1
|
Thong PM, Wong YH, Kornfeld H, Goletti D, Ong CWM. Immune dysregulation of diabetes in tuberculosis. Semin Immunol 2025; 78:101959. [PMID: 40267700 DOI: 10.1016/j.smim.2025.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The rising prevalence of diabetes mellitus (DM) is undermining global efforts to eliminate tuberculosis (TB). Most studies found that patients with pulmonary TB and DM have more cavitary lung lesions, higher mycobacterial burden on the lungs, longer periods of infectiousness, and worse outcomes. Both human and animal studies indicate that TB-DM is associated with impaired innate and adaptive immune responses, resulting in delayed bacterial clearance. Similar observations have been noted in other infections, such as those caused by Klebsiella pneumoniae, where DM contributes to increased susceptibility and worse outcomes due to compromised immune functions including defective phagocytosis and impaired early immune cell recruitment. This review delves into the mechanisms of immune dysfunction in TB-DM, exploring how DM increases TB susceptibility and severity. By elucidating these complex interactions, this review aims to offer insights into more effective strategies for managing and improving outcomes for patients with this challenging comorbidity.
Collapse
Affiliation(s)
- Pei Min Thong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Hao Wong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology, National Institute for infectious diseases-IRCCS L. Spallanzani, Rome, Italy.
| | - Catherine W M Ong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.
| |
Collapse
|
2
|
Loubet F, Robert C, Leclaire C, Theillière C, Saint-Béat C, Lenga Ma Bonda W, Zhai R, Minet-Quinard R, Belville C, Blanchon L, Sapin V, Garnier M, Jabaudon M. Effects of sevoflurane on lung alveolar epithelial wound healing and survival in a sterile in vitro model of acute respiratory distress syndrome. Exp Cell Res 2024; 438:114030. [PMID: 38583855 DOI: 10.1016/j.yexcr.2024.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.
Collapse
Affiliation(s)
- Florian Loubet
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Cédric Robert
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Charlotte Leclaire
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Camille Theillière
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Cécile Saint-Béat
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | | | - Ruoyang Zhai
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Régine Minet-Quinard
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Loic Blanchon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Marc Garnier
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
4
|
Mitroi RM, Padureanu V, Mitrea A, Protasiewicz Timofticiuc DC, Rosu MM, Clenciu D, Enescu A, Padureanu R, Tenea Cojan TS, Vladu IM. Prothrombotic status in COVID‑19 with diabetes mellitus (Review). Biomed Rep 2023; 19:65. [PMID: 37649534 PMCID: PMC10463232 DOI: 10.3892/br.2023.1647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused an important social and health impact worldwide and the coronavirus disease-19 (COVID-19) has elicited devastating economy problems. The pathogenesis of SARS-CoV-2 infection is a complex mechanism and is considered to be the result of a challenging interaction, in which host and virus immune responses are the key elements. In this process, several inflammatory pathways are involved, and their initiation can have multiple consequences with a considerable impact on evolution, such as hyperinflammation and cytokine storm, thereby promoting activation of the coagulation system and fibrinolytic activity suppression. It is commonly recognized that COVID-19 severity involves multiple factors, including diabetes which increases the risk of developing different complications. This could be as a result of the low-grade inflammation as well as the innate and adaptive immune response dysfunction that is observed in patients with diabetes mellitus. In patients with diabetes, multiple metabolic disturbances which have a major impact in disturbing the balance between coagulation and fibrinolysis were discovered, thus the risk for thrombotic events is increased. Diabetes has been recognized as an important severity prognosis factor in COVID-19 cases and considering there is a significant association between diabetes and prothrombotic status, it could be responsible for the increased risk of thrombotic events with a worse prognosis.
Collapse
Affiliation(s)
- Roxana Madalina Mitroi
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Clinical Municipal Hospital ‘Philanthropy’ of Craiova, 200143 Craiova, Romania
| | | | - Maria Magdalena Rosu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Clinical Municipal Hospital ‘Philanthropy’ of Craiova, 200143 Craiova, Romania
| | - Aurelia Enescu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Rodica Padureanu
- Department of Pneumology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Tiberiu Stefanita Tenea Cojan
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
5
|
Malter JS. Pin1 and Alzheimer's disease. Transl Res 2023; 254:24-33. [PMID: 36162703 PMCID: PMC10111655 DOI: 10.1016/j.trsl.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is an immense and growing public health crisis. Despite over 100 years of investigation, the etiology remains elusive and therapy ineffective. Despite current gaps in knowledge, recent studies have identified dysfunction or loss-of-function of Pin1, a unique cis-trans peptidyl prolyl isomerase, as an important step in AD pathogenesis. Here I review the functionality of Pin1 and its role in neurodegeneration.
Collapse
Affiliation(s)
- James S Malter
- Department of Pathology, UT Southwestern Medical Center, 5333 Harry Hines Blvd, Dallas, TX 75390.
