyl-tRNA synthetases, enzymes that catalyse the first step of protein synthesis, can also mediate cell signalling. Here we show that depletion of arginine during inflammation decreased levels of nuclear-localized arginyl-tRNA synthetase (ArgRS). Surprisingly, we found that nuclear ArgRS interacts and co-localizes with serine/arginine repetitive matrix protein 2 (SRRM2), a spliceosomal and nuclear speckle protein, and that decreased levels of nuclear ArgRS correlated with changes in condensate-like nuclear trafficking of SRRM2 and splice-site usage in certain genes. These splice-site usage changes cumulated in the synthesis of different protein isoforms that altered cellular metabolism and peptide presentation to immune cells. Our findings uncover a mechanism whereby an aminoacyl-tRNA synthetase cognate to a key amino acid that is metabolically controlled during inflammation modulates the splicing machinery.
Collapse
Affiliation(s)
- Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Douglas C Wu
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX, USA
| | - Justin J Lim
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin J Blencowe
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX, USA.
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
26
|
Cui G, Hua D, Zhao X, Zhou J, Yang Y, Huang T, Wang X, Zhao Y, Zhang T, Liao J, Guan Z, Luo P, Chen Z, Qi X, Hong W. A New EBS2b-IBS2b Base Paring (A -8/T -8) Improved the Gene-Targeting Efficiency of Thermotargetron in Escherichia coli. Microbiol Spectr 2023; 11:e0315922. [PMID: 36809044 PMCID: PMC10100991 DOI: 10.1128/spectrum.03159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/21/2023] [Indexed: 02/23/2023] Open
Abstract
Thermophilic group II intron is one type of retrotransposon composed of intron RNA and intron-encoded protein (IEP), which can be utilized in gene targeting by harnessing their novel ribozyme-based DNA integration mechanism termed "retrohoming." It is mediated by a ribonucleoprotein (RNP) complex that contains the excised intron lariat RNA and an IEP with reverse transcriptase (RT) activity. The RNP recognizes targeting sites by exon-binding sequences 2 (EBS2)/intron-binding sequences 2 (IBS2), EBS1/IBS1, and EBS3/IBS3 bases pairing. Previously, we developed the TeI3c/4c intron as a thermophilic gene targeting system-Thermotargetron (TMT). However, we found that the targeting efficiency of TMT varies significantly at different targeting sites, which leads to a relatively low success rate. To further improve the success rate and gene-targeting efficiency of TMT, we constructed a Random Gene-targeting Plasmids Pool (RGPP) to analyze the sequence recognition preference of TMT. A new base pairing, located at the -8 site between EBS2/IBS2 and EBS1/IBS1 (named EBS2b-IBS2b), increased the success rate (2.45- to 5.07-fold) and significantly improved gene-targeting efficiency of TMT. A computer algorithm (TMT 1.0), based on the newly discovered sequence recognition roles, was also developed to facilitate the design of TMT gene-targeting primers. The present work could essentially expand the practicalities of TMT in the genome engineering of heat-tolerance mesophilic and thermophilic bacteria. IMPORTANCE The randomized base pairing in the interval of IBS2 and IBS1 of Tel3c/4c intron (-8 and -7 sites) in Thermotargetron (TMT) results in a low success rate and gene-targeting efficiency in bacteria. In the present work, we constructed a randomized gene-targeting plasmids pool (RGPP) to study whether there is a base preference in target sequences. Among all the successful "retrohoming" targets, we found that a new EBS2b-IBS2b base paring (A-8/T-8) significantly increased TMT's gene-targeting efficiency, and the concept is also applicable to other gene targets in redesigned gene-targeting plasmids pool in E. coli. The improved TMT is a promising tool for the genetic engineering of bacteria and could promote metabolic engineering and synthetic biology research in valuable microbes that recalcitrance for genetic manipulation.
Collapse
Affiliation(s)
- Guzhen Cui
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Dengxiong Hua
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Xingxing Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jia Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Yang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tingyu Huang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xinxin Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Liao
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Luo
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
| | - Zhenghong Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
27
|
Maxeiner S, Krasteva-Christ G, Althaus M. Pitfalls of using sequence databases for heterologous expression studies - a technical review. J Physiol 2023; 601:1611-1623. [PMID: 36762618 DOI: 10.1113/jp284066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Synthesis of DNA fragments based on gene sequences that are available in public resources has become an efficient and affordable method that has gradually replaced traditional cloning efforts such as PCR cloning from cDNA. However, database entries based on genome sequencing results are prone to errors which can lead to false sequence information and, ultimately, errors in functional characterisation of proteins such as ion channels and transporters in heterologous expression systems. We have identified five common problems that repeatedly appear in public resources: (1) Not every gene has yet been annotated; (2) not all gene annotations are necessarily correct; (3) transcripts may contain automated corrections; (4) there are mismatches between gene, mRNA and protein sequences; and (5) splicing patterns often lack experimental validation. This technical review highlights and provides a strategy to bypass these issues in order to avoid critical mistakes that could impact future studies of any gene/protein of interest in heterologous expression systems.
