1
|
Jafari P, Drogan C, Keel E, Kupfer S, Hart J, Setia N. Screening at the scope: enhancing the role of pathologists in diagnosing gastrointestinal polyposis syndromes. Virchows Arch 2025:10.1007/s00428-025-04118-1. [PMID: 40358740 DOI: 10.1007/s00428-025-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Only a minority of patients at high likelihood of a gastrointestinal polyposis syndrome (GPS) are appropriately referred for workup. This proof-of-concept study evaluates a GPS screening rubric based exclusively on information in prior pathology reports and intended to facilitate pathologist engagement in GPS screening and referral. We sought to (1) identify patients who would benefit from further GPS workup, (2) assign a probable polyposis syndrome category (adenomatous, hamartomatous, serrated, or mixed), and (3) suggest a specific syndrome, such as familial adenomatous polyposis, whenever possible. We retrospectively tested the rubric against the pathology records of 108 patients (median, 6 reports/patient) with an established clinical diagnosis of GPS (adenomatous (N = 88), hamartomatous (N = 18), and mixed (N = 2) polyposis syndromes). Records were reviewed chronologically (mean, 4.4 min/patient) by a GI pathologist blinded to clinical history. Ninety-five patients (88%) had a positive GPS screen (N = 76 with an adenomatous polyposis syndrome, N = 17 with a hamartomatous polyposis syndrome, N = 2 with a mixed polyposis syndrome); all were assigned to the correct syndrome category. In a subset of cases, the histopathologic record suggested a specific syndrome (correct in 28 of 30 instances). Of 13 patients with a negative screen (failure to meet any rubric parameters), N = 6 (46.2%) had incomplete records. These findings demonstrate that when robust records are available, structured review of pathology reports is a sensitive and efficient tool for the identification of patients with a high suspicion of a GPS. While prospective studies are necessary, pathologists are indeed well positioned to play an expanded role in GPS screening.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6101, Room S-638, IL 60637-1470, Chicago, USA.
| | - Christine Drogan
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, USA
| | - Emma Keel
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, USA
| | - Sonia Kupfer
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, Chicago, USA
| | - John Hart
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6101, Room S-638, IL 60637-1470, Chicago, USA
| | - Namrata Setia
- Department of Pathology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6101, Room S-638, IL 60637-1470, Chicago, USA
| |
Collapse
|
2
|
Fernández Aceñero MJ, Díaz del Arco C. Hereditary Gastrointestinal Tumor Syndromes: When Risk Comes with Your Genes. Curr Issues Mol Biol 2024; 46:6440-6471. [PMID: 39057027 PMCID: PMC11275188 DOI: 10.3390/cimb46070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Despite recent campaigns for screening and the latest advances in cancer therapy and molecular biology, gastrointestinal (GI) neoplasms remain among the most frequent and lethal human tumors. Most GI neoplasms are sporadic, but there are some well-known familial syndromes associated with a significant risk of developing both benign and malignant GI tumors. Although some of these entities were described more than a century ago based on clinical grounds, the increasing molecular information obtained with high-throughput techniques has shed light on the pathogenesis of several of them. The vast amount of information gained from next-generation sequencing has led to the identification of some high-risk genetic variants, although others remain to be discovered. The opportunity for genetic assessment and counseling in these families has dramatically changed the management of these syndromes, though it has also resulted in significant psychological distress for the affected patients, especially those with indeterminate variants. Herein, we aim to summarize the most relevant hereditary cancer syndromes involving the stomach and colon, with an emphasis on new molecular findings, novel entities, and recent changes in the management of these patients.
Collapse
Affiliation(s)
- María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Cristina Díaz del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Nurmi AK, Pelttari LM, Kiiski JI, Khan S, Nurmikolu M, Suvanto M, Aho N, Tasmuth T, Kalso E, Schleutker J, Kallioniemi A, Heikkilä P, Aittomäki K, Blomqvist C, Nevanlinna H. NTHL1 is a recessive cancer susceptibility gene. Sci Rep 2023; 13:21127. [PMID: 38036545 PMCID: PMC10689455 DOI: 10.1038/s41598-023-47441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
In search of novel breast cancer (BC) risk variants, we performed a whole-exome sequencing and variant analysis of 69 Finnish BC patients as well as analysed loss-of-function variants identified in DNA repair genes in the Finns from the Genome Aggregation Database. Additionally, we carried out a validation study of SERPINA3 c.918-1G>C, recently suggested for BC predisposition. We estimated the frequencies of 41 rare candidate variants in 38 genes by genotyping them in 2482-4101 BC patients and in 1273-3985 controls. We further evaluated all coding variants in the candidate genes in a dataset of 18,786 BC patients and 182,927 controls from FinnGen. None of the variants associated significantly with cancer risk in the primary BC series; however, in the FinnGen data, NTHL1 c.244C>T p.(Gln82Ter) associated with BC with a high risk for homozygous (OR = 44.7 [95% CI 6.90-290], P = 6.7 × 10-5) and a low risk for heterozygous women (OR = 1.39 [1.18-1.64], P = 7.8 × 10-5). Furthermore, the results suggested a high risk of colorectal, urinary tract, and basal-cell skin cancer for homozygous individuals, supporting NTHL1 as a recessive multi-tumour susceptibility gene. No significant association with BC risk was detected for SERPINA3 or any other evaluated gene.