| |
Collapse
|
6
|
Gkouveris I, Hadaya D, Elzakra N, Soundia A, Bezouglaia O, Dry SM, Pirih F, Aghaloo T, Tetradis S. Inhibition of HMGB1/RAGE Signaling Reduces the Incidence of Medication-Related Osteonecrosis of the Jaw (MRONJ) in Mice. J Bone Miner Res 2022; 37:1775-1786. [PMID: 35711109 PMCID: PMC9474692 DOI: 10.1002/jbmr.4637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/06/2022]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication of antiresorptive or antiangiogenic medications, used in the treatment of bone malignancy or osteoporosis. Bone necrosis, mainly represented by osteocytic death, is always present in MRONJ sites; however, the role of osteocyte death in MRONJ pathogenesis is unknown. High mobility group box 1 (HMGB1) is a non-histone nucleoprotein that in its acetylated form accumulates in the cytoplasm, whereas non-acetylated HMGB1 localizes in the nucleus. SIRT1 deacetylase regulates cellular localization of HMGB1. Interestingly, HMGB1 is released during cell necrosis and promotes inflammation through signaling cascades, including activation of the RAGE receptor. Here, we utilized a well-established mouse MRONJ model that utilizes ligature-induced experimental periodontitis (EP) and treatment with either vehicle or zolendronic acid (ZA). Initially, we evaluated HMGB1-SIRT1 expression in osteocytes at 1, 2, and 4 weeks of treatment. Significantly increased cytoplasmic and perilacunar HMGB1 expression was observed at EP sites of ZA versus vehicle (Veh) animals at all time points. SIRT1 colocalized with cytoplasmic HMGB1 and presented a statistically significant increased expression at the EP sites of ZA animals for all time points. RAGE expression was significantly higher in the submucosal tissues EP sites of ZA animals compared with those in vehicle group. To explore the significance of increased cytoplasmic and extracellular HMGB1 and increased RAGE expression in MRONJ pathogenesis, we used pharmacologic inhibitors of these molecules. Combined HMGB1/RAGE inhibition resulted in lower MRONJ incidence with statistically significant decrease in osteonecrotic areas and bone exposure versus non-inhibitor treated ZA animals. Together, our data point to the role of HMGB1 as a central alarmin, overexpressed at early phase of MRONJ pathogenesis during osteocytic death. Moreover, HMGB1-RAGE pathway may represent a new promising therapeutic target in patients at high risk of MRONJ. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Danny Hadaya
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Naseim Elzakra
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Akrivoula Soundia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sarah M Dry
- UCLA Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Flavia Pirih
- Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sotirios Tetradis
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Salehi M, Amiri S, Ilghari D, Hasham LFA, Piri H. The Remarkable Roles of the Receptor for Advanced Glycation End Products (RAGE) and Its Soluble Isoforms in COVID-19: The Importance of RAGE Pathway in the Lung Injuries. Indian J Clin Biochem 2022; 38:159-171. [PMID: 35999871 PMCID: PMC9387879 DOI: 10.1007/s12291-022-01081-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Abstract
The respiratory symptoms of acute respiratory distress syndrome (ARDS) in the coronavirus disease 2019 (COVID-19) patients is associated with accumulation of pre-inflammatory molecules such as advanced glycation end-products (AGES), calprotectin, high mobility group box family-1 (HMGB1), cytokines, angiotensin converting enzyme 2 (ACE2), and other molecules in the alveolar space of lungs and plasma. The receptor for advanced glycation end products (RAGEs), which is mediated by the mitogen-activated protein kinase (MAPK), plays a critical role in the severity of chronic inflammatory diseases such as diabetes mellitus (DM) and ARDS. The RAGE gene is most expressed in the alveolar epithelial cells (AECs) of the pulmonary system. Several clinical trials are now being conducted to determine the possible association between the levels of soluble isoforms of RAGE (sRAGE and esRAGE) and the severity of the disease in patients with ARDS and acute lung injury (ALI). In the current article, we reviewed the most recent studies on the RAGE/ligands axis and sRAGE/esRAGE levels in acute respiratory illness, with a focus on COVID-19–associated ARDS (CARDS) patients. According to the research conducted so far, sRAGE/esRAGE measurements in patients with CARDS can be used as a powerful chemical indicator among other biomarkers for assessment of early pulmonary involvement. Furthermore, inhibiting RAGE/MAPK and Angiotensin II receptor type 1 (ATR1) in CARDS patients can be a powerful strategy for diminishing cytokine storm and severe respiratory symptoms.
Collapse
Affiliation(s)
- Mitra Salehi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Ilghari
- Midland Memorial Hospital, 400 Rosalind Redfern Grover Pkwy, Midland, TX 79701 USA
| | | | - Hossein Piri
- Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
8
|
Lim MJ, Zinter MS, Chen L, Wong KMY, Bhalla A, Gala K, Guglielmo M, Alkhouli M, Huard LL, Hanudel MR, Vangala S, Schwingshackl A, Matthay M, Sapru A. Beyond the Alveolar Epithelium: Plasma Soluble Receptor for Advanced Glycation End Products Is Associated With Oxygenation Impairment, Mortality, and Extrapulmonary Organ Failure in Children With Acute Respiratory Distress Syndrome. Crit Care Med 2022; 50:837-847. [PMID: 34678846 PMCID: PMC9035468 DOI: 10.1097/ccm.0000000000005373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Soluble receptor for advanced glycation end products is a known plasma marker of alveolar epithelial injury. However, RAGE is also expressed on cell types beyond the lung, and its activation leads to up-regulation of pro-inflammatory mediators. We sought to examine the relationship between plasma soluble receptor for advanced glycation end products and primary pulmonary dysfunction, extrapulmonary organ dysfunction, and mortality in pediatric acute respiratory distress syndrome patients at two early time points following acute respiratory distress syndrome diagnosis and compare these results to plasma surfactant protein-D, a marker of pure alveolar epithelial injury. DESIGN Prospective observational study. SETTING Five academic PICUs. PATIENTS Two hundred fifty-eight pediatric patients 30 days to 18 years old meeting Berlin Criteria for acute respiratory distress syndrome. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Plasma was collected for soluble receptor for advanced glycation end products and surfactant protein-D measurements within 24 hours (day 1) and 48 to 72 hours (day 3) after acute respiratory distress syndrome diagnosis. Similar to surfactant protein-D, plasma soluble receptor for advanced glycation end products was associated with a higher oxygenation index (p < 0.01) and worse lung injury score (p < 0.001) at the time of acute respiratory distress syndrome diagnosis. However, unlike surfactant protein-D, plasma soluble receptor for advanced glycation end products was associated with worse extrapulmonary Pediatric Logistic Organ Dysfunction score during ICU stay (day 3; p < 0.01) and positively correlated with plasma levels of interleukin-6 (p < 0.01), tumor necrosis factor-α (p < 0.01), and angiopoietin-2 (p < 0.01). Among children with indirect lung injury, plasma soluble receptor for advanced glycation end products was associated with mortality independent of age, sex, race, cancer/bone marrow transplant, and Pediatric Risk of Mortality score (day 3; odds ratio, 3.14; 95% CI, 1.46-6.75; p < 0.01). CONCLUSIONS Unlike surfactant protein-D, which is primarily localized to the alveolar epithelium plasma soluble receptor for advanced glycation end products is systemically expressed and correlates with markers of inflammation, extrapulmonary multiple organ dysfunction, and death in pediatric acute respiratory distress syndrome with indirect lung injury. This suggests that unlike surfactant protein-D, soluble receptor for advanced glycation end products is a multifaceted marker of alveolar injury and increased inflammation and that receptor for advanced glycation end products activation may contribute to the pathogenesis of multiple organ failure among children with indirect acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Michelle J. Lim
- UC Davis School of Medicine, UC Davis Children’s Hospital, Department of Pediatrics, Division of Critical Care, Sacramento, CA, USA
| | - Matt S. Zinter
- UCSF School of Medicine, Benioff Children’s Hospital, Department of Pediatrics, Division of Critical Care, San Francisco, CA, USA
| | - Lucia Chen
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Kayley Man Yee Wong
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Anoopindar Bhalla
- USC Keck School of Medicine, Children’s Hospital Los Angeles, Department of Anesthesiology and Critical Care Medicine, Los Angeles, CA, USA
| | - Kinisha Gala
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Mona Guglielmo
- Loma Linda University School of Medicine, Loma Linda University Children’s Hospital, Department of Pediatrics, Division of Critical Care, Loma Linda, CA, USA
| | - Mustafa Alkhouli
- UCSF School of Medicine, Benioff Children’s Hospital, Department of Pediatrics, Division of Critical Care, San Francisco, CA, USA
| | - Leanna L. Huard
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Mark R. Hanudel
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Nephrology, Los Angeles, CA, USA
| | - Sitaram Vangala
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Andreas Schwingshackl
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Michael Matthay
- Departments of Medicine and Anesthesia and the Cardiovascular Research Institute, UCSF, San Francisco, CA, USA
| | - Anil Sapru
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| |
Collapse
|
9
|
Navel V, Malecaze J, Belville C, Choltus H, Henrioux F, Dutheil F, Malecaze F, Chiambaretta F, Blanchon L, Sapin V. Dysregulation of Receptor for Advanced Glycation End Products (RAGE) Expression as a Biomarker of Keratoconus. DISEASE MARKERS 2022; 2022:1543742. [PMID: 35075374 PMCID: PMC8783726 DOI: 10.1155/2022/1543742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Because of the implications of Receptor for Advanced Glycation End Products (RAGE) in keratoconus (KC), we describe a differential expression of RAGE transcripts and proteins in corneal tissues and tears of KC and healthy patients. METHODS Using a case-controlled study, corneal epitheliums and tears of KC and healthy subjects were obtained during corneal collagen cross-linking and photorefractive keratectomy (PKR) and during usual consultations. Quantitative reverse transcription (RT-qPCR) and Western-Blot were performed to analyze RAGE transcripts and proteins' expression in corneal tissues and tears. RESULTS One hundred and six patients were included in this study. The characteristics of the patients were as follows: 56 KC (25 corneal epithelium and 31 tears) and 50 control subjects (25 corneal epithelium and 25 tears). Transcripts of RAGE, HMGB1, and S100 family ligands were quantified by RT-qPCR, identifying a significantly higher expression of RAGE and HMGB1 in the healthy group than in the KC group (p = 0.03 and 0.04, respectively). Western Blot showed a significantly higher fl-RAGE expression in KC corneal epithelium than control (p < 0.001) and lower s-RAGE expression in KC tears than control (p = 0.04). CONCLUSIONS Linked with the inflammatory process occurring in KC pathophysiology, we propose for the first time that the RAGE expression (total and truncated forms of receptor and ligands) in KC corneal tissues and tear samples provides viable biomarkers.
Collapse
Affiliation(s)
- Valentin Navel
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Ophthalmology, F-63000 Clermont-Ferrand, France
- Translational Approach to Epithelial Injury and Repair Team, University of Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Genetic Reproduction and Development Laboratory (GReD), F-63000 Clermont-Ferrand, France
| | - Jean Malecaze
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Ophthalmology, F-63000 Clermont-Ferrand, France
- Translational Approach to Epithelial Injury and Repair Team, University of Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Genetic Reproduction and Development Laboratory (GReD), F-63000 Clermont-Ferrand, France
| | - Corinne Belville
- Translational Approach to Epithelial Injury and Repair Team, University of Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Genetic Reproduction and Development Laboratory (GReD), F-63000 Clermont-Ferrand, France
| | - Héléna Choltus
- Translational Approach to Epithelial Injury and Repair Team, University of Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Genetic Reproduction and Development Laboratory (GReD), F-63000 Clermont-Ferrand, France
| | - Fanny Henrioux
- Translational Approach to Epithelial Injury and Repair Team, University of Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Genetic Reproduction and Development Laboratory (GReD), F-63000 Clermont-Ferrand, France
| | - Frédéric Dutheil
- University of Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Witty Fit, F-63000 Clermont-Ferrand, France
| | - François Malecaze
- Ophthalmology Department, Pierre-Paul Riquet Hospital, Toulouse University Hospital, Toulouse, France
| | - Frédéric Chiambaretta
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Ophthalmology, F-63000 Clermont-Ferrand, France
- Translational Approach to Epithelial Injury and Repair Team, University of Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Genetic Reproduction and Development Laboratory (GReD), F-63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- Translational Approach to Epithelial Injury and Repair Team, University of Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Genetic Reproduction and Development Laboratory (GReD), F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Translational Approach to Epithelial Injury and Repair Team, University of Clermont Auvergne, CNRS UMR 6293, INSERM U1103, Genetic Reproduction and Development Laboratory (GReD), F-63000 Clermont-Ferrand, France
- Department of Biochemistry and Molecular Genetic, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
10
|