Collapse
Affiliation(s)
- Stephan Maxeiner
- Institute for Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | | | - Mike Althaus
- Department of Natural Sciences, Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| |
Collapse
|
28
|
Begik O, Diensthuber G, Liu H, Delgado-Tejedor A, Kontur C, Niazi AM, Valen E, Giraldez AJ, Beaudoin JD, Mattick JS, Novoa EM. Nano3P-seq: transcriptome-wide analysis of gene expression and tail dynamics using end-capture nanopore cDNA sequencing. Nat Methods 2023; 20:75-85. [PMID: 36536091 PMCID: PMC9834059 DOI: 10.1038/s41592-022-01714-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
RNA polyadenylation plays a central role in RNA maturation, fate, and stability. In response to developmental cues, polyA tail lengths can vary, affecting the translation efficiency and stability of mRNAs. Here we develop Nanopore 3' end-capture sequencing (Nano3P-seq), a method that relies on nanopore cDNA sequencing to simultaneously quantify RNA abundance, tail composition, and tail length dynamics at per-read resolution. By employing a template-switching-based sequencing protocol, Nano3P-seq can sequence RNA molecule from its 3' end, regardless of its polyadenylation status, without the need for PCR amplification or ligation of RNA adapters. We demonstrate that Nano3P-seq provides quantitative estimates of RNA abundance and tail lengths, and captures a wide diversity of RNA biotypes. We find that, in addition to mRNA and long non-coding RNA, polyA tails can be identified in 16S mitochondrial ribosomal RNA in both mouse and zebrafish models. Moreover, we show that mRNA tail lengths are dynamically regulated during vertebrate embryogenesis at an isoform-specific level, correlating with mRNA decay. Finally, we demonstrate the ability of Nano3P-seq in capturing non-A bases within polyA tails of various lengths, and reveal their distribution during vertebrate embryogenesis. Overall, Nano3P-seq is a simple and robust method for accurately estimating transcript levels, tail lengths, and tail composition heterogeneity in individual reads, with minimal library preparation biases, both in the coding and non-coding transcriptome.
Collapse
Affiliation(s)
- Oguzhan Begik
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Gregor Diensthuber
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Huanle Liu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Delgado-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Adnan Muhammad Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Jean-Denis Beaudoin
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA
| | - John S Mattick
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
29
|
MiRNAs and snoRNAs in Bone Metastasis: Functional Roles and Clinical Potential. Cancers (Basel) 2022; 15:cancers15010242. [PMID: 36612237 PMCID: PMC9818347 DOI: 10.3390/cancers15010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Bone is a frequent site of metastasis. Bone metastasis is associated with a short-term prognosis in cancer patients, and current treatments aim to slow its growth, but are rarely curative. Thus, revealing molecular mechanisms that explain why metastatic cells are attracted to the bone micro-environment, and how they successfully settle in the bone marrow-taking advantage over bone resident cells-and grow into macro-metastasis, is essential to propose new therapeutic approaches. MicroRNAs and snoRNAs are two classes of small non-coding RNAs that post-transcriptionally regulate gene expression. Recently, microRNAs and snoRNAs have been pointed out as important players in bone metastasis by (i) preparing the pre-metastatic niche, directly and indirectly affecting the activities of osteoclasts and osteoblasts, (ii) promoting metastatic properties within cancer cells, and (iii) acting as mediators within cells to support cancer cell growth in bone. This review aims to highlight the importance of microRNAs and snoRNAs in metastasis, specifically in bone, and how their roles can be linked together. We then discuss how microRNAs and snoRNAs are secreted by cancer cells and be found as extracellular vesicle cargo. Finally, we provide evidence of how microRNAs and snoRNAs can be potential therapeutic targets, at least in pre-clinical settings, and how their detection in liquid biopsies can be a useful diagnostic and/or prognostic biomarker to predict the risk of relapse in cancer patients.
Collapse
|
30
|
Abstract
The field of epitranscriptomics has expanded dramatically in recent years, both in the number of identified RNA modifications and the number of researchers studying them. As knowledge of post-transcriptional modifications continues to expand, numerous new methods have been developed to detect these modifications. Additionally, modifications are being extended to therapeutic settings, such as with recent mRNA vaccines. With this increase in knowledge and use, the community is recognizing the necessity for user-friendly databases to (i) store information from both high- and low-throughput studies and (ii) provide prediction software on how RNA modifications contribute to RNA function and disease. This mini-review highlights select RNA modification databases and their key attributes with the aim of providing a resource to researchers in the field of epitranscriptomics.
Collapse
Affiliation(s)
- Jillian Ramos
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
31
|
Tsukamoto Y, Nakamura Y, Hirata M, Sakate R, Kimura T. i-tRAP (individual tRNA acylation PCR): A convenient method for selective quantification of tRNA charging. RNA (NEW YORK, N.Y.) 2022; 29:rna.079323.122. [PMID: 36283829 PMCID: PMC9808569 DOI: 10.1261/rna.079323.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Each transfer RNA (tRNA) is aminoacylated (charged) with a genetic codon-specific amino acid at its 3' end. Charged tRNAs are primarily used for translation, whereas fluctuations in charged tRNA fractions are known to reflect cellular response to stress. Here we report the development of individual tRNA-acylation using PCR (i-tRAP), a convenient PCR-based method that can specifically quantify individual tRNA charging ratio. In this i-tRAP method, demethylases remove base methylations which are problematic for reverse transcription reaction, and β-elimination reaction specifically removes the 3' end of adenine residue in uncharged tRNA. Subsequent TaqMan MGB qRT-PCR can distinguish between cDNA of charged tRNA and uncharged tRNA. By using this method, we revealed that the charging ratio of tRNAGln(CUG) was changed in response to amino acid starvation and also the charging ratio of tRNAGln(CUG) in senescent cells was lower than in young cells under starvation conditions. i-tRAP can be applicable to the quantification of charging ratio of various tRNAs, and provides a simple and convenient method for analyzing tRNA charging.
