1
|
Lin HH, Wang CH, Huang SH, Lin SY, Kato T, Namba K, Hosogi N, Song C, Murata K, Yen CH, Hsu TL, Wong CH, Wu YM, Tu IP, Chang WH. Use of phase plate cryo-EM reveals conformation diversity of therapeutic IgG with 50 kDa Fab fragment resolved below 6 Å. Sci Rep 2024; 14:14079. [PMID: 38890341 PMCID: PMC11189423 DOI: 10.1038/s41598-024-62045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
While cryogenic electron microscopy (cryo-EM) is fruitfully used for harvesting high-resolution structures of sizable macromolecules, its application to small or flexible proteins composed of small domains like immunoglobulin (IgG) remain challenging. Here, we applied single particle cryo-EM to Rituximab, a therapeutic IgG mediating anti-tumor toxicity, to explore its solution conformations. We found Rituximab molecules exhibited aggregates in cryo-EM specimens contrary to its solution behavior, and utilized a non-ionic detergent to successfully disperse them as isolated particles amenable to single particle analysis. As the detergent adversely reduced the protein-to-solvent contrast, we employed phase plate contrast to mitigate the impaired protein visibility. Assisted by phase plate imaging, we obtained a canonical three-arm IgG structure with other structures displaying variable arm densities co-existing in solution, affirming high flexibility of arm-connecting linkers. Furthermore, we showed phase plate imaging enables reliable structure determination of Fab to sub-nanometer resolution from ab initio, yielding a characteristic two-lobe structure that could be unambiguously docked with crystal structure. Our findings revealed conformation diversity of IgG and demonstrated phase plate was viable for cryo-EM analysis of small proteins without symmetry. This work helps extend cryo-EM boundaries, providing a valuable imaging and structural analysis framework for macromolecules with similar challenging features.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiung Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Academia Sinica Cryo-EM Facility, Academia Sinica, Taipei, Taiwan
| | - Shih-Hsin Huang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan
| | - Sung-Yao Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, Japan
- Institute of Protein Research, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, Japan
| | - Naoki Hosogi
- JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, Japan
| | | | - Tsui-Ling Hsu
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Huey Wong
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Min Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Cryo-EM Facility, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Ping Tu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.
- Genomic Research Center, Academia Sinica, Taipei, Taiwan.
- Institute of Physics, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep 2023; 25:155-166. [PMID: 36881278 PMCID: PMC10027838 DOI: 10.1007/s11883-023-01087-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Cholesteryl ester transfer proteins (CETP) regulate plasma cholesterol levels by transferring cholesteryl esters (CEs) among lipoproteins. Lipoprotein cholesterol levels correlate with the risk factors for atherosclerotic cardiovascular disease (ASCVD). This article reviews recent research on CETP structure, lipid transfer mechanism, and its inhibition. RECENT FINDINGS Genetic deficiency in CETP is associated with a low plasma level of low-density lipoprotein cholesterol (LDL-C) and a profoundly elevated plasma level of high-density lipoprotein cholesterol (HDL-C), which correlates with a lower risk of atherosclerotic cardiovascular disease (ASCVD). However, a very high concentration of HDL-C also correlates with increased ASCVD mortality. Considering that the elevated CETP activity is a major determinant of the atherogenic dyslipidemia, i.e., pro-atherogenic reductions in HDL and LDL particle size, inhibition of CETP emerged as a promising pharmacological target during the past two decades. CETP inhibitors, including torcetrapib, dalcetrapib, evacetrapib, anacetrapib and obicetrapib, were designed and evaluated in phase III clinical trials for the treatment of ASCVD or dyslipidemia. Although these inhibitors increase in plasma HDL-C levels and/or reduce LDL-C levels, the poor efficacy against ASCVD ended interest in CETP as an anti-ASCVD target. Nevertheless, interest in CETP and the molecular mechanism by which it inhibits CE transfer among lipoproteins persisted. Insights into the structural-based CETP-lipoprotein interactions can unravel CETP inhibition machinery, which can hopefully guide the design of more effective CETP inhibitors that combat ASCVD. Individual-molecule 3D structures of CETP bound to lipoproteins provide a model for understanding the mechanism by which CETP mediates lipid transfer and which in turn, guide the rational design of new anti-ASCVD therapeutics.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
3
|
Norgate EL, Upton R, Hansen K, Bellina B, Brookes C, Politis A, Barran PE. Cold Denaturation of Proteins in the Absence of Solvent: Implications for Protein Storage. Angew Chem Int Ed Engl 2022; 61:e202115047. [PMID: 35313047 PMCID: PMC9325448 DOI: 10.1002/anie.202115047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 12/12/2022]
Abstract
The effect of temperature on the stability of proteins is well explored above 298 K, but harder to track experimentally below 273 K. Variable-temperature ion mobility mass spectrometry (VT IM-MS) allows us to measure the structure of molecules at sub-ambient temperatures. Here we monitor conformational changes that occur to two isotypes of monoclonal antibodies (mAbs) on cooling by measuring their collision cross sections (CCS) at discrete drift gas temperatures from 295 to 160 K. The CCS at 250 K is larger than predicted from collisional theory and experimental data at 295 K. This restructure is attributed to change in the strength of stabilizing intermolecular interactions. Below 250 K the CCS of the mAbs increases in line with prediction implying no rearrangement. Comparing data from isotypes suggest disulfide bridging influences thermal structural rearrangement. These findings indicate that in vacuo deep-freezing minimizes denaturation and maintains the native fold and VT IM-MS measurements at sub ambient temperatures provide new insights to the phenomenon of cold denaturation.