Acute Lung Injury Biomarkers in the Prediction of COVID-19 Severity: Total Thiol, Ferritin and Lactate Dehydrogenase. Antioxidants (Basel) 2021; 10:antiox10081221. [PMID: 34439469 PMCID: PMC8388961 DOI: 10.3390/antiox10081221] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 (COVID-19) patients who develop acute respiratory distress syndrome (ARDS) can suffer acute lung injury, or even death. Early identification of severe disease is essential in order to control COVID-19 and improve prognosis. Oxidative stress (OS) appears to play an important role in COVID-19 pathogenesis; we therefore conceived a study of the potential discriminative ability of serum biomarkers in patients with ARDS and those with mild to moderate disease (non-ARDS). 60 subjects were enrolled in a single-centre, prospective cohort study of consecutively admitted patients: 29 ARDS/31 non-ARDS. Blood samples were drawn and marker levels analysed by spectrophotometry and immunoassay techniques. C-reactive protein (CRP), lactate dehydrogenase (LDH), and ferritin were significantly higher in ARDS versus non-ARDS cases at hospital admission. Leukocytes, LDH, ferritin, interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α) were also significantly elevated in ARDS compared to non-ARDS patients during the hospital stay. Total thiol (TT) was found to be significantly lower in ARDS. Conversely, D-dimer, matrix metalloproteinase-9 (MMP-9) and advanced glycosylated end products (AGE) were elevated. Leukocytes, LDH, CRP, ferritin and IL-6 were found to be significantly higher in non-survivors. However, lymphocyte, tumour necrosis factor beta (TGF-β), and TT were lower. In summary, our results support the potential value of TT, ferritin and LDH as prognostic biomarkers for ARDS development in COVID-19 patients, distinguishing non-ARDS from ARDS (AUCs = 0.92; 0.91; 0.89) in a fast and cost-effective manner. These oxidative/inflammatory parameters appear to play an important role in COVID-19 monitoring and can be used in the clinical management of patients.
Collapse
|
11
|
Rojas A, Lindner C, Gonzàlez I, Morales MA. Advanced-glycation end-products axis: A contributor to the risk of severe illness from COVID-19 in diabetes patients. World J Diabetes 2021; 12:590-602. [PMID: 33995847 PMCID: PMC8107984 DOI: 10.4239/wjd.v12.i5.590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Compelling pieces of evidence derived from both clinical and experimental research has demonstrated the crucial role of the receptor for advanced-glycation end-products (RAGE) in orchestrating a plethora of proinflammatory cellular responses leading to many of the complications and end-organ damages reported in patients with diabetes mellitus (DM). During the coronavirus disease 2019 (COVID-19) pandemic, many clinical reports have pointed out that DM increases the risk of COVID-19 complications, hospitalization requirements, as well as the overall severe acute respiratory syndrome coronavirus 2 case-fatality rate. In the present review, we intend to focus on how the basal activation state of the RAGE axis in common preexisting conditions in DM patients such as endothelial dysfunction and hyperglycemia-related prothrombotic phenotype, as well as the contribution of RAGE signaling in lung inflammation, may then lead to the increased mortality risk of COVID-19 in these patients. Additionally, the cross-talk between the RAGE axis with either another severe acute respiratory syndrome coronavirus 2 receptor molecule different of angiotensin-converting enzyme 2 or the renin-angiotensin system imbalance produced by viral infection, as well as the role of this multi-ligand receptor on the obesity-associated low-grade inflammation in the higher risk for severe illness reported in diabetes patients with COVID-19, are also discussed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Ileana Gonzàlez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
12
|
Chiappalupi S, Salvadori L, Vukasinovic A, Donato R, Sorci G, Riuzzi F. Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Life Sci 2021; 272:119251. [PMID: 33636175 PMCID: PMC7900755 DOI: 10.1016/j.lfs.2021.119251] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
A novel infectious disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in December 2019 and declared as a global pandemic by the World Health. Approximately 15% of patients with COVID-19 progress to severe pneumonia and eventually develop acute respiratory distress syndrome (ARDS), septic shock and/or multiple organ failure with high morbidity and mortality. Evidence points towards a determinant pathogenic role of members of the renin-angiotensin system (RAS) in mediating the susceptibility, infection, inflammatory response and parenchymal injury in lungs and other organs of COVID-19 patients. The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, has important roles in pulmonary pathological states, including fibrosis, pneumonia and ARDS. RAGE overexpression/hyperactivation is essential to the deleterious effects of RAS in several pathological processes, including hypertension, chronic kidney and cardiovascular diseases, and diabetes, all of which are major comorbidities of SARS-CoV-2 infection. We propose RAGE as an additional molecular target in COVID-19 patients for ameliorating the multi-organ pathology induced by the virus and improving survival, also in the perspective of future infections by other coronaviruses.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy
| | - Aleksandra Vukasinovic
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Rosario Donato
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia 06132, Italy
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy.
| |
Collapse
|
13
|
Monjezi M, Jamaati H, Noorbakhsh F. Attenuation of ventilator-induced lung injury through suppressing the pro-inflammatory signaling pathways: A review on preclinical studies. Mol Immunol 2021; 135:127-136. [PMID: 33895577 DOI: 10.1016/j.molimm.2021.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Mechanical ventilation (MV) is a relatively common medical intervention in ICU patients. The main side effect of MV is the so-called "ventilator-induced lung injury" (VILI). The pathogenesis of VILI is not completely understood; however, it has been reported that MV might be associated with up-regulation of various inflammatory mediators within the lung tissue and that these mediators might act as pathogenic factors in lung tissue injury. One potential mechanism for the generation of inflammatory mediators is through the release of endogenous molecules known as damage associated molecular patterns (DAMPs). These molecules are released from injured tissues and can bind to pattern recognition receptors (PRRs). PRR activation generally leads to the production and release of inflammation-related molecules including innate immune cytokines and chemokines. It has been suggested that blocking DAMP/PRR signaling pathways might diminish the progression of VILI. Herein, we review the latest findings with regard to the effects of DAMP/PRRs and their blockade, as well as the potential therapeutic targets and future research directions in VILI. Results of studies performed on human samples, animal models of disease, as well as relevant in vitro systems will be discussed.