Collapse
Affiliation(s)
- Yusuke Tsukamoto
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)
| | - Yumi Nakamura
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)
| | - Makoto Hirata
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)
| | - Ryuichi Sakate
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)
| | - Tomonori Kimura
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)
| |
Collapse
|
32
|
Park SK, Mohr G, Yao J, Russell R, Lambowitz AM. Group II intron-like reverse transcriptases function in double-strand break repair. Cell 2022; 185:3671-3688.e23. [PMID: 36113466 PMCID: PMC9530004 DOI: 10.1016/j.cell.2022.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/16/2022] [Accepted: 08/14/2022] [Indexed: 01/26/2023]
Abstract
Bacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase θ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ). We also found that a group II intron RT can function similarly in DNA repair, with reciprocal active-site substitutions showing isoleucine favors MMEJ and alanine favors primer extension in both enzymes. These DNA repair functions utilize conserved structural features of non-LTR-retroelement RTs, including human LINE-1 and other eukaryotic non-LTR-retrotransposon RTs, suggesting such enzymes may have inherent ability to function in DSBR in a wide range of organisms.
Collapse
Affiliation(s)
- Seung Kuk Park
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Georg Mohr
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Alan M Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
33
|
Xie X, Lee J, Fuson JA, Liu H, Iwase T, Yun K, Margain C, Tripathy D, Ueno NT. Emerging drug targets for triple-negative breast cancer: a guided tour of the preclinical landscape. Expert Opin Ther Targets 2022; 26:405-425. [PMID: 35574694 PMCID: PMC11972560 DOI: 10.1080/14728222.2022.2077188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most fatal molecular subtype of breast cancer because of its aggressiveness and resistance to chemotherapy. FDA-approved therapies for TNBC are limited to poly(ADP-ribose) polymerase inhibitors, immune checkpoint inhibitors, and trophoblast cell surface antigen 2-targeted antibody-drug conjugate. Therefore, developing a novel effective targeted therapy for TNBC is an urgent unmet need. AREAS COVERED In this narrative review, we discuss emerging targets for TNBC treatment discovered in early translational studies. We focus on cancer cell membrane molecules, hyperactive intracellular signaling pathways, and the tumor microenvironment (TME) based on their druggability, therapeutic potency, specificity to TNBC, and application in immunotherapy. EXPERT OPINION The significant challenges in the identification and validation of TNBC-associated targets are 1) application of appropriate genetic, molecular, and immunological approaches for modulating the target, 2) establishment of a proper mouse model that accurately represents the human immune TME, 3) TNBC molecular heterogeneity, and 4) failure translation of preclinical findings to clinical practice. To overcome those difficulties, future research needs to apply novel technology, such as single-cell RNA sequencing, thermostable group II intron reverse transcriptase sequencing, and humanized mouse models. Further, combination treatment targeting multiple pathways in both the TNBC tumor and its TME is essential for effective disease control.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon A. Fuson
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huey Liu
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Toshiaki Iwase
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyuson Yun
- Research Institute at Houston Methodist, Weill Cornell Medical College, Houston, TX 77030, USA
| | | | - Debu Tripathy
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology and Therapeutics, University of Hawai’i Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
34
|
Su Z, Monshaugen I, Wilson B, Wang F, Klungland A, Ougland R, Dutta A. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat Commun 2022; 13:2165. [PMID: 35444240 PMCID: PMC9021294 DOI: 10.1038/s41467-022-29790-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
RNA modifications are important regulatory elements of RNA functions. However, most genome-wide mapping of RNA modifications has focused on messenger RNAs and transfer RNAs, but such datasets have been lacking for small RNAs. Here we mapped N1-methyladenosine (m1A) in the cellular small RNA space. Benchmarked with synthetic m1A RNAs, our workflow identified specific groups of m1A-containing small RNAs, which are otherwise disproportionally under-represented. In particular, 22-nucleotides long 3' tRNA-fragments are highly enriched for TRMT6/61A-dependent m1A located within the seed region. TRMT6/61A-dependent m1A negatively affects gene silencing by tRF-3s. In urothelial carcinoma of the bladder, where TRMT6/61A is over-expressed, higher m1A modification on tRFs is detected, correlated with a dysregulation of tRF targetome. Lastly, TRMT6/61A regulates tRF-3 targets involved in unfolded protein response. Together, our results reveal a mechanism of regulating gene expression via base modification of small RNA.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA
| | - Ida Monshaugen
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, 1346, Gjettum, Norway
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. 10 Box 1066 Blindern, 0316, Oslo, Norway
| | - Rune Ougland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, 1346, Gjettum, Norway.
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA.
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
35
|
Shi J, Zhou T, Chen Q. Exploring the expanding universe of small RNAs. Nat Cell Biol 2022; 24:415-423. [PMID: 35414016 PMCID: PMC9035129 DOI: 10.1038/s41556-022-00880-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
The world of small noncoding RNAs (sncRNAs) is ever-expanding, from small interfering RNA, microRNA and Piwi-interacting RNA to the recently emerging non-canonical sncRNAs derived from longer structured RNAs (for example, transfer, ribosomal, Y, small nucleolar, small nuclear and vault RNAs), showing distinct biogenesis and functional principles. Here we discuss recent tools for sncRNA identification, caveats in sncRNA expression analysis and emerging methods for direct sequencing of sncRNAs and systematic mapping of RNA modifications that are integral to their function.