Collapse
Affiliation(s)
- Anna K Nurmi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Mika Nurmikolu
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Niina Aho
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Tiina Tasmuth
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, and FICAN West Cancer Centre, and Department of Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Anne Kallioniemi
- Tays Cancer Center, Tampere University Hospital, and BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland.
| |
Collapse
|
4
|
Guo T, Zhao S, Zhu W, Zhou H, Cheng H. Research progress on the biological basis of Traditional Chinese Medicine syndromes of gastrointestinal cancers. Heliyon 2023; 9:e20653. [PMID: 38027682 PMCID: PMC10643116 DOI: 10.1016/j.heliyon.2023.e20653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Gastrointestinal cancers account for 11.6 % of all cancers, and are the second most frequently diagnosed type of cancer worldwide. Traditional Chinese medicine (TCM), together with Western medicine or alone, has unique advantages for the prevention and treatment of cancers, including gastrointestinal cancers. Syndrome differentiation and treatment are basic characteristics of the theoretical system of TCM. TCM syndromes are the result of the differentiation of the syndrome and the basis of treatment. Genomics, transcriptomics, proteomics, metabolomics, intestinal microbiota, and serology, generated around the central law, are used to study the biological basis of TCM syndromes in gastrointestinal cancers. This review summarizes current research on the biological basis of TCM syndrome in gastrointestinal cancers and provides useful references for future research on TCM syndrome in gastrointestinal cancers.
Collapse
Affiliation(s)
- Tianhao Guo
- Institute of Health and Regimen, Jiangsu Open University, Nanjing, Jiangsu 210036, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shuoqi Zhao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenjian Zhu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hongguang Zhou
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Departments of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Departments of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
5
|
Pinto C, Guerra J, Pinheiro M, Escudeiro C, Santos C, Pinto P, Porto M, Bartosch C, Silva J, Peixoto A, Teixeira MR. Combined germline and tumor mutation signature testing identifies new families with NTHL1 tumor syndrome. Front Genet 2023; 14:1254908. [PMID: 37727376 PMCID: PMC10505957 DOI: 10.3389/fgene.2023.1254908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
NTHL1 tumor syndrome is an autosomal recessive rare disease caused by biallelic inactivating variants in the NTHL1 gene and which presents a broad tumor spectrum. To contribute to the characterization of the phenotype of this syndrome, we studied 467 index patients by KASP assay or next-generation sequencing, including 228 patients with colorectal polyposis and 239 patients with familial/personal history of multiple tumors (excluding multiple breast/ovarian/polyposis). Three NTHL1 tumor syndrome families were identified in the group of patients with polyposis and none in patients with familial/personal history of multiple tumors. Altogether, we identified nine affected patients with polyposis (two of them diagnosed after initiating colorectal cancer surveillance) with biallelic pathogenic or likely pathogenic NTHL1 variants, as well as two index patients with one pathogenic or likely pathogenic NTHL1 variant in concomitance with a missense variant of uncertain significance. Here we identified a novel inframe deletion classified as likely pathogenic using the ACMG criteria, supported also by tumor mutational signature analysis. Our findings indicate that the NTHL1 tumor syndrome is a multi-tumor syndrome strongly associated with polyposis and not with multiple tumors without polyposis.
Collapse
Affiliation(s)
- Carla Pinto
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Joana Guerra
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Doctoral Programme in Biomedical Sciences, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuela Pinheiro
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Escudeiro
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Catarina Santos
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Pedro Pinto
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Miguel Porto
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - João Silva
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Medical Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Ana Peixoto
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Manuel R. Teixeira
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Zhu LH, Dong J, Li WL, Kou ZY, Yang J. Genotype-Phenotype Correlations in Autosomal Dominant and Recessive APC Mutation-Negative Colorectal Adenomatous Polyposis. Dig Dis Sci 2023:10.1007/s10620-023-07890-9. [PMID: 36862359 DOI: 10.1007/s10620-023-07890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
The most prevalent type of intestinal polyposis, colorectal adenomatous polyposis (CAP), is regarded as a precancerous lesion of colorectal cancer with obvious genetic characteristics. Early screening and intervention can significantly improve patients' survival and prognosis. The adenomatous polyposis coli (APC) mutation is believed to be the primary cause of CAP. There is, however, a subset of CAP with undetectable pathogenic mutations in APC, known as APC (-)/CAP. The genetic predisposition to APC (-)/CAP has largely been associated with germline mutations in some susceptible genes, including the human mutY homologue (MUTYH) gene and the Nth-like DNA glycosylase 1 (NTHL1) gene, and DNA mismatch repair (MMR) can cause autosomal recessive APC (-)/CAP. Furthermore, autosomal dominant APC (-)/CAP could occur as a result of DNA polymerase epsilon (POLE)/DNA polymerase delta 1 (POLD1), axis inhibition protein 2 (AXIN2), and dual oxidase 2 (DUOX2) mutations. The clinical phenotypes of these pathogenic mutations vary greatly depending on their genetic characteristics. Therefore, in this study, we present a comprehensive review of the association between autosomal recessive and dominant APC (-)/CAP genotypes and clinical phenotypes and conclude that APC (-)/CAP is a disease caused by multiple genes with different phenotypes and interaction exists in the pathogenic genes.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jian Dong
- Department of Internal Medicine-Oncology, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Wen-Liang Li
- Colorectal Cancer Clinical Research Center, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Zhi-Yong Kou
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China.
| |
Collapse
|
7
|
Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int J Mol Sci 2023; 24:ijms24032137. [PMID: 36768460 PMCID: PMC9916931 DOI: 10.3390/ijms24032137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Colorectal cancer is one of the most common tumors, and genetic predisposition is one of the key risk factors in the development of this malignancy. Lynch syndrome and familial adenomatous polyposis are the best-known genetic diseases associated with hereditary colorectal cancer. However, some other genetic disorders confer an increased risk of colorectal cancer, such as Li-Fraumeni syndrome (TP53 gene), MUTYH-associated polyposis (MUTYH gene), Peutz-Jeghers syndrome (STK11 gene), Cowden syndrome (PTEN gene), and juvenile polyposis syndrome (BMPR1A and SMAD4 genes). Moreover, the recent advances in molecular techniques, in particular Next-Generation Sequencing, have led to the identification of many new genes involved in the predisposition to colorectal cancers, such as RPS20, POLE, POLD1, AXIN2, NTHL1, MSH3, RNF43 and GREM1. In this review, we summarized the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and into the associated genetic disorders. Furthermore, we discussed the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.