Collapse
Affiliation(s)
- Emma L. Norgate
- Manchester Institute of BiotechnologyUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - Rosie Upton
- Manchester Institute of BiotechnologyUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - Kjetil Hansen
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Bruno Bellina
- Manchester Institute of BiotechnologyUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - C. Brookes
- Bristol-Myers SquibbMoretonWirralCH46 1QWUK
| | - Argyris Politis
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Perdita E. Barran
- Manchester Institute of BiotechnologyUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| |
Collapse
|
4
|
Norgate EL, Upton R, Hansen K, Bellina B, Brookes C, Politis A, Barran PE. Cold Denaturation of Proteins in the Absence of Solvent: Implications for Protein Storage. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202115047. [PMID: 38505418 PMCID: PMC10947158 DOI: 10.1002/ange.202115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/07/2022]
Abstract
The effect of temperature on the stability of proteins is well explored above 298 K, but harder to track experimentally below 273 K. Variable-temperature ion mobility mass spectrometry (VT IM-MS) allows us to measure the structure of molecules at sub-ambient temperatures. Here we monitor conformational changes that occur to two isotypes of monoclonal antibodies (mAbs) on cooling by measuring their collision cross sections (CCS) at discrete drift gas temperatures from 295 to 160 K. The CCS at 250 K is larger than predicted from collisional theory and experimental data at 295 K. This restructure is attributed to change in the strength of stabilizing intermolecular interactions. Below 250 K the CCS of the mAbs increases in line with prediction implying no rearrangement. Comparing data from isotypes suggest disulfide bridging influences thermal structural rearrangement. These findings indicate that in vacuo deep-freezing minimizes denaturation and maintains the native fold and VT IM-MS measurements at sub ambient temperatures provide new insights to the phenomenon of cold denaturation.
Collapse
Affiliation(s)
- Emma L. Norgate
- Manchester Institute of BiotechnologyUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - Rosie Upton
- Manchester Institute of BiotechnologyUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - Kjetil Hansen
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Bruno Bellina
- Manchester Institute of BiotechnologyUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - C. Brookes
- Bristol-Myers SquibbMoretonWirralCH46 1QWUK
| | - Argyris Politis
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Perdita E. Barran
- Manchester Institute of BiotechnologyUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| |
Collapse
|
5
|
Anderson KW, Bergonzo C, Scott K, Karageorgos IL, Gallagher ES, Tayi VS, Butler M, Hudgens JW. HDX-MS and MD Simulations Provide Evidence for Stabilization of the IgG1-FcγRIa (CD64a) Immune Complex Through Intermolecular Glycoprotein Bonds. J Mol Biol 2021; 434:167391. [PMID: 34890647 DOI: 10.1016/j.jmb.2021.167391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
Previous reports present different models for the stabilization of the Fc-FcγRI immune complex. Although accord exists on the importance of L235 in IgG1 and some hydrophobic contacts for complex stabilization, discord exists regarding the existence of stabilizing glycoprotein contacts between glycans of IgG1 and a conserved FG-loop (171MGKHRY176) of FcγRIa. Complexes formed from the FcγRIa receptor and IgG1s containing biantennary glycans with N-acetylglucosamine, galactose, and α2,6-N-acetylneuraminic terminations were measured by hydrogen-deuterium exchange mass spectrometry (HDX-MS), classified for dissimilarity with Welch's ANOVA and Games-Howell post hoc procedures, and modeled with molecular dynamics (MD) simulations. For each glycoform of the IgG1-FcγRIa complex peptic peptides of Fab, Fc and FcγRIa report distinct H/D exchange rates. MD simulations corroborate the differences in the peptide deuterium content through calculation of the percent of time that transient glycan-peptide bonds exist. These results indicate that stability of IgG1-FcγRIa complexes correlate with the presence of intermolecular glycoprotein interactions between the IgG1 glycans and the 173KHR175 motif within the FG-loop of FcγRIa. The results also indicate that intramolecular glycan-protein bonds stabilize the Fc region in isolated and complexed IgG1. Moreover, HDX-MS data evince that the Fab domain has glycan-protein binding contacts within the IgG1-FcγRI complex.