Collapse
Affiliation(s)
- Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
36
|
Alsop E, Meechoovet B, Kitchen R, Sweeney T, Beach TG, Serrano GE, Hutchins E, Ghiran I, Reiman R, Syring M, Hsieh M, Courtright-Lim A, Valkov N, Whitsett TG, Rakela J, Pockros P, Rozowsky J, Gallego J, Huentelman MJ, Shah R, Nakaji P, Kalani MYS, Laurent L, Das S, Van Keuren-Jensen K. A Novel Tissue Atlas and Online Tool for the Interrogation of Small RNA Expression in Human Tissues and Biofluids. Front Cell Dev Biol 2022; 10:804164. [PMID: 35317387 PMCID: PMC8934391 DOI: 10.3389/fcell.2022.804164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
One promising goal for utilizing the molecular information circulating in biofluids is the discovery of clinically useful biomarkers. Extracellular RNAs (exRNAs) are one of the most diverse classes of molecular cargo, easily assayed by sequencing and with expressions that rapidly change in response to subject status. Despite diverse exRNA cargo, most evaluations from biofluids have focused on small RNA sequencing and analysis, specifically on microRNAs (miRNAs). Another goal of characterizing circulating molecular information, is to correlate expression to injuries associated with specific tissues of origin. Biomarker candidates are often described as being specific, enriched in a particular tissue or associated with a disease process. Likewise, miRNA data is often reported to be specific, enriched for a tissue, without rigorous testing to support the claim. Here we provide a tissue atlas of small RNAs from 30 different tissues and three different blood cell types. We analyzed the tissues for enrichment of small RNA sequences and assessed their expression in biofluids: plasma, cerebrospinal fluid, urine, and saliva. We employed published data sets representing physiological (resting vs. acute exercise) and pathologic states (early- vs. late-stage liver fibrosis, and differential subtypes of stroke) to determine differential tissue-enriched small RNAs. We also developed an online tool that provides information about exRNA sequences found in different biofluids and tissues. The data can be used to better understand the various types of small RNA sequences in different tissues as well as their potential release into biofluids, which should help in the validation or design of biomarker studies.
Collapse
Affiliation(s)
- Eric Alsop
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Bessie Meechoovet
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Robert Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Thadryan Sweeney
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Elizabeth Hutchins
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ionita Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Rebecca Reiman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Michael Syring
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Michael Hsieh
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Amanda Courtright-Lim
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Nedyalka Valkov
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Timothy G. Whitsett
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | | | - Paul Pockros
- Division of Gastroenterology/Hepatology, Scripps Clinic, La Jolla, CA, United States
| | - Joel Rozowsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Juan Gallego
- Institute for Behavioral Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, United States
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Matthew J. Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ravi Shah
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Peter Nakaji
- Department of Neurosurgery, Banner Health, Phoenix, AZ, United States
| | - M. Yashar S. Kalani
- Department of Neurosurgery, St. John Medical Center, Tulsa, OK, United States
| | - Louise Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, San Diego, CA, United States
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
37
|
Fontenla S, Langleib M, de la Torre-Escudero E, Domínguez MF, Robinson MW, Tort J. Role of Fasciola hepatica Small RNAs in the Interaction With the Mammalian Host. Front Cell Infect Microbiol 2022; 11:812141. [PMID: 35155272 PMCID: PMC8824774 DOI: 10.3389/fcimb.2021.812141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression being involved in many different biological processes and play a key role in developmental timing. Additionally, recent studies have shown that miRNAs released from parasites are capable of regulating the expression of host genes. In the present work, we studied the expression patterns of ncRNAs of various intra-mammalian life-cycle stages of the liver fluke, Fasciola hepatica, as well as those packaged into extracellular vesicles and shed by the adult fluke. The miRNA expression profile of the intra-mammalian stages shows important variations, despite a set of predominant miRNAs that are highly expressed across all stages. No substantial variations in miRNA expression between dormant and activated metacercariae were detected, suggesting that they might not be central players in regulating fluke gene expression during this crucial step in the invasion of the definitive host. We generated a curated pipeline for the prediction of putative target genes that reports only sites conserved between three different prediction approaches. This pipeline was tested against an iso-seq curated database of the 3’ UTR regions of F. hepatica genes to detect miRNA regulation networks within liver fluke. Several functions related to the host immune response or modulation were enriched among the targets of the most highly expressed parasite miRNAs, stressing that they might be key players during the establishment and maintenance of infection. Additionally, we detected fragments derived from the processing of tRNAs, in all developmental stages analyzed, and documented the presence of novel long tRNA fragments enriched in vesicles. We confirmed the presence of at least 5 putative vault RNAs (vtRNAs), that are expressed across different stages and enriched in vesicles. The presence of tRNA fragments and vtRNAs in vesicles raise the possibility that they could be involved in the host-parasite interaction.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| | - Mauricio Langleib
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | | | - Maria Fernanda Domínguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland
| | - José Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| |
Collapse
|
38
|
Potemkin N, Cawood SMF, Treece J, Guévremont D, Rand CJ, McLean C, Stanton JAL, Williams JM. A method for simultaneous detection of small and long RNA biotypes by ribodepleted RNA-Seq. Sci Rep 2022; 12:621. [PMID: 35022475 PMCID: PMC8755727 DOI: 10.1038/s41598-021-04209-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
RNA sequencing offers unprecedented access to the transcriptome. Key to this is the identification and quantification of many different species of RNA from the same sample at the same time. In this study we describe a novel protocol for simultaneous detection of coding and non-coding transcripts using modifications to the Ion Total RNA-Seq kit v2 protocol, with integration of QIASeq FastSelect rRNA removal kit. We report highly consistent sequencing libraries can be produced from both frozen high integrity mouse hippocampal tissue and the more challenging post-mortem human tissue. Removal of rRNA using FastSelect was extremely efficient, resulting in less than 1.5% rRNA content in the final library. We identified > 30,000 unique transcripts from all samples, including protein-coding genes and many species of non-coding RNA, in biologically-relevant proportions. Furthermore, the normalized sequencing read count for select genes significantly negatively correlated with Ct values from qRT-PCR analysis from the same samples. These results indicate that this protocol accurately and consistently identifies and quantifies a wide variety of transcripts simultaneously. The highly efficient rRNA depletion, coupled with minimized sample handling and without complicated and high-loss size selection protocols, makes this protocol useful to researchers wishing to investigate whole transcriptomes.