Collapse
|
8
|
Beck SH, Jelsig AM, Yassin HM, Lindberg LJ, Wadt KAW, Karstensen JG. Intestinal and extraintestinal neoplasms in patients with NTHL1 tumor syndrome: a systematic review. Fam Cancer 2022; 21:453-462. [PMID: 35292903 DOI: 10.1007/s10689-022-00291-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Germline biallelic pathogenic variants (PVs) in NTHL1 have since 2015 been associated with the autosomal recessive tumor predisposition syndrome: NTHL1 tumor syndrome or NTHL1-associated polyposis. In this systematic review, we aim to systematically investigate the phenotypic and genotypic spectrum of the condition including occurrence of both benign and malignant tumors. The databases PubMed, EMBASE, and Scopus were searched. The search was conducted the 25th of august 2021. We included patients with germline PVs, both heterozygous and homo-/compound heterozygous carriers. Twenty-one papers were selected including 47 patients with biallelic PVs in NTHL1 in 32 families. Twenty-three out of 47 patients (49%) were diagnosed with colorectal cancer (CRC) (mean age: 55, range: 31-73) and 12 out of 22 female patients (55%) were diagnosed with breast cancer (mean age: 49, range: 36-63). Apart from three, all patients who underwent a colonoscopy, had colonic adenomas (93%), and three patients (6%) had duodenal adenomatosis. We also identified 158 heterozygous carriers of germline PVs in NTHL1. Twenty-six out of 68 (38%) heterozygous carriers, who underwent colonoscopy, had colonic polyps or adenomas. Twenty-nine heterozygous carriers (18%) were diagnosed with CRC and 59 (49%) with breast cancer. We observed a high frequency of early onset CRC and breast cancer in patients with NTHL1 tumor syndrome. Subsequently, colorectal, breast, and endometrial cancer screening programs are recommended for NTHL1 biallelic carriers. Trial registry PROSPERO: CRD42021275159.
Collapse
Affiliation(s)
- S H Beck
- Faculty of Health and Medical Sciences, University of Copenhagen, Nørregade 10, 1165, Copenhagen, Denmark.
| | - A M Jelsig
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - H M Yassin
- Faculty of Health and Medical Sciences, University of Copenhagen, Nørregade 10, 1165, Copenhagen, Denmark
| | - L J Lindberg
- Danish HNPCC Register, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - K A W Wadt
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J G Karstensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Polyposis Registry, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| |
Collapse
|
9
|
Anderson DJ, Reinicke T, Boyle AW, Porwal MH, Friedman AH. Second Case of Tumors Associated With Heterozygous NTHL1 Variant. Cureus 2022; 14:e26734. [PMID: 35967160 PMCID: PMC9364427 DOI: 10.7759/cureus.26734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
Homozygous mutations to NTHL1 are known to increase cancer risk, particularly in the colon and breast. NTHL1 tumor syndrome (NTS) is an autosomal recessive genetic condition. Little is known about the cancer risk in patients who have heterozygous NTHL1 mutations. We previously published a case of benign tumors associated with a heterozygous NTHL1 mutation. In this second case, we present a patient with a heterozygous NTHL1 mutation who developed a gastrointestinal stromal tumor, pilocytic astrocytoma, tall cell papillary thyroid cancer, invasive ductal papilloma, spinal nerve sheath tumors, and spinal hemangiomas. Here, we show that heterozygous NTHL1 mutations may increase cancer risk and may even manifest similarly to NTS.
Collapse
|
10
|
Sibilio P, Belardinilli F, Licursi V, Paci P, Giannini G. An integrative in-silico analysis discloses a novel molecular subset of colorectal cancer possibly eligible for immune checkpoint immunotherapy. Biol Direct 2022; 17:10. [PMID: 35534873 PMCID: PMC9082922 DOI: 10.1186/s13062-022-00324-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Historically, the molecular classification of colorectal cancer (CRC) was based on the global genomic status, which identified microsatellite instability in mismatch repair (MMR) deficient CRC, and chromosomal instability in MMR proficient CRC. With the introduction of immune checkpoint inhibitors, the microsatellite and chromosomal instability classification regained momentum as the microsatellite instability condition predicted sensitivity to immune checkpoint inhibitors, possibly due to both high tumor mutation burden (TMB) and high levels of infiltrating lymphocytes. Conversely, proficient MMR CRC are mostly resistant to immunotherapy. To better understand the relationship between the microsatellite and chromosomal instability classification, and eventually discover additional CRC subgroups relevant for therapeutic decisions, we developed a computational pipeline that include molecular integrative analysis of genomic, epigenomic and transcriptomic data. RESULTS The first step of the pipeline was based on unsupervised hierarchical clustering analysis of copy number variations (CNVs) versus hypermutation status that identified a first CRC cluster with few CNVs enriched in Hypermutated and microsatellite instability samples, a second CRC cluster with a high number of CNVs mostly including non-HM and microsatellite stable samples, and a third cluster (7.8% of the entire dataset) with low CNVs and low TMB, which shared clinical-pathological features with Hypermutated CRCs and thus defined Hypermutated-like CRCs. The mutational features, DNA methylation profile and base substitution fingerprints of these tumors revealed that Hypermutated-like patients are molecularly distinct from Hypermutated and non-Hypermutated tumors and are likely to develop and progress through different genetic events. Transcriptomic analysis highlighted further differences amongst the three groups and revealed an inflamed tumor microenvironment and modulation Immune Checkpoint Genes in Hypermutated-like CRCs. CONCLUSION Therefore, our work highlights Hypermutated-like tumors as a distinct and previously unidentified CRC subgroup possibly responsive to immune checkpoint inhibitors. If further validated, these findings can lead to expanding the fraction of patients eligible to immunotherapy.