Collapse
Affiliation(s)
- Mojdeh Monjezi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kizilay Mancini O, Huynh DN, Menard L, Shum-Tim D, Ong H, Marleau S, Colmegna I, Servant MJ. Ex vivo Ikkβ ablation rescues the immunopotency of mesenchymal stromal cells from diabetics with advanced atherosclerosis. Cardiovasc Res 2021; 117:756-766. [PMID: 32339220 PMCID: PMC7898947 DOI: 10.1093/cvr/cvaa118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Diabetes is a conventional risk factor for atherosclerotic cardiovascular disease and myocardial infarction (MI) is the most common cause of death among these patients. Mesenchymal stromal cells (MSCs) in patients with type 2 diabetes mellitus (T2DM) and atherosclerosis have impaired ability to suppress activated T-cells (i.e. reduced immunopotency). This is mediated by an inflammatory shift in MSC-secreted soluble factors (i.e. pro-inflammatory secretome) and can contribute to the reduced therapeutic effects of autologous T2DM and atherosclerosis-MSC post-MI. The signalling pathways driving the altered secretome of atherosclerosis- and T2DM-MSC are unknown. Specifically, the effect of IκB kinase β (IKKβ) modulation, a key regulator of inflammatory responses, on the immunopotency of MSCs from T2DM patients with advanced atherosclerosis has not been studied. METHODS AND RESULTS MSCs were isolated from adipose tissue obtained from patients with (i) atherosclerosis and T2DM (atherosclerosis+T2DM MSCs, n = 17) and (ii) atherosclerosis without T2DM (atherosclerosis MSCs, n = 17). MSCs from atherosclerosis+T2DM individuals displayed an inflammatory senescent phenotype and constitutively expressed active forms of effectors of the canonical IKKβ nuclear factor-κB transcription factors inflammatory pathway. Importantly, this constitutive pro-inflammatory IKKβ signature resulted in an altered secretome and impaired in vitro immunopotency and in vivo healing capacity in an acute MI model. Notably, treatment with a selective IKKβ inhibitor or IKKβ knockdown (KD) (clustered regularly interspaced short palindromic repeats/Cas9-mediated IKKβ KD) in atherosclerosis+T2DM MSCs reduced the production of pro-inflammatory secretome, increased survival, and rescued their immunopotency both in vitro and in vivo. CONCLUSIONS Constitutively active IKKβ reduces the immunopotency of atherosclerosis+T2DM MSC by changing their secretome composition. Modulation of IKKβ in atherosclerosis+T2DM MSCs enhances their myocardial repair ability.
Collapse
Affiliation(s)
- Ozge Kizilay Mancini
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - David N Huynh
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Liliane Menard
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Surgical Research, Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Huy Ong
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Sylvie Marleau
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Ines Colmegna
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Marc J Servant
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
15
|
Zhang H, Mao YF, Zhao Y, Xu DF, Wang Y, Xu CF, Dong WW, Zhu XY, Ding N, Jiang L, Liu YJ. Upregulation of Matrix Metalloproteinase-9 Protects against Sepsis-Induced Acute Lung Injury via Promoting the Release of Soluble Receptor for Advanced Glycation End Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8889313. [PMID: 33628393 PMCID: PMC7889353 DOI: 10.1155/2021/8889313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of matrix metalloproteinase- (MMP-) 9 is implicated in the pathogenesis of acute lung injury (ALI). However, it remains controversial whether MMP-9 improves or deteriorates acute lung injury of different etiologies. The receptor for advanced glycation end products (RAGE) plays a critical role in the pathogenesis of acute lung injury. MMPs are known to mediate RAGE shedding and release of soluble RAGE (sRAGE), which can act as a decoy receptor by competitively inhibiting the binding of RAGE ligands to RAGE. Therefore, this study is aimed at clarifying whether and how pulmonary knockdown of MMP-9 affected sepsis-induced acute lung injury as well as the release of sRAGE in a murine cecal ligation and puncture (CLP) model. The analysis of GEO mouse sepsis datasets GSE15379, GSE52474, and GSE60088 revealed that the mRNA expression of MMP-9 was significantly upregulated in septic mouse lung tissues. Elevation of pulmonary MMP-9 mRNA and protein expressions was confirmed in CLP-induced mouse sepsis model. Intratracheal injection of MMP-9 siRNA resulted in an approximately 60% decrease in pulmonary MMP-9 expression. It was found that pulmonary knockdown of MMP-9 significantly increased mortality of sepsis and exacerbated sepsis-associated acute lung injury. Pulmonary MMP-9 knockdown also decreased sRAGE release and enhanced sepsis-induced activation of the RAGE/nuclear factor-κB (NF-κB) signaling pathway, meanwhile aggravating sepsis-induced oxidative stress and inflammation in lung tissues. In addition, administration of recombinant sRAGE protein suppressed the activation of the RAGE/NF-κB signaling pathway and ameliorated pulmonary oxidative stress, inflammation, and lung injury in CLP-induced septic mice. In conclusion, our data indicate that MMP-9-mediated RAGE shedding limits the severity of sepsis-associated pulmonary edema, inflammation, oxidative stress, and lung injury by suppressing the RAGE/NF-κB signaling pathway via the decoy receptor activities of sRAGE. MMP-9-mediated sRAGE production may serve as a self-limiting mechanism to control and resolve excessive inflammation and oxidative stress in the lung during sepsis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yan-Fei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ying Zhao
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Dun-Feng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chu-Fan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wen-Wen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, China
| | - Ning Ding
- Department of Anesthesiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This article provides an overview of protein biomarkers for acute respiratory distress syndrome (ARDS) and their potential use in future clinical trials. RECENT FINDINGS The protein biomarkers studied as indices of biological processes involved in the pathogenesis of ARDS may have diagnostic and/or prognostic value. Recently, they also proved useful for identifying ARDS phenotypes and assessing heterogeneity of treatment effect in retrospective analyses of completed clinical trials. SUMMARY This article summarizes the current research on ARDS biomarkers and provides insights into how they should be integrated as prognostic and predictive enrichment tools in future clinical trials.