Collapse
Affiliation(s)
- Nikita Potemkin
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Sophie M F Cawood
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Jackson Treece
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Diane Guévremont
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Christy J Rand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Catriona McLean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Anatomical Pathology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand.
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
39
|
Xu H, Nottingham RM, Lambowitz AM. TGIRT-seq Protocol for the Comprehensive Profiling of Coding and Non-coding RNA Biotypes in Cellular, Extracellular Vesicle, and Plasma RNAs. Bio Protoc 2021; 11:e4239. [PMID: 35005084 PMCID: PMC8678547 DOI: 10.21769/bioprotoc.4239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 09/12/2023] Open
Abstract
High-throughput RNA sequencing (RNA-seq) has extraordinarily advanced our understanding of gene expression and disease etiology, and is a powerful tool for the identification of biomarkers in a wide range of organisms. However, most RNA-seq methods rely on retroviral reverse transcriptases (RTs), enzymes that have inherently low fidelity and processivity, to convert RNAs into cDNAs for sequencing. Here, we describe an RNA-seq protocol using Thermostable Group II Intron Reverse Transcriptases (TGIRTs), which have high fidelity, processivity, and strand-displacement activity, as well as a proficient template-switching activity that enables efficient and seamless RNA-seq adapter addition. By combining these activities, TGIRT-seq enables the simultaneous profiling of all RNA biotypes from small amounts of starting material, with superior RNA-seq metrics, and unprecedented ability to sequence structured RNAs. The TGIRT-seq protocol for Illumina sequencing consists of three steps: (i) addition of a 3' RNA-seq adapter, coupled to the initiation of cDNA synthesis at the 3' end of a target RNA, via template switching from a synthetic adapter RNA/DNA starter duplex; (ii) addition of a 5' RNA-seq adapter, by using thermostable 5' App DNA/RNA ligase to ligate an adapter oligonucleotide to the 3' end of the completed cDNA; (iii) minimal PCR amplification, to add capture sites and indices for Illumina sequencing. TGIRT-seq for the Illumina sequencing platform has been used for comprehensive profiling of coding and non-coding RNAs in ribodepleted, chemically fragmented cellular RNAs, and for the analysis of intact (non-chemically fragmented) cellular, extracellular vesicle (EV), and plasma RNAs, where it yields continuous full-length end-to-end sequences of structured small non-coding RNAs (sncRNAs), including tRNAs, snoRNAs, snRNAs, pre-miRNAs, and full-length excised linear intron (FLEXI) RNAs. Graphic abstract: Figure 1.Overview of the TGIRT-seq protocol for Illumina sequencing.Major steps are: (1) Template switching from a synthetic R2 RNA/R2R DNA starter duplex with a 1-nt 3' DNA overhang (a mixture of A, C, G, and T residues, denoted N) that base pairs to the 3' nucleotide of a target RNA, and upon initiating reverse transcription by adding dNTPs, seamlessly links an R2R adapter to the 5' end of the resulting cDNA; (2) Ligation of an R1R adapter to the 3' end of the completed cDNA; and (3) Minimal PCR amplification with primers that add Illumina capture sites (P5 and P7) and barcode sequences (indices 5 and 7). The index 7 barcode is required, while the index 5 barcode is optional, to provide unique dual indices (UDIs).
Collapse
Affiliation(s)
- Hengyi Xu
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Ryan M. Nottingham
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
40
|
Gao W, Gallardo-Dodd CJ, Kutter C. Cell type-specific analysis by single-cell profiling identifies a stable mammalian tRNA-mRNA interface and increased translation efficiency in neurons. Genome Res 2021; 32:97-110. [PMID: 34857654 PMCID: PMC8744671 DOI: 10.1101/gr.275944.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022]
Abstract
The correlation between codon and anticodon pools influences the efficiency of translation, but whether differences exist in these pools across individual cells is unknown. We determined that codon usage and amino acid demand are highly stable across different cell types using available mouse and human single-cell RNA-sequencing atlases. After showing the robustness of ATAC-sequencing measurements for the analysis of tRNA gene usage, we quantified anticodon usage and amino acid supply in both mouse and human single-cell ATAC-seq atlases. We found that tRNA gene usage is overall coordinated across cell types, except in neurons, which clustered separately from other cell types. Integration of these data sets revealed a strong and statistically significant correlation between amino acid supply and demand across almost all cell types. Neurons have an enhanced translation efficiency over other cell types, driven by an increased supply of tRNAAla (AGC) anticodons. This results in faster decoding of the Ala-GCC codon, as determined by cell type–specific ribosome profiling, suggesting that the reduction of tRNAAla (AGC) anticodon pools may be implicated in neurological pathologies. This study, the first such examination of codon usage, anticodon usage, and translation efficiency resolved at the cell-type level with single-cell information, identifies a conserved landscape of translation elongation across mammalian cellular diversity and evolution.