Collapse
Affiliation(s)
- Kyle W Anderson
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA; National Institute of Standards and Technology, Biomolecular Structure and Function Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Kerry Scott
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA; National Institute of Standards and Technology, Bioanalytical Science Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Ioannis L Karageorgos
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Elyssia S Gallagher
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Venkata S Tayi
- University of Manitoba, Department of Microbiology, Winnipeg, MB R3T 2N2, Canada.
| | - Michael Butler
- University of Manitoba, Department of Microbiology, Winnipeg, MB R3T 2N2, Canada; National Institute for Bioprocessing Research and Training, 26 Foster's Ave, Belfield, Blackrock, Co. Dublin A94 F5D5, Ireland.
| | - Jeffrey W Hudgens
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| |
Collapse
|
6
|
Hodge CD, Rosenberg DJ, Wilamowski M, Joachimiak A, Hura GL, Hammel M. Rigid monoclonal antibodies improve detection of SARS-CoV-2 nucleocapsid protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.13.426597. [PMID: 33469584 PMCID: PMC7814821 DOI: 10.1101/2021.01.13.426597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Monoclonal antibodies (mAbs) are the basis of treatments and diagnostics for pathogens and other biological phenomena. We conducted a structural characterization of mAbs against the N-terminal domain of nucleocapsid protein (NP NTD ) from SARS-CoV-2 using small angle X-ray scattering (SAXS). Our solution-based results distinguished the mAbs' flexibility and how this flexibility impacts the assembly of multiple mAbs on an antigen. By pairing two mAbs that bind different epitopes on the NP NTD , we show that flexible mAbs form a closed sandwich-like complex. With rigid mAbs, a juxtaposition of the Fabs is prevented, enforcing a linear arrangement of the mAb pair, which facilitates further mAb polymerization. In a modified sandwich ELISA, we show the rigid mAb-pairings with linear polymerization led to increased NP NTD detection sensitivity. These enhancements can expedite the development of more sensitive and selective antigen-detecting point-of-care lateral flow devices (LFA), key for early diagnosis and epidemiological studies of SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Curtis D Hodge
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
7
|
Hodge CD, Rosenberg DJ, Grob P, Wilamowski M, Joachimiak A, Hura GL, Hammel M. Rigid monoclonal antibodies improve detection of SARS-CoV-2 nucleocapsid protein. MAbs 2021; 13:1905978. [PMID: 33843452 PMCID: PMC8043170 DOI: 10.1080/19420862.2021.1905978] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Monoclonal antibodies (mAbs) are the basis of treatments and diagnostics for pathogens and other biological phenomena. We conducted a structural characterization of mAbs against the N-terminal domain of nucleocapsid protein (NPNTD) from SARS-CoV-2 using small-angle X-ray scattering and transmission electron microscopy. Our solution-based results distinguished the mAbs' flexibility and how this flexibility affects the assembly of multiple mAbs on an antigen. By pairing two mAbs that bind different epitopes on the NPNTD, we show that flexible mAbs form a closed sandwich-like complex. With rigid mAbs, a juxtaposition of the antigen-binding fragments is prevented, enforcing a linear arrangement of the mAb pair, which facilitates further mAb polymerization. In a modified sandwich enzyme-linked immunosorbent assay, we show that rigid mAb-pairings with linear polymerization led to increased NPNTD detection sensitivity. These enhancements can expedite the development of more sensitive and selective antigen-detecting point-of-care lateral flow devices, which are critical for early diagnosis and epidemiological studies of SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Curtis D. Hodge
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel. J. Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Graduate Group in Biophysics, University of California, Berkeley, CA, USA
| | - Patricia Grob
- Howard Hughes Medical Institute, UC Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
8
|
LoTToR: An Algorithm for Missing-Wedge Correction of the Low-Tilt Tomographic 3D Reconstruction of a Single-Molecule Structure. Sci Rep 2020; 10:10489. [PMID: 32591588 PMCID: PMC7320192 DOI: 10.1038/s41598-020-66793-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
A single-molecule three-dimensional (3D) structure is essential for understanding the thermal vibrations and dynamics as well as the conformational changes during the chemical reaction of macromolecules. Individual-particle electron tomography (IPET) is an approach for obtaining a snap-shot 3D structure of an individual macromolecule particle by aligning the tilt series of electron tomographic (ET) images of a targeted particle through a focused iterative 3D reconstruction method. The method can reduce the influence on the 3D reconstruction from large-scale image distortion and deformation. Due to the mechanical tilt limitation, 3D reconstruction often contains missing-wedge artifacts, presented as elongation and an anisotropic resolution. Here, we report a post-processing method to correct the missing-wedge artifact. This low-tilt tomographic reconstruction (LoTToR) method contains a model-free iteration process under a set of constraints in real and reciprocal spaces. A proof of concept is conducted by using the LoTToR on a phantom, i.e., a simulated 3D reconstruction from a low-tilt series of images, including that within a tilt range of ±15°. The method is validated by using both negative-staining (NS) and cryo-electron tomography (cryo-ET) experimental data. A significantly reduced missing-wedge artifact verifies the capability of LoTToR, suggesting a new tool to support the future study of macromolecular dynamics, fluctuation and chemical activity from the viewpoint of single-molecule 3D structure determination.
Collapse
|