Collapse
Affiliation(s)
- Pasquale Sibilio
- Department of Translational and Precision Medicine, University La Sapienza, 00161, Rome, Italy.,Institute for Systems Analysis and Computer Science Antonio Ruberti, National Research Council, 00185, Rome, Italy
| | | | - Valerio Licursi
- Department of Biology and Biotechnologies "Charles Darwin", University La Sapienza, 00185, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council of Italy, Via degli Apuli, 4, 00185, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science Antonio Ruberti, National Research Council, 00185, Rome, Italy.,Department of Computer Engineering, Automation and Management, University La Sapienza, 00161, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy. .,Istituto Pasteur-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
11
|
Quintana I, Mur P, Terradas M, García-Mulero S, Aiza G, Navarro M, Piñol V, Brunet J, Moreno V, Sanz-Pamplona R, Capellá G, Valle L. Potential Involvement of NSD1, KRT24 and ACACA in the Genetic Predisposition to Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030699. [PMID: 35158968 PMCID: PMC8833793 DOI: 10.3390/cancers14030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Methods used for the identification of hereditary cancer genes have evolved in parallel to technological progress; however, much of the genetic predisposition to cancer remains unexplained. A new in silico method based on Knudson’s two-hit hypothesis recently identified ~50 putative cancer predisposing genes, but their actual association with cancer has not yet been validated. In our study, we aimed to assess the involvement of these genes in familial/early-onset colorectal cancer (CRC) using different lines of evidence. Our results indicated that most of those genes were not associated with a genetic predisposition to CRC, but suggested a possible association for NSD1, KRT24 and ACACA. Abstract The ALFRED (Allelic Loss Featuring Rare Damaging) in silico method was developed to identify cancer predisposition genes through the identification of somatic second hits. By applying ALFRED to ~10,000 tumor exomes, 49 candidate genes were identified. We aimed to assess the causal association of the identified genes with colorectal cancer (CRC) predisposition. Of the 49 genes, NSD1, HDAC10, KRT24, ACACA and TP63 were selected based on specific criteria relevant for hereditary CRC genes. Gene sequencing was performed in 736 patients with familial/early onset CRC or polyposis without germline pathogenic variants in known genes. Twelve (predicted) damaging variants in 18 patients were identified. A gene-based burden test in 1596 familial/early-onset CRC patients, 271 polyposis patients, 543 TCGA CRC patients and >134,000 controls (gnomAD, non-cancer), revealed no clear association with CRC for any of the studied genes. Nevertheless, (non-significant) over-representation of disruptive variants in NSD1, KRT24 and ACACA in CRC patients compared to controls was observed. A somatic second hit was identified in one of 20 tumors tested, corresponding to an NSD1 carrier. In conclusion, most genes identified through the ALFRED in silico method were not relevant for CRC predisposition, although a possible association was detected for NSD1, KRT24 and ACACA.
Collapse
Affiliation(s)
- Isabel Quintana
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
| | - Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (V.M.); (R.S.-P.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Virginia Piñol
- Gastroenterology Unit, Hospital Universitario de Girona Dr. Josep Trueta, 17007 Girona, Spain;
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Catalan Institute of Oncology, IDIBGi, 17007 Girona, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (V.M.); (R.S.-P.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (V.M.); (R.S.-P.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
12
|
Long JM, Powers JM, Katona BW. Evaluation of Classic, Attenuated, and Oligopolyposis of the Colon. Gastrointest Endosc Clin N Am 2022; 32:95-112. [PMID: 34798989 PMCID: PMC8607742 DOI: 10.1016/j.giec.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of this review is to provide an overview of evaluating patients with adenomatous polyposis of the colon, including elements such as generating a differential diagnosis, referral considerations for genetic testing, genetic testing options, and expected outcomes from genetic testing in these individuals. In more recent years, adenomatous colonic polyposis has evolved beyond the more robustly characterized familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) now encompassing more newly described genes and associated syndromes. Technological innovation, from whole-exome sequencing to multigene panel testing, has dramatically increased the amount of genotypic and phenotypic data amassed in adenomatous polyposis cohorts, which has contributed greatly to informing diagnosis and clinical management of affected individuals and their families.
Collapse
Affiliation(s)
- Jessica M. Long
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacquelyn M. Powers
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bryson W. Katona
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
13
|
Gupta N, Drogan C, Kupfer SS. How many is too many? Polyposis syndromes and what to do next. Curr Opin Gastroenterol 2022; 38:39-47. [PMID: 34839308 PMCID: PMC8648991 DOI: 10.1097/mog.0000000000000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to help providers recognize, diagnose and manage gastrointestinal (GI) polyposis syndromes. RECENT FINDINGS Intestinal polyps include a number of histological sub-types such as adenomas, serrated, hamartomas among others. Over a quarter of individuals undergoing screening colonoscopy are expected to have colonic adenomas. Although it is not uncommon for adults to have a few GI polyps in their lifetime, some individuals are found to have multiple polyps of varying histology throughout the GI tract. In these individuals, depending on polyp histology, number, location and size as well as extra-intestinal features and/or family history, a polyposis syndrome should be considered with appropriate testing and management. SUMMARY Diagnosis and management of polyposis syndromes has evolved with advent of multigene panel testing and new data on optimal surveillance strategies. Evidence-based recommendations and current practice guidelines for polyposis syndromes are reviewed here. Areas of uncertainty and future research are also highlighted.
Collapse
Affiliation(s)
- Nina Gupta
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
14
|
Carroll BL, Zahn KE, Hanley JP, Wallace SS, Dragon JA, Doublié S. Caught in motion: human NTHL1 undergoes interdomain rearrangement necessary for catalysis. Nucleic Acids Res 2021; 49:13165-13178. [PMID: 34871433 PMCID: PMC8682792 DOI: 10.1093/nar/gkab1162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Base excision repair (BER) is the main pathway protecting cells from the continuous damage to DNA inflicted by reactive oxygen species. BER is initiated by DNA glycosylases, each of which repairs a particular class of base damage. NTHL1, a bifunctional DNA glycosylase, possesses both glycolytic and β-lytic activities with a preference for oxidized pyrimidine substrates. Defects in human NTHL1 drive a class of polyposis colorectal cancer. We report the first X-ray crystal structure of hNTHL1, revealing an open conformation not previously observed in the bacterial orthologs. In this conformation, the six-helical barrel domain comprising the helix-hairpin-helix (HhH) DNA binding motif is tipped away from the iron sulphur cluster-containing domain, requiring a conformational change to assemble a catalytic site upon DNA binding. We found that the flexibility of hNTHL1 and its ability to adopt an open configuration can be attributed to an interdomain linker. Swapping the human linker sequence for that of Escherichia coli yielded a protein chimera that crystallized in a closed conformation and had a reduced activity on lesion-containing DNA. This large scale interdomain rearrangement during catalysis is unprecedented for a HhH superfamily DNA glycosylase and provides important insight into the molecular mechanism of hNTHL1.
Collapse
Affiliation(s)
- Brittany L Carroll
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - John P Hanley
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
15
|
Jelsig AM, Byrjalsen A, Busk Madsen M, Kuhlmann TP, van Overeem Hansen T, Wadt KAW, Karstensen JG. Novel Genetic Causes of Gastrointestinal Polyposis Syndromes. Appl Clin Genet 2021; 14:455-466. [PMID: 34866929 PMCID: PMC8637176 DOI: 10.2147/tacg.s295157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hereditary polyposis syndromes are characterized by a large number and/or histopathologically specific polyps in the gastrointestinal tract and a high risk of both colorectal cancer and extracolonic cancer at an early age. While the genes responsible for some of the syndromes, eg, APC in familial adenomatous polyposis and STK11 in Peutz-Jeghers syndrome, have been known for decades, novel genetic causes have recently been detected that have shed light on the broader clinical spectrum of syndromes. Genetic diagnoses are important because they can facilitate a personalized surveillance program. Furthermore, at-risk members of the patient's family can be tested and enrolled in surveillance as needed. In some cases, prenatal diagnostics should be offered. In this paper, we describe the development in germline genetics of the hereditary polyposis syndromes over the last 10-12 years, their clinical characteristics, as well as how to implement genetic analyses in the diagnostic pipeline.
Collapse
Affiliation(s)
- Anne Marie Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Anna Byrjalsen
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Majbritt Busk Madsen
- Center for Genomic Medicine, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Tine Plato Kuhlmann
- Department of Pathology, University Hospital of Copenhagen, Herlev Hospital, Herlev, Denmark
| | | | - Karin A W Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John Gásdal Karstensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Polyposis Registry, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
16
|
Jelsig AM, Karstensen JG, Jespersen N, Ketabi Z, Lautrup C, Rønlund K, Sunde L, Wadt K, Thorlacius-Ussing O, Qvist N. Danish guidelines for management of non-APC-associated hereditary polyposis syndromes. Hered Cancer Clin Pract 2021; 19:41. [PMID: 34620187 PMCID: PMC8499431 DOI: 10.1186/s13053-021-00197-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Hereditary Polyposis Syndromes are a group of rare, inherited syndromes characterized by the presence of histopathologically specific or numerous intestinal polyps and an increased risk of cancer. Some polyposis syndromes have been known for decades, but the development in genetic technologies has allowed the identification of new syndromes.. The diagnosis entails surveillance from an early age, but universal guideline on how to manage and surveille these new syndromes are lacking. This paper represents a condensed version of the recent guideline (2020) from a working group appointed by the Danish Society of Medical Genetics and the Danish Society of Surgery on recommendations for the surveillance of patients with hereditary polyposis syndromes, including rare polyposis syndromes.
Collapse
Affiliation(s)
- Anne Marie Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | - John Gásdal Karstensen
- Danish Polyposis Registry, Gastrounit, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jespersen
- Danish Polyposis Registry, Gastrounit, Hvidovre Hospital, Hvidovre, Denmark
| | - Zohreh Ketabi
- Department of Gynecology and Obstetrics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Lautrup
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Karina Rønlund
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle Hospital, Vejle, Denmark
| | - Lone Sunde
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Niels Qvist
- Research Unit for Surgery, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
POLE, POLD1, and NTHL1: the last but not the least hereditary cancer-predisposing genes. Oncogene 2021; 40:5893-5901. [PMID: 34363023 DOI: 10.1038/s41388-021-01984-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
POLE, POLD1, and NTHL1 are involved in DNA replication and have recently been recognized as hereditary cancer-predisposing genes, because their alterations are associated with colorectal cancer and other tumors. POLE/POLD1-associated syndrome shows an autosomal dominant inheritance, whereas NTHL1-associated syndrome follows an autosomal recessive pattern. Although the prevalence of germline monoallelic POLE/POLD1 and biallelic NTHL1 pathogenic variants is low, they determine different phenotypes with a broad tumor spectrum overlapping that of other hereditary conditions like Lynch Syndrome or Familial Adenomatous Polyposis. Endometrial and breast cancers, and probably ovarian and brain tumors are also associated with POLE/POLD1 alterations, while breast cancer and other unusual tumors are correlated with NTHL1 pathogenic variants. POLE-mutated colorectal and endometrial cancers are associated with better prognosis and may show favorable responses to immunotherapy. Since POLE/POLD1-mutated tumors show a high tumor mutational burden producing an increase in neoantigens, the identification of POLE/POLD1 alterations could help select patients suitable for immunotherapy treatment. In this review, we will investigate the role of POLE, POLD1, and NTHL1 genetic variants in cancer predisposition, discussing the potential future therapeutic applications and assessing the utility of performing a routine genetic testing for these genes, in order to implement prevention and surveillance strategies in mutation carriers.