Collapse
Affiliation(s)
- William Gao
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, 171 77, Stockholm, Sweden
| | - Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, 171 77, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, 171 77, Stockholm, Sweden
| |
Collapse
|
41
|
Kugelberg U, Nätt D, Skog S, Kutter C, Öst A. 5´XP sRNA-seq: efficient identification of transcripts with and without 5´ phosphorylation reveals evolutionary conserved small RNA. RNA Biol 2021; 18:1588-1599. [PMID: 33382953 PMCID: PMC8594926 DOI: 10.1080/15476286.2020.1861770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Small RNA (sRNA) sequencing has been critical for our understanding of many cellular processes, including gene regulation. Nonetheless, the varying biochemical properties of sRNA, such as 5´ nucleotide modifications, make many sRNA subspecies incompatible with common protocols for sRNA sequencing. Here we describe 5XP-seq that outlines a novel strategy that captures a more complete picture of sRNA. By tagging 5´P sRNA during library preparation, 5XP-seq combines an open approach that includes all types of 5'-terminal modifications (5´X), with a selective approach for 5-phosphorylated sRNA (5´P). We show that 5XP-seq not only enriches phosphorylated miRNA and piRNA but successfully discriminates these sRNA from all other sRNA species. We further demonstrate the importance of this strategy by successful inter-species validation of sRNAs that would have otherwise failed, including human to insect translation of several tRNA (tRFs) and rRNA (rRFs) fragments. By combining 5´ insensitive library strategies with 5´ sensitive tagging, we have successfully tackled an intrinsic bias in modern sRNA sequencing that will help us reveal the true complexity and the evolutionary significance of the sRNA world.
Collapse
Affiliation(s)
- Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Nätt
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
42
|
Low-bias ncRNA libraries using ordered two-template relay: Serial template jumping by a modified retroelement reverse transcriptase. Proc Natl Acad Sci U S A 2021; 118:2107900118. [PMID: 34649994 PMCID: PMC8594491 DOI: 10.1073/pnas.2107900118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Retrotransposons are noninfectious, mobile genetic elements that proliferate in host genomes via an RNA intermediate that is copied into DNA by a reverse transcriptase (RT) enzyme. RTs are important for biotechnological applications involving information capture from RNA since RNA is first converted into complementary DNA for detection or sequencing. Here, we biochemically characterized RTs from two retroelements and uncovered several activities that allowed us to design a streamlined, efficient workflow for determining the inventory of RNA sequences in processed RNA pools. The unique properties of nonretroviral RT activities obviate many technical issues associated with current methods of RNA sequence analysis, with wide applications in research, biotechnology, and diagnostics. Selfish, non-long terminal repeat (non-LTR) retroelements and mobile group II introns encode reverse transcriptases (RTs) that can initiate DNA synthesis without substantial base pairing of primer and template. Biochemical characterization of these enzymes has been limited by recombinant expression challenges, hampering understanding of their properties and the possible exploitation of their properties for research and biotechnology. We investigated the activities of representative RTs using a modified non-LTR RT from Bombyx mori and a group II intron RT from Eubacterium rectale. Only the non-LTR RT supported robust and serial template jumping, producing one complementary DNA (cDNA) from several templates each copied end to end. We also discovered an unexpected terminal deoxynucleotidyl transferase activity of the RTs that adds nucleotide(s) of choice to 3′ ends of single- and/or double-stranded RNA or DNA. Combining these two types of activity with additional insights about nontemplated nucleotide additions to duplexed cDNA product, we developed a streamlined protocol for fusion of next-generation sequencing adaptors to both cDNA ends in a single RT reaction. When benchmarked using a reference pool of microRNAs (miRNAs), library production by Ordered Two-Template Relay (OTTR) using recombinant non-LTR retroelement RT outperformed all commercially available kits and rivaled the low bias of technically demanding home-brew protocols. We applied OTTR to inventory RNAs purified from extracellular vesicles, identifying miRNAs as well as myriad other noncoding RNAs (ncRNAs) and ncRNA fragments. Our results establish the utility of OTTR for automation-friendly, low-bias, end-to-end RNA sequence inventories of complex ncRNA samples.
Collapse
|
43
|
Hu JF, Yim D, Ma D, Huber SM, Davis N, Bacusmo JM, Vermeulen S, Zhou J, Begley TJ, DeMott MS, Levine SS, de Crécy-Lagard V, Dedon PC, Cao B. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat Biotechnol 2021; 39:978-988. [PMID: 33859402 PMCID: PMC8355021 DOI: 10.1038/s41587-021-00874-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
Current next-generation RNA-sequencing (RNA-seq) methods do not provide accurate quantification of small RNAs within a sample, due to sequence-dependent biases in capture, ligation and amplification during library preparation. We present a method, absolute quantification RNA-sequencing (AQRNA-seq), that minimizes biases and provides a direct, linear correlation between sequencing read count and copy number for all small RNAs in a sample. Library preparation and data processing were optimized and validated using a 963-member microRNA reference library, oligonucleotide standards of varying length, and RNA blots. Application of AQRNA-seq to a panel of human cancer cells revealed >800 detectable miRNAs that varied during cancer progression, while application to bacterial transfer RNA pools, with the challenges of secondary structure and abundant modifications, revealed 80-fold variation in tRNA isoacceptor levels, stress-induced site-specific tRNA fragmentation, quantitative modification maps, and evidence for stress-induced, tRNA-driven, codon-biased translation. AQRNA-seq thus provides a versatile means to quantitatively map the small RNA landscape in cells.
Collapse
Affiliation(s)
- Jennifer F Hu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Bristol Myers Squibb, Seattle, WA, USA
| | - Daniel Yim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- A*STAR Genome Institute of Singapore, Singapore, Singapore
| | - Duanduan Ma
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sabrina M Huber
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Toxicology, ETH Zürich, Zürich, Switzerland
| | - Nick Davis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Theon Therapeutics, Cambridge, MA, USA
| | - Jo Marie Bacusmo
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, USA
| | - Sidney Vermeulen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jieliang Zhou
- KK Research Center, KK Women's and ChildrenBristol Myers Squibb's Hospital, Singapore, Singapore
| | - Thomas J Begley
- The RNA Institute and Department of Biology, University at Albany, Albany, NY, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stuart S Levine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance IRG, Singapore, Singapore.
| | - Bo Cao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance IRG, Singapore, Singapore.