Collapse
Affiliation(s)
- Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand
- GReD, CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Raiko Blondonnet
- Department of Perioperative Medicine, CHU Clermont-Ferrand
- GReD, CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Liu MM, Zhou J, Ji D, Yang J, Huang YP, Wang Q. Diammonium glycyrrhizinate lipid ligand ameliorates lipopolysaccharide-induced acute lung injury by modulating vascular endothelial barrier function. Exp Ther Med 2021; 21:303. [PMID: 33717246 PMCID: PMC7885082 DOI: 10.3892/etm.2021.9734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/24/2020] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to investigate the effects of diammonium glycyrrhizinate lipid ligand (DGLL) treatment on acute lung injury (ALI) and pulmonary edema induced by lipopolysaccharide (LPS) in Sprague-Dawley rats. Rats orally received 30, 60 and 120 mg/kg DGLL. After 1 h, the rat ALI model was established by LPS (10 mg/kg) intraperitoneal injection. After 6 h, lung injury was evaluated using hematoxylin and eosin staining techniques. Pulmonary edema was evaluated using lung wet-dry weight ratio, protein concentrations in the bronchoalveolar lavage fluid (BALF) and Evans blue (EB) extravasation in lung tissue. The expression levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in lung tissues were measured using ELISA. Myeloperoxidase (MPO) expression levels were detected by immunohistochemical staining. Western blotting was used to measure the expression level changes of intercellular adhesion molecule (ICAM)-1, as well as adherent and tight junction proteins, including vascular endothelial (VE)-cadherin, zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM)-1 that were associated with pulmonary inflammation and microvascular permeability. DGLL treatment significantly alleviated ALI induced by LPS, which was demonstrated by reduction of MPO-positive cells and expression levels of TNF-α, IL-1β and ICAM-1 in rat lung tissues. In addition, DGLL abrogated LPS-induced pulmonary edema, decreased the protein concentration in BALF and reduced EB extravasation. DGLL also reversed the reduced expression of VE-cadherin and tight junction proteins, including ZO-1, occludin and JAM-1 in the lung tissues caused by LPS. In conclusion, DGLL exhibits a protective effect on LPS-induced rat ALI, which is associated with the inhibition of inflammatory cell infiltration and microvascular barrier disruption. The present results provide a theoretical basis for the application of DGLL for the potential clinical treatment of ALI.
Collapse
Affiliation(s)
- Mei-Mei Liu
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Jin Zhou
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Dan Ji
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Jun Yang
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Yan-Ping Huang
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Qi Wang
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
18
|
Zhang Q, Song Q, Gu X, Zheng M, Wang A, Jiang G, Huang M, Chen H, Qiu Y, Bo B, Tong S, Shao R, Li B, Wang G, Wang H, Hu Y, Chen H, Gao X. Multifunctional Nanostructure RAP-RL Rescues Alzheimer's Cognitive Deficits through Remodeling the Neurovascular Unit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001918. [PMID: 33511002 PMCID: PMC7816710 DOI: 10.1002/advs.202001918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Indexed: 05/21/2023]
Abstract
Cerebrovascular dysfunction characterized by the neurovascular unit (NVU) impairment contributes to the pathogenesis of Alzheimer's disease (AD). In this study, a cerebrovascular-targeting multifunctional lipoprotein-biomimetic nanostructure (RAP-RL) constituted with an antagonist peptide (RAP) of receptor for advanced glycation end-products (RAGE), monosialotetrahexosyl ganglioside, and apolipoprotein E3 is developed to recover the functional NVU and normalize the cerebral vasculature. RAP-RL accumulates along the cerebral microvasculature through the specific binding of RAP to RAGE, which is overexpressed on cerebral endothelial cells in AD. It effectively accelerates the clearance of perivascular Aβ, normalizes the morphology and functions of cerebrovasculature, and restores the structural integrity and functions of NVU. RAP-RL markedly rescues the spatial learning and memory in APP/PS1 mice. Collectively, this study demonstrates the potential of the multifunctional nanostructure RAP-RL as a disease-modifying modality for AD treatment and provides the proof of concept that remodeling the functional NVU may represent a promising therapeutic approach toward effective intervention of AD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Qingxiang Song
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Xiao Gu
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Mengna Zheng
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Antian Wang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Gan Jiang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Meng Huang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Huan Chen
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Yu Qiu
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Bin Bo
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Shanbao Tong
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Rong Shao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Binyin Li
- Department of Neurology & Neuroscience InstituteRuijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Gang Wang
- Department of Neurology & Neuroscience InstituteRuijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Hao Wang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Yongbo Hu
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
- Institute of Interdisciplinary Integrative Biomedical ResearchShuguang HospitalShanghai University of Traditional Chinese Medicine1200 Cailun RoadShanghai201210China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| |
Collapse
|
19
|
Emerging cellular and pharmacologic therapies for acute respiratory distress syndrome. Curr Opin Crit Care 2020; 27:20-28. [PMID: 33278121 DOI: 10.1097/mcc.0000000000000784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Advances in our understanding of the pathophysiology and biology of ARDS has identified a number of promising cellular and pharmacological therapies. These emerging therapeutics can modulate the immune response, reduce epithelial injury, target endothelial and vascular dysfunction, have anticoagulant effects, and enhance ARDS resolution. RECENT FINDINGS Mesenchymal stromal cell therapy shows promise in earlier phase clinical testing, whereas a number of issues regarding clinical translation, such as donor and effect variability, are currently being optimized to enable larger scale clinical trials. Furthermore, a number of promising mesenchymal stromal cell therapy clinical studies for COVID-19-induced ARDS are underway. Recent studies provide support for several emerging ARDS pharmacotherapies, including steroids, statins, vitamins, anticoagulants, interferons, and carbon monoxide. The history of unsuccessful clinical trials of potential therapies highlights the challenges to successful translation for this heterogeneous clinical syndrome. Given this, attention has focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies, i.e. 'precision medicines'. SUMMARY Mesenchymal stromal cells, steroids, statins, vitamins, anticoagulants, interferons and carbon monoxide have therapeutic promise for ARDS. Identifying ARDS sub-populations most likely to benefit from targeted therapies may facilitate future advances.