Collapse
|
18
|
Li N, Zethoven M, McInerny S, Devereux L, Huang YK, Thio N, Cheasley D, Gutiérrez-Enríquez S, Moles-Fernández A, Diez O, Nguyen-Dumont T, Southey MC, Hopper JL, Simard J, Dumont M, Soucy P, Meindl A, Schmutzler R, Schmidt MK, Adank MA, Andrulis IL, Hahnen E, Engel C, Lesueur F, Girard E, Neuhausen SL, Ziv E, Allen J, Easton DF, Scott RJ, Gorringe KL, James PA, Campbell IG. Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects. NPJ Breast Cancer 2021; 7:52. [PMID: 33980861 PMCID: PMC8115524 DOI: 10.1038/s41523-021-00255-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.
Collapse
Affiliation(s)
- Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Magnus Zethoven
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Lisa Devereux
- Lifepool, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Yu-Kuan Huang
- Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia
| | - Niko Thio
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Dane Cheasley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alejandro Moles-Fernández
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Orland Diez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Area of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Martine Dumont
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Alfons Meindl
- University of Munich, Campus Großhadern, Department of Gynecology and Obstetrics, Munich, Germany
| | - Rita Schmutzler
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
| | - Christoph Engel
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Elodie Girard
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Discipline of Medical Genetics, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Division of Molecular Medicine, Pathology North, Newcastle, NSW, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia.
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
Doddato G, Valentino F, Giliberti A, Papa FT, Tita R, Bruno LP, Resciniti S, Fallerini C, Benetti E, Palmieri M, Mencarelli MA, Fabbiani A, Bruttini M, Orrico A, Baldassarri M, Fava F, Lopergolo D, Lo Rizzo C, Lamacchia V, Mannucci S, Pinto AM, Currò A, Mancini V, Mari F, Renieri A, Ariani F. Exome sequencing in BRCA1-2 candidate familias: the contribution of other cancer susceptibility genes. Front Oncol 2021; 11:649435. [PMID: 34026625 PMCID: PMC8139251 DOI: 10.3389/fonc.2021.649435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is a condition in which the risk of breast and ovarian cancer is higher than in the general population. The prevalent pathogenesis is attributable to inactivating variants of the BRCA1-2 highly penetrant genes, however, other cancer susceptibility genes may also be involved. By Exome Sequencing (WES) we analyzed a series of 200 individuals selected for genetic testing in BRCA1-2 genes according to the updated National Comprehensive Cancer Network (NCCN) guidelines. Analysis by MLPA was performed to detect large BRCA1-2 deletions/duplications. Focusing on BRCA1-2 genes, data analysis identified 11 cases with pathogenic variants (4 in BRCA1 and 7 in BRCA1-2) and 12 with uncertain variants (7 in BRCA1 and 5 in BRCA2). Only one case was found with a large BRCA1 deletion. Whole exome analysis allowed to characterize pathogenic variants in 21 additional genes: 10 genes more traditionally associated to breast and ovarian cancer (ATM, BRIP1, CDH1, PALB2, PTEN, RAD51C, and TP53) (5% diagnostic yield) and 11 in candidate cancer susceptibility genes (DPYD, ERBB3, ERCC2, MUTYH, NQO2, NTHL1, PARK2, RAD54L, and RNASEL). In conclusion, this study allowed a personalized risk assessment and clinical surveillance in an increased number of HBOC families and to broaden the spectrum of causative variants also to candidate non-canonical genes.
Collapse
Affiliation(s)
- Gabriella Doddato
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Floriana Valentino
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Annarita Giliberti
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Filomena Tiziana Papa
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rossella Tita
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lucia Pia Bruno
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sara Resciniti
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Palmieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Alessandra Fabbiani
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alfredo Orrico
- Molecular Diagnosis and Characterization of Pathogenic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese and Clinical Genetics, ASL Toscana SudEst. Ospedale della Misericordia, Grosseto, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Diego Lopergolo
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Caterina Lo Rizzo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Vittoria Lamacchia
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sara Mannucci
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Aurora Currò
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Virginia Mancini
- Unit of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Ariani
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
20
|
Daca Alvarez M, Quintana I, Terradas M, Mur P, Balaguer F, Valle L. The Inherited and Familial Component of Early-Onset Colorectal Cancer. Cells 2021; 10:cells10030710. [PMID: 33806975 PMCID: PMC8005051 DOI: 10.3390/cells10030710] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Early-onset colorectal cancer (EOCRC), defined as that diagnosed before the age of 50, accounts for 10–12% of all new colorectal cancer (CRC) diagnoses. Epidemiological data indicate that EOCRC incidence is increasing, despite the observed heterogeneity among countries. Although the cause for such increase remains obscure, ≈13% (range: 9–26%) of EOCRC patients carry pathogenic germline variants in known cancer predisposition genes, including 2.5% of patients with germline pathogenic variants in hereditary cancer genes traditionally not associated with CRC predisposition. Approximately 28% of EOCRC patients have family history of the disease. This article recapitulates current evidence on the inherited syndromes that predispose to EOCRC and its familial component. The evidence gathered support that all patients diagnosed with an EOCRC should be referred to a specialized genetic counseling service and offered somatic and germline pancancer multigene panel testing. The identification of a germline pathogenic variant in a known hereditary cancer gene has relevant implications for the clinical management of the patient and his/her relatives, and it may guide surgical and therapeutic decisions. The relative high prevalence of hereditary cancer syndromes and familial component among EOCRC patients supports further research that helps understand the genetic background, either monogenic or polygenic, behind this increasingly common disease.