- College of Life Sciences, Qufu Normal University, Qufu, China.
| |
Collapse
|
44
|
Structural basis for template switching by a group II intron-encoded non-LTR-retroelement reverse transcriptase. J Biol Chem 2021; 297:100971. [PMID: 34280434 PMCID: PMC8363836 DOI: 10.1016/j.jbc.2021.100971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022] Open
Abstract
Reverse transcriptases (RTs) can switch template strands during complementary DNA synthesis, enabling them to join discontinuous nucleic acid sequences. Template switching (TS) plays crucial roles in retroviral replication and recombination, is used for adapter addition in RNA-Seq, and may contribute to retroelement fitness by increasing evolutionary diversity and enabling continuous complementary DNA synthesis on damaged templates. Here, we determined an X-ray crystal structure of a TS complex of a group II intron RT bound simultaneously to an acceptor RNA and donor RNA template–DNA primer heteroduplex with a 1-nt 3′-DNA overhang. The structure showed that the 3′ end of the acceptor RNA binds in a pocket formed by an N-terminal extension present in non–long terminal repeat–retroelement RTs and the RT fingertips loop, with the 3′ nucleotide of the acceptor base paired to the 1-nt 3′-DNA overhang and its penultimate nucleotide base paired to the incoming dNTP at the RT active site. Analysis of structure-guided mutations identified amino acids that contribute to acceptor RNA binding and a phenylalanine residue near the RT active site that mediates nontemplated nucleotide addition. Mutation of the latter residue decreased multiple sequential template switches in RNA-Seq. Our results provide new insights into the mechanisms of TS and nontemplated nucleotide addition by RTs, suggest how these reactions could be improved for RNA-Seq, and reveal common structural features for TS by non–long terminal repeat–retroelement RTs and viral RNA–dependent RNA polymerases.
Collapse
|
45
|
Bergeron D, Laforest C, Carpentier S, Calvé A, Fafard-Couture É, Deschamps-Francoeur G, Scott MS. SnoRNA copy regulation affects family size, genomic location and family abundance levels. BMC Genomics 2021; 22:414. [PMID: 34090325 PMCID: PMC8178906 DOI: 10.1186/s12864-021-07757-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/26/2021] [Indexed: 12/03/2022] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) are an abundant class of noncoding RNAs present in all eukaryotes and best known for their involvement in ribosome biogenesis. In mammalian genomes, many snoRNAs exist in multiple copies, resulting from recombination and retrotransposition from an ancestral snoRNA. To gain insight into snoRNA copy regulation, we used Rfam classification and normal human tissue expression datasets generated using low structure bias RNA-seq to characterize snoRNA families. Results We found that although box H/ACA families are on average larger than box C/D families, the number of expressed members is similar for both types. Family members can cover a wide range of average abundance values, but importantly, expression variability of individual members of a family is preferred over the total variability of the family, especially for box H/ACA snoRNAs, suggesting that while members are likely differentially regulated, mechanisms exist to ensure uniformity of the total family abundance across tissues. Box C/D snoRNA family members are mostly embedded in the same host gene while box H/ACA family members tend to be encoded in more than one different host, supporting a model in which box C/D snoRNA duplication occurred mostly by cis recombination while box H/ACA snoRNA families have gained copy members through retrotransposition. And unexpectedly, snoRNAs encoded in the same host gene can be regulated independently, as some snoRNAs within the same family vary in abundance in a divergent way between tissues. Conclusions SnoRNA copy regulation affects family sizes, genomic location of the members and controls simultaneously member and total family abundance to respond to the needs of individual tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07757-1.
Collapse
Affiliation(s)
- Danny Bergeron
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Cédric Laforest
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Stacey Carpentier
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Annabelle Calvé
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Étienne Fafard-Couture
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Gabrielle Deschamps-Francoeur
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
46
|
Hoffmann A, Erber L, Betat H, Stadler PF, Mörl M, Fallmann J. Changes of the tRNA Modification Pattern during the Development of Dictyostelium discoideum. Noncoding RNA 2021; 7:32. [PMID: 34071416 PMCID: PMC8163159 DOI: 10.3390/ncrna7020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Dictyostelium discoideum is a social amoeba, which on starvation develops from a single-cell state to a multicellular fruiting body. This developmental process is accompanied by massive changes in gene expression, which also affect non-coding RNAs. Here, we investigate how tRNAs as key regulators of the translation process are affected by this transition. To this end, we used LOTTE-seq to sequence the tRNA pool of D. discoideum at different developmental time points and analyzed both tRNA composition and tRNA modification patterns. We developed a workflow for the specific detection of modifications from reverse transcriptase signatures in chemically untreated RNA-seq data at single-nucleotide resolution. It avoids the comparison of treated and untreated RNA-seq data using reverse transcription arrest patterns at nucleotides in the neighborhood of a putative modification site as internal control. We find that nucleotide modification sites in D. discoideum tRNAs largely conform to the modification patterns observed throughout the eukaroytes. However, there are also previously undescribed modification sites. We observe substantial dynamic changes of both expression levels and modification patterns of certain tRNA types during fruiting body development. Beyond the specific application to D. discoideum our results demonstrate that the developmental variability of tRNA expression and modification can be traced efficiently with LOTTE-seq.