Collapse
|
20
|
Horie S, McNicholas B, Rezoagli E, Pham T, Curley G, McAuley D, O'Kane C, Nichol A, Dos Santos C, Rocco PRM, Bellani G, Laffey JG. Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Med 2020; 46:2265-2283. [PMID: 32654006 PMCID: PMC7352097 DOI: 10.1007/s00134-020-06141-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
ARDS, first described in 1967, is the commonest form of acute severe hypoxemic respiratory failure. Despite considerable advances in our knowledge regarding the pathophysiology of ARDS, insights into the biologic mechanisms of lung injury and repair, and advances in supportive care, particularly ventilatory management, there remains no effective pharmacological therapy for this syndrome. Hospital mortality at 40% remains unacceptably high underlining the need to continue to develop and test therapies for this devastating clinical condition. The purpose of the review is to critically appraise the current status of promising emerging pharmacological therapies for patients with ARDS and potential impact of these and other emerging therapies for COVID-19-induced ARDS. We focus on drugs that: (1) modulate the immune response, both via pleiotropic mechanisms and via specific pathway blockade effects, (2) modify epithelial and channel function, (3) target endothelial and vascular dysfunction, (4) have anticoagulant effects, and (5) enhance ARDS resolution. We also critically assess drugs that demonstrate potential in emerging reports from clinical studies in patients with COVID-19-induced ARDS. Several therapies show promise in earlier and later phase clinical testing, while a growing pipeline of therapies is in preclinical testing. The history of unsuccessful clinical trials of promising therapies underlines the challenges to successful translation. Given this, attention has been focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies 'precision medicines.' It is hoped that the substantial number of studies globally investigating potential therapies for COVID-19 will lead to the rapid identification of effective therapies to reduce the mortality and morbidity of this devastating form of ARDS.
Collapse
Affiliation(s)
- Shahd Horie
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland, Galway, Ireland
| | - Bairbre McNicholas
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland
| | - Emanuele Rezoagli
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland, Galway, Ireland
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Tài Pham
- Service de médecine Intensive-Réanimation, AP-HP, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Ger Curley
- Department of Anaesthesiology, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Danny McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
- Department of Intensive Care Medicine, Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Cecilia O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Alistair Nichol
- Clinical Research Centre at St Vincent's University Hospital, University College Dublin, Dublin, Ireland
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Intensive Care Unit, Alfred Hospital, Melbourne, Australia
| | - Claudia Dos Santos
- Keenan Research Centre and Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giacomo Bellani
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - John G Laffey
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland, Galway, Ireland.
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland.
| |
Collapse
|
21
|
Zhai R, Blondonnet R, Ebrahimi E, Belville C, Audard J, Gross C, Choltus H, Henrioux F, Constantin JM, Pereira B, Blanchon L, Sapin V, Jabaudon M. The receptor for advanced glycation end-products enhances lung epithelial wound repair: An in vitro study. Exp Cell Res 2020; 391:112030. [PMID: 32330509 DOI: 10.1016/j.yexcr.2020.112030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022]
Abstract
Re-epithelialization of the alveolar surface is a key process of lung alveolar epithelial barrier repair after acute lung injury. The receptor for advanced glycation end-products (RAGE) pathway plays key roles in lung homeostasis, and its involvement in wound repair has been already reported in human bronchial epithelial cells. However, its effects on lung alveolar epithelial repair after injury remain unknown. We investigated whether RAGE stimulation with its ligands high-mobility group box 1 protein (HMGB1) or advanced glycation end-products (AGEs), alone or associated with RAGE inhibition using RAGE antagonist peptide, affects in vitro wound healing in human alveolar epithelial A549 cells. We further asked whether these effects could be associated with changes in cell proliferation and migration. We found that treatment of A549 cells with HMGB1 or AGEs promotes RAGE-dependent wound healing after a scratch assay. In addition, both RAGE ligands increased cell proliferation in a RAGE-dependent manner. Treatment with HMGB1 increased migration of alveolar epithelial cells at 12 h, independently of RAGE, whereas AGEs stimulated migration as measured 48 h after injury in a RAGE-dependent manner. Taken together, these results suggest that RAGE pathway is involved in lung alveolar epithelial wound repair, possibly through enhanced cell migration and proliferation.
Collapse
Affiliation(s)
- Ruoyang Zhai
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Raiko Blondonnet
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Ebrahim Ebrahimi
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Corinne Belville
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Jules Audard
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Christelle Gross
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Helena Choltus
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Fanny Henrioux
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Jean-Michel Constantin
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France
| | - Bruno Pereira
- Biostatistics Unit, Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Loic Blanchon
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Vincent Sapin
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France; Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
22
|
Carla A, Pereira B, Boukail H, Audard J, Pinol-Domenech N, De Carvalho M, Blondonnet R, Zhai R, Morand D, Lambert C, Sapin V, Ware LB, Calfee CS, Bastarache JA, Laffey JG, Juffermans NP, Bos LD, Artigas A, Rocco PRM, Matthay MA, McAuley DF, Constantin JM, Jabaudon M. Acute respiratory distress syndrome subphenotypes and therapy responsive traits among preclinical models: protocol for a systematic review and meta-analysis. Respir Res 2020; 21:81. [PMID: 32264897 PMCID: PMC7137453 DOI: 10.1186/s12931-020-01337-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Subphenotypes were recently reported within clinical acute respiratory distress syndrome (ARDS), with distinct outcomes and therapeutic responses. Experimental models have long been used to mimic features of ARDS pathophysiology, but the presence of distinct subphenotypes among preclinical ARDS remains unknown. This review will investigate whether: 1) subphenotypes can be identified among preclinical ARDS models; 2) such subphenotypes can identify some responsive traits. METHODS We will include comparative preclinical (in vivo and ex vivo) ARDS studies published between 2009 and 2019 in which pre-specified therapies were assessed (interleukin (IL)-10, IL-2, stem cells, beta-agonists, corticosteroids, fibroblast growth factors, modulators of the receptor for advanced glycation end-products pathway, anticoagulants, and halogenated agents) and outcomes compared to a control condition. The primary outcome will be a composite of the four key features of preclinical ARDS as per the American Thoracic Society consensus conference (histologic evidence of lung injury, altered alveolar-capillary barrier, lung inflammatory response, and physiological dysfunction). Secondary outcomes will include the single components of the primary composite outcome, net alveolar fluid clearance, and death. MEDLINE, Embase, and Cochrane databases will be searched electronically and data from eligible studies will be extracted, pooled, and analyzed using random-effects models. Individual study reporting will be assessed according to the Animal Research: Reporting of In Vivo Experiments guidelines. Meta-regressions will be performed to identify subphenotypes prior to comparing outcomes across subphenotypes and treatment effects. DISCUSSION This study will inform on the presence and underlying pathophysiological features of subphenotypes among preclinical models of ARDS and should help to determine whether sufficient evidence exists to perform preclinical trials of subphenotype-targeted therapies, prior to potential clinical translation. SYSTEMATIC REVIEW REGISTRATION PROSPERO (ID: CRD42019157236).
Collapse
Affiliation(s)
- Adrien Carla
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Hanifa Boukail
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jules Audard
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | - Raiko Blondonnet
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ruoyang Zhai
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Dominique Morand
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Céline Lambert
- Biostatistics Unit, Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Carolyn S. Calfee
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA USA
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN USA
| | - John G. Laffey
- Keenan Research Centre for Biomedical Science, Hospital for Sick Children, Departments of Anesthesia and Critical Care Medicine, St. Michael’s Hospital, Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, Toronto, Canada
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Nicole P. Juffermans
- Department of Intensive Care Medicine, Department of Respiratory Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lieuwe D. Bos
- Department of Intensive Care Medicine, Department of Respiratory Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Antonio Artigas
- Corporació Sanitaria Parc Tauli, CIBER de Enfermedades Respiratorias, Autonomous University of Barcelona, Barcelona, Spain
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael A. Matthay
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA USA
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast and Regional Intensive Care Unit, Belfast Health and Social Care Trust, Belfast, UK
| | - Jean-Michel Constantin
- Department of Anesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière Hospital, Paris, France
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - for the ESICM Translational Biology Group of the Acute Respiratory Failure section
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Biostatistics Unit, Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
- GReD, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
- Université Clermont Auvergne, Health Library, Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN USA
- Keenan Research Centre for Biomedical Science, Hospital for Sick Children, Departments of Anesthesia and Critical Care Medicine, St. Michael’s Hospital, Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, Toronto, Canada
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Department of Intensive Care Medicine, Department of Respiratory Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Corporació Sanitaria Parc Tauli, CIBER de Enfermedades Respiratorias, Autonomous University of Barcelona, Barcelona, Spain
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast and Regional Intensive Care Unit, Belfast Health and Social Care Trust, Belfast, UK
- Department of Anesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
23
|
Yang D, Yang Y, Zhao Y. Ibudilast, a Phosphodiesterase-4 Inhibitor, Ameliorates Acute Respiratory Distress Syndrome in Neonatal Mice by Alleviating Inflammation and Apoptosis. Med Sci Monit 2020; 26:e922281. [PMID: 32231178 PMCID: PMC7146065 DOI: 10.12659/msm.922281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a sudden and serious disease with increasing morbidity and mortality rates. Phosphodiesterase 4 (PDE4) is a novel target for inflammatory disease, and ibudilast (IBU), a PDE4 inhibitor, inhibits inflammatory response. Our study investigated the effect of IBU on the pathogenesis of neonatal ARDS and the underlying mechanism related to it. Material/Methods Western blotting was performed to analyze the expression levels of PDE4, CXCR4, SDF-1, CXCR5, CXCL1, inflammatory cytokines, and proteins related to cell apoptosis. Hematoxylin-eosin staining was performed to observe the pathological morphology of lung tissue. Pulmonary edema score was used to assess the degree of lung water accumulation after pulmonary injury. Enzyme-linked immunosorbent assay (ELISA) was used to assess levels of inflammatory factors (TNF-α, IL-1β, IL-6, and MCP-1) in serum. TUNEL assay was used to detect apoptotic cells. Results Increased expression of PDE4 was observed in an LPS-induced neonatal ARDS mouse model, and IBU ameliorated LPS-induced pathological manifestations and pulmonary edema in lung tissue. In addition, IBU attenuated the secretion of inflammatory cytokines by inactivating the chemokine axis in the LPS-induced neonatal ARDS mouse model. Finally, IBU significantly reduced LPS-induced cell apoptosis in lung tissue. Conclusions IBU, a PDE4 inhibitor, protected against ARDS by interfering with pulmonary inflammation and apoptosis. Our findings provide a novel and promising strategy to regulate pulmonary inflammation in ARDS.
Collapse
Affiliation(s)
- Dongjie Yang
- Department of Thoracic Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| | - Yihan Yang
- Nursing Faculty, Beijing Health Career Academy, Beijing, China (mainland)
| | - Yue Zhao
- Department of Pediatrics, Shijingshan Hospital of Traditional Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|