Collapse
Affiliation(s)
- Maria Daca Alvarez
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain;
| | - Isabel Quintana
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Correspondence: (F.B.); (L.V.); Tel.: +34-932275400 (ext. 5418) (F.B.); +34-93-260-7145 (L.V.)
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (M.T.); (P.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (F.B.); (L.V.); Tel.: +34-932275400 (ext. 5418) (F.B.); +34-93-260-7145 (L.V.)
| |
Collapse
|
21
|
Salo-Mullen EE, Maio A, Mukherjee S, Bandlamudi C, Shia J, Kemel Y, Cadoo KA, Liu Y, Carlo M, Ranganathan M, Kane S, Srinivasan P, Chavan SS, Donoghue MTA, Bourque C, Sheehan M, Tejada PR, Patel Z, Arnold AG, Kennedy JA, Amoroso K, Breen K, Catchings A, Sacca R, Marcell V, Markowitz AJ, Latham A, Walsh M, Misyura M, Ceyhan-Birsoy O, Solit DB, Berger MF, Robson ME, Taylor BS, Offit K, Mandelker D, Stadler ZK. Prevalence and Characterization of Biallelic and Monoallelic NTHL1 and MSH3 Variant Carriers From a Pan-Cancer Patient Population. JCO Precis Oncol 2021; 5:PO.20.00443. [PMID: 34250384 PMCID: PMC8232072 DOI: 10.1200/po.20.00443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023] Open
Abstract
NTHL1 and MSH3 have been implicated as autosomal recessive cancer predisposition genes. Although individuals with biallelic NTHL1 and MSH3 pathogenic variants (PVs) have increased cancer and polyposis risk, risks for monoallelic carriers are uncertain. We sought to assess the prevalence and characterize NTHL1 and MSH3 from a large pan-cancer patient population. MATERIALS AND METHODS Patients with pan-cancer (n = 11,081) underwent matched tumor-normal sequencing with consent for germline analysis. Medical records and tumors were reviewed and analyzed. Prevalence of PVs was compared with reference controls (Genome Aggregation Database). RESULTS NTHL1-PVs were identified in 40 patients including 39 monoallelic carriers (39/11,081 = 0.35%) and one with biallelic variants (1/11,081 = 0.009%) and a diagnosis of isolated early-onset breast cancer. NTHL1-associated mutational signature 30 was identified in the tumors of the biallelic patient and two carriers. Colonic polyposis was not identified in any NTHL1 patient. MSH3-PVs were identified in 13 patients, including 12 monoallelic carriers (12/11,081 = 0.11%) and one with biallelic MSH3 variants (1/11,081 = 0.009%) and diagnoses of later-onset cancers, attenuated polyposis, and abnormal MSH3-protein expression. Of the 12 MSH3 carriers, two had early-onset cancer diagnoses with tumor loss of heterozygosity of the wild-type MSH3 allele. Ancestry-specific burden tests demonstrated that NTHL1 and MSH3 prevalence was not significantly different in this pan-cancer population versus controls. CONCLUSION NTHL1 and MSH3 germline alterations were not enriched in this pan-cancer patient population. However, tumor-specific findings, such as mutational signature 30 and loss of heterozygosity of the wild-type allele, suggest the potential contribution of monoallelic variants to tumorigenesis in a subset of patients.
Collapse
Affiliation(s)
- Erin E. Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anna Maio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chaitanya Bandlamudi
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yelena Kemel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karen A. Cadoo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Megha Ranganathan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sarah Kane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Preethi Srinivasan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shweta S. Chavan
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark T. A. Donoghue
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caitlin Bourque
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Zalak Patel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Angela G. Arnold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jennifer A. Kennedy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kimberly Amoroso
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kelsey Breen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amanda Catchings
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rosalba Sacca
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vanessa Marcell
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Arnold J. Markowitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maksym Misyura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ozge Ceyhan-Birsoy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David B. Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael F. Berger
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark E. Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Barry S. Taylor
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zsofia K. Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
22
|
Boulouard F, Kasper E, Buisine MP, Lienard G, Vasseur S, Manase S, Bahuau M, Barouk Simonet E, Bubien V, Coulet F, Cusin V, Dhooge M, Golmard L, Goussot V, Hamzaoui N, Lacaze E, Lejeune S, Mauillon J, Beaumont MP, Pinson S, Tlemsani C, Toulas C, Rey JM, Uhrhammer N, Bougeard G, Frebourg T, Houdayer C, Baert-Desurmont S. Further delineation of the NTHL1 associated syndrome: A report from the French Oncogenetic Consortium. Clin Genet 2021; 99:662-672. [PMID: 33454955 DOI: 10.1111/cge.13925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Biallelic pathogenic variants in the NTHL1 (Nth like DNA glycosylase 1) gene cause a recently identified autosomal recessive hereditary cancer syndrome predisposing to adenomatous polyposis and colorectal cancer. Half of biallelic carriers also display multiple colonic or extra-colonic primary tumors, mainly breast, endometrium, urothelium, and brain tumors. Published data designate NTHL1 as an important contributor to hereditary cancers but also underline the scarcity of available informations. Thanks to the French oncogenetic consortium (Groupe Génétique et Cancer), we collected NTHL1 variants from 7765 patients attending for hereditary colorectal cancer or polyposis (n = 3936) or other hereditary cancers (n = 3829). Here, we describe 10 patients with pathogenic biallelic NTHL1 germline variants, that is, the second largest NTHL1 series. All carriers were from the "colorectal cancer or polyposis" series. All nine biallelic carriers who underwent colonoscopy presented adenomatous polyps. For digestive cancers, average age at diagnosis was 56.2 and we reported colorectal, duodenal, caecal, and pancreatic cancers. Extra-digestive malignancies included sarcoma, basal cell carcinoma, breast cancer, urothelial carcinoma, and melanoma. Although tumor risks remain to be precisely defined, these novel data support NTHL1 inclusion in diagnostic panel testing. Colonic surveillance should be conducted based on MUTYH recommendations while extra-colonic surveillance has to be defined.
Collapse
Affiliation(s)
- Flavie Boulouard
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France.,Comprehensive Cancer Center François Baclesse, Laboratory of Cancer Biology and Genetics, Caen, France
| | - Edwige Kasper
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Marie-Pierre Buisine
- Department of Biochemistry and Molecular Biology, Lille University Hospital Center, UMR 1277 Inserm-9020 CNRS, Lille University, Lille, France
| | - Gwendoline Lienard
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Stéphanie Vasseur
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Sandrine Manase
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Michel Bahuau
- Medical genetics Department, Henri Mondor Hospital, Créteil, France
| | | | | | - Florence Coulet
- Department of Genetics, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France
| | - Véronica Cusin
- Department of Genetics, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France
| | - Marion Dhooge
- Gastroenterology Unit, Cochin University Hospital, Paris Descartes University, Paris, France
| | - Lisa Golmard
- Institut Curie, Department of Genetics and Paris Sciences, Lettres Research University, Paris, France
| | - Vincent Goussot
- Department of Tumor Biology and Pathology, Georges-François Leclerc Center, Dijon, France
| | - Nadim Hamzaoui
- Department of Oncogenetics, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Elodie Lacaze
- Department of Genetics, Le Havre General Hospital, Normandy Centre for Genomic and Personalized Medicine, Le Havre, France
| | - Sophie Lejeune
- Genetic Pathology Biology Department, Lille University Hospital Center, Jeanne de Flandre Hospital, Lille, France
| | - Jacques Mauillon
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | | | - Stéphane Pinson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, Bron, France
| | - Camille Tlemsani
- Department of Oncogenetics, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Christine Toulas
- Oncogenetic Laboratory, Cancer University Institute Toulouse Oncopole, Toulouse, France
| | - Jean-Marc Rey
- Department of Pathology and Oncobiology, Montpellier University Hospital, Montpellier, France
| | - Nancy Uhrhammer
- Centre Jean Perrin, Oncogenetics and Clermont Auvergne University, INSERM U1240, Clermont-Ferrand, France
| | - Gaëlle Bougeard
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Thierry Frebourg
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Claude Houdayer
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Stéphanie Baert-Desurmont
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| |
Collapse
|
23
|
Kumpula T, Tervasmäki A, Mantere T, Koivuluoma S, Huilaja L, Tasanen K, Winqvist R, de Voer RM, Pylkäs K. Evaluating the role of NTHL1 p.Q90* allele in inherited breast cancer predisposition. Mol Genet Genomic Med 2020; 8:e1493. [PMID: 32949222 PMCID: PMC7667375 DOI: 10.1002/mgg3.1493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
Background Rare protein truncating variants of NTHL1 gene are causative for the recently described, recessively inherited NTHL1 tumor syndrome that is characterized by an increased lifetime risk for colorectal cancer, colorectal polyposis, and breast cancer. Although there is strong evidence for breast cancer being a part of the cancer spectrum in these families, the role of pathogenic NTHL1 variants in breast cancer susceptibility in general population remains unclear. Methods We tested the prevalence of NTHL1 nonsense variant c.268C>T, p.Q90*, which is the major allele in NTHL1 families and also shows enrichment in the Finnish population, in a total of 1333 breast cancer patients. Genotyping was performed for DNA samples extracted from peripheral blood by using high‐resolution melt analysis. Results Sixteen NTHL1 p.Q90* heterozygous carriers were identified (1.2%, p = 0.61): 5 in hereditary cohort (n = 234, 2.1%, p = 0.39) and 11 in unselected cohort (n = 1099, 1.0%, p = 0.36). This frequency is equal to that in the general population (19/1324, 1.4%). No NTHL1 p.Q90* homozygotes were identified. Conclusion Our results indicate that NTHL1 p.Q90* heterozygous carriers do not have an increased risk for breast cancer and that the variant is unlikely to be a significant contributor to breast cancer risk at the population level. Although there is strong evidence for breast cancer being a part of the cancer spectrum of recessively inherited NTHL1 tumor syndrome, the role of pathogenic NTHL1 variants in breast cancer susceptibility in the general population remains unclear. Here, we have tested the prevalence of NTHL1 nonsense variant c.268C>T, p.Q90*, which is the major allele in NTHL1 families and also shows enrichment in the Finnish population, in a total of 1333 breast cancer patients. Our results indicate that NTHL1 p.Q90* heterozygous carriers do not have an increased risk for breast cancer and that the variant is unlikely to be a significant contributor to breast cancer risk at the population level, a notion that is particularly important for genetic counseling.
Collapse
Affiliation(s)
- Timo Kumpula
- Laboratory of Cancer Genetics and Tumor Biology, University of Oulu, Oulu, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, University of Oulu, Oulu, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, University of Oulu, Oulu, Finland.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, University of Oulu, Oulu, Finland
| | - Laura Huilaja
- Department of Dermatology and Medical Research Center Oulu, PEDEGO Research Unit, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Kaisa Tasanen
- Department of Dermatology and Medical Research Center Oulu, PEDEGO Research Unit, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, University of Oulu, Oulu, Finland
| | - Richarda M de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, University of Oulu, Oulu, Finland
| |
Collapse
|