Collapse
Affiliation(s)
- Anne Hoffmann
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at Leipzig University and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, D-04103 Leipzig, Germany
| | - Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, 111321 Bogotá, D.C., Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
| |
Collapse
|
47
|
Lester E, Ooi FK, Bakkar N, Ayers J, Woerman AL, Wheeler J, Bowser R, Carlson GA, Prusiner SB, Parker R. Tau aggregates are RNA-protein assemblies that mislocalize multiple nuclear speckle components. Neuron 2021; 109:1675-1691.e9. [PMID: 33848474 PMCID: PMC8141031 DOI: 10.1016/j.neuron.2021.03.026] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Tau aggregates contribute to neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease (AD). Although RNA promotes tau aggregation in vitro, whether tau aggregates in cells contain RNA is unknown. We demonstrate, in cell culture and mouse brains, that cytosolic and nuclear tau aggregates contain RNA with enrichment for small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). Nuclear tau aggregates colocalize with and alter the composition, dynamics, and organization of nuclear speckles, membraneless organelles involved in pre-mRNA splicing. Moreover, several nuclear speckle components, including SRRM2, mislocalize to cytosolic tau aggregates in cells, mouse brains, and brains of individuals with AD, frontotemporal dementia (FTD), and corticobasal degeneration (CBD). Consistent with these alterations, we observe that the presence of tau aggregates is sufficient to alter pre-mRNA splicing. This work identifies tau alteration of nuclear speckles as a feature of tau aggregation that may contribute to the pathology of tau aggregates.
Collapse
Affiliation(s)
- Evan Lester
- Department of Biochemistry, University of Colorado, Boulder, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Felicia K Ooi
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Nadine Bakkar
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Jacob Ayers
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Amanda L Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Joshua Wheeler
- Department of Biochemistry, University of Colorado, Boulder, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
48
|
Behrens A, Rodschinka G, Nedialkova DD. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol Cell 2021; 81:1802-1815.e7. [PMID: 33581077 PMCID: PMC8062790 DOI: 10.1016/j.molcel.2021.01.028] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Measurements of cellular tRNA abundance are hampered by pervasive blocks to cDNA synthesis at modified nucleosides and the extensive similarity among tRNA genes. We overcome these limitations with modification-induced misincorporation tRNA sequencing (mim-tRNAseq), which combines a workflow for full-length cDNA library construction from endogenously modified tRNA with a comprehensive and user-friendly computational analysis toolkit. Our method accurately captures tRNA abundance and modification status in yeast, fly, and human cells and is applicable to any organism with a known genome. We applied mim-tRNAseq to discover a dramatic heterogeneity of tRNA isodecoder pools among diverse human cell lines and a surprising interdependence of modifications at distinct sites within the same tRNA transcript. mim-tRNAseq overcomes experimental and computational hurdles to tRNA quantitation mim-tRNAseq includes a comprehensive computational toolkit for tRNA read analysis tRNA abundance, aminoacylation, and modification status quantified in one reaction mim-tRNAseq reveals an interdependence of modifications at distinct tRNA positions
Collapse
Affiliation(s)
- Andrew Behrens
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Geraldine Rodschinka
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
49
|
Yao J, Wu DC, Nottingham RM, Lambowitz AM. Identification of protein-protected mRNA fragments and structured excised intron RNAs in human plasma by TGIRT-seq peak calling. eLife 2020; 9:e60743. [PMID: 32876046 PMCID: PMC7518892 DOI: 10.7554/elife.60743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Human plasma contains > 40,000 different coding and non-coding RNAs that are potential biomarkers for human diseases. Here, we used thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) combined with peak calling to simultaneously profile all RNA biotypes in apheresis-prepared human plasma pooled from healthy individuals. Extending previous TGIRT-seq analysis, we found that human plasma contains largely fragmented mRNAs from > 19,000 protein-coding genes, abundant full-length, mature tRNAs and other structured small non-coding RNAs, and less abundant tRNA fragments and mature and pre-miRNAs. Many of the mRNA fragments identified by peak calling correspond to annotated protein-binding sites and/or have stable predicted secondary structures that could afford protection from plasma nucleases. Peak calling also identified novel repeat RNAs, miRNA-sized RNAs, and putatively structured intron RNAs of potential biological, evolutionary, and biomarker significance, including a family of full-length excised intron RNAs, subsets of which correspond to mirtron pre-miRNAs or agotrons.
Collapse
Affiliation(s)
- Jun Yao
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| | - Douglas C Wu
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| |
Collapse
|
50
|
Nechooshtan G, Yunusov D, Chang K, Gingeras TR. Processing by RNase 1 forms tRNA halves and distinct Y RNA fragments in the extracellular environment. Nucleic Acids Res 2020; 48:8035-8049. [PMID: 32609822 PMCID: PMC7430647 DOI: 10.1093/nar/gkaa526] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular RNAs participate in intercellular communication, and are being studied as promising minimally invasive diagnostic markers. Several studies in recent years showed that tRNA halves and distinct Y RNA fragments are abundant in the extracellular space, including in biofluids. While their regulatory and diagnostic potential has gained a substantial amount of attention, the biogenesis of these extracellular RNA fragments remains largely unexplored. Here, we demonstrate that these fragments are produced by RNase 1, a highly active secreted nuclease. We use RNA sequencing to investigate the effect of a null mutation of RNase 1 on the levels of tRNA halves and Y RNA fragments in the extracellular environment of cultured human cells. We complement and extend our RNA sequencing results with northern blots, showing that tRNAs and Y RNAs in the non-vesicular extracellular compartment are released from cells as full-length precursors and are subsequently cleaved to distinct fragments. In support of these results, formation of tRNA halves is recapitulated by recombinant human RNase 1 in our in vitro assay. These findings assign a novel function for RNase 1, and position it as a strong candidate for generation of tRNA halves and Y RNA fragments in biofluids.
Collapse
Affiliation(s)
- Gal Nechooshtan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Dinar Yunusov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|