1
|
Rosa M, Gallo E, Pellegrino P, Mercurio FA, Leone M, Cascione M, Carrese B, Morelli G, Accardo A, Diaferia C. Inclusion of Cationic Amphiphilic Peptides in Fmoc-FF Generates Multicomponent Functional Hydrogels. ACS APPLIED BIO MATERIALS 2025; 8:488-502. [PMID: 39648955 DOI: 10.1021/acsabm.4c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Peptide building blocks have been recently proposed for the fabrication of supramolecular nanostructures able to encapsulate and in vivo deliver drugs of a different nature. The primary sequence design is essential for nanostructure property modulation, directing and affecting affinity for specific drugs. For instance, the presence of positively charged residues of lysine (K) or arginine (R) could allow improving electrostatic interactions and, in turn, the encapsulation of negatively charged active pharmaceutical ingredients, including nucleic acids. In this context, here, we describe the formulation and the multiscale structural characterization of hybrid cationic peptide containing hydrogels (HGs). In these matrices, the well-known low-molecular-weight hydrogelator, Fmoc-diphenylalanine (Fmoc-FF, Fmoc = fluorenyl methoxycarbonyl), was mixed with a library of cationic amphiphilic peptides (CAPs) differing for their alkyl chain (from C8 to C18) in a 1/1 mol/mol ratio. The structural characterization highlighted that in mixed HGs, the aggregation is guided by Fmoc-FF, whereas the cationic peptides are only partially immobilized into the hydrogelated matrix. Moreover, morphology, stiffness, topography, and toxicity are significantly affected by the length of the alkyl chain. The capability of the hydrogels to encapsulate negative drugs was evaluated using the 5-carboxyfluorescein (5-FAM) dye as a model.
Collapse
Affiliation(s)
- Mariangela Rosa
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Enrico Gallo
- IRCCS SYNLAB SDN, Via G. Ferraris 144, Naples 80146, Italy
| | - Paolo Pellegrino
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, Lecce 73100, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (IBB), CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Mariafrancesca Cascione
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, Lecce 73100, Italy
| | | | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| |
Collapse
|
2
|
Lee YT, Wu SH, Wu CH, Lin YH, Lin CK, Chen ZA, Sun TC, Chen YJ, Chen P, Mou CY, Chen YP. Drug-Free Mesoporous Silica Nanoparticles Enable Suppression of Cancer Metastasis and Confer Survival Advantages to Mice with Tumor Xenografts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61787-61804. [PMID: 39448366 PMCID: PMC11565475 DOI: 10.1021/acsami.4c16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Despite advancements in nanomedicine for drug delivery, many drug-loaded nanoparticles reduce tumor sizes but often fail to prevent metastasis. Mesoporous silica nanoparticles (MSNs) have attracted attention as promising nanocarriers. Here, we demonstrated that MSN-PEG/TA 25, with proper surface modifications, exhibited unique antimetastatic properties. In vivo studies showed that overall tumor metastasis decreased in 4T1 xenografts mice treated with MSN-PEG/TA 25 with a notable reduction in lung tumor metastasis. In vitro assays, including wound-healing, Boyden chamber, tube-formation, and real-time cell analyses, showed that MSN-PEG/TA 25 could modulate cell migration of 4T1 breast cancer cells and interrupt tube formation by human umbilical vein endothelial cells (HUVECs), key factors in suppressing cancer metastasis. The synergistic effect of MSN-PEG/TA 25 combined with liposomal-encapsulated doxorubicin (Lipo-Dox) significantly boosted mouse survival rates, outperforming Lipo-Dox monotherapy. We attributed the improved survival to the antimetastatic capabilities of MSN-PEG/TA 25. Moreover, Dox-loaded MSN-PEG/TA 25 suppressed primary tumors while retaining the antimetastatic effect, thereby enhancing therapeutic outcomes and overall survival. Western blot and qPCR analyses revealed that MSN-PEG/TA 25 interfered with the phosphorylation of ERK, FAK, and paxillin, thus impacting focal adhesion turnover and inhibiting cell motility. Our findings suggest that drug-free MSN-PEG/TA 25 is highly efficient for cancer treatment via suppressing metastatic activity and angiogenesis.
Collapse
Affiliation(s)
- Yu-Tse Lee
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Si-Han Wu
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Hsun Wu
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Yu-Han Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Cong-Kai Lin
- Graduate
Institute of Biomedical Materials & Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
| | - Zih-An Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Chung Sun
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Yin-Ju Chen
- Graduate
Institute of Biomedical Materials & Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
| | - Peilin Chen
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Yuan Mou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Bakri SJ, Lynch J, Howard-Sparks M, Saint-Juste S, Saim S. Vorolanib, sunitinib, and axitinib: A comparative study of vascular endothelial growth factor receptor inhibitors and their anti-angiogenic effects. PLoS One 2024; 19:e0304782. [PMID: 38833447 PMCID: PMC11149885 DOI: 10.1371/journal.pone.0304782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
PURPOSE Pathological angiogenesis and vascular instability are observed in diabetic retinopathy (DR), diabetic macular edema (DME), and wet age-related macular degeneration (wAMD). Many receptor tyrosine kinases (RTKs) including vascular endothelial growth factor receptors (VEGFRs) contribute to angiogenesis, whereas the RTK TIE2 is important for vascular stability. Pan-VEGFR tyrosine kinase inhibitors (TKIs) such as vorolanib, sunitinib, and axitinib are of therapeutic interest over current antibody treatments that target only one or two ligands. This study compared the anti-angiogenic potential of these TKIs. METHODS A kinase HotSpot™ assay was conducted to identify TKIs inhibiting RTKs associated with angiogenesis and vascular stability. Half-maximal inhibitory concentration (IC50) for VEGFRs and TIE2 was determined for each TKI. In vitro angiogenesis inhibition was investigated using a human umbilical vein endothelial cell sprouting assay, and in vivo angiogenesis was studied using the chorioallantoic membrane assay. Melanin binding was assessed using a melanin-binding assay. Computer modeling was conducted to understand the TIE2-axitinib complex as well as interactions between vorolanib and VEGFRs. RESULTS Vorolanib, sunitinib, and axitinib inhibited RTKs of interest in angiogenesis and exhibited pan-VEGFR inhibition. HotSpot™ assay and TIE2 IC50 values showed that only axitinib potently inhibited TIE2 (up to 89%). All three TKIs effectively inhibited angiogenesis in vitro. In vivo, TKIs were more effective at inhibiting VEGF-induced angiogenesis than the anti-VEGF antibody bevacizumab. Of the three TKIs, only sunitinib bound melanin. TKIs differ in their classification and binding to VEGFRs, which is important because type II inhibitors have greater selectivity than type I TKIs. CONCLUSIONS Vorolanib, sunitinib, and axitinib exhibited pan-VEGFR inhibition and inhibited RTKs associated with pathological angiogenesis. Of the three TKIs, only axitinib potently inhibited TIE2 which is an undesired trait as TIE2 is essential for vascular stability. The findings support the use of vorolanib for therapeutic inhibition of angiogenesis observed in DR, DME, and wAMD.
Collapse
Affiliation(s)
- Sophie J. Bakri
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jeff Lynch
- EyePoint Pharmaceuticals, Inc., Watertown, Massachusetts, United States of America
| | | | - Stephan Saint-Juste
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Said Saim
- EyePoint Pharmaceuticals, Inc., Watertown, Massachusetts, United States of America
| |
Collapse
|
4
|
Askarizadeh A, Mashreghi M, Mirhadi E, Mehrabian A, Heravi Shargh V, Badiee A, Alavizadeh SH, Arabi L, Kamali H, Jaafari MR. Surface-modified cationic liposomes with a matrix metalloproteinase-degradable polyethylene glycol derivative improved doxorubicin delivery in murine colon cancer. J Liposome Res 2024; 34:221-238. [PMID: 37647288 DOI: 10.1080/08982104.2023.2247079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
PEGylation is a commonly used approach to prolong the blood circulation time of cationic liposomes. However, PEGylation is associated with the "PEG dilemma", which hinders binding and uptake into tumor cells. The cleavable PEG products are a possible solution to this problem. In the current research, doxorubicin-loaded cationic liposomes (Dox-CLs) surface-conjugated with a matrix metalloproteinase-2 (MMP-2)-sensitive octapeptide linker-PEG derivative were prepared and compared to non-PEGylated and PEGylated CLs in terms of size, surface charge, drug encapsulation and release, uptake, in vivo pharmacokinetics, and anticancer efficacy. It was postulated that PEG deshielding in response to the overexpressed MMP-2 in the tumor microenvironment increases the interaction of protected CLs with cellular membranes and improves their uptake by tumor cells/vasculature. MMP2-responsive Dox-CLs had particle sizes of ∼115-140 nm, surface charges of ∼+25 mV, and encapsulation efficiencies of ∼85-95%. In vitro cytotoxicity assessments showed significantly enhanced uptake and cytotoxicity of PEG-cleavable CLs compared to their non-cleavable PEG-coated counterparts or Caelyx®. Also, the chick chorioallantoic membrane assay showed great antiangiogenesis ability of Dox-CLs leading to target and prevent tumor neovascularization. Besides, in vivo studies showed an effective therapeutic efficacy of PEG-cleavable Dox-CLs in murine colorectal cancer with negligible hematological and histopathological toxicity. Altogether, our results showed that MMP2-responsive Dox-CLs could be served as a promising approach to improve tumor drug delivery and uptake.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mehrabian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Heravi Shargh
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Moghimipour E, Handali S. Functionalized liposomes as a potential drug delivery systems for colon cancer treatment: A systematic review. Int J Biol Macromol 2024; 269:132023. [PMID: 38697444 DOI: 10.1016/j.ijbiomac.2024.132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Colon cancer is one of the lethal diseases in the world with approximately 700,000 fatalities annually. Nowadays, due to the side effects of existing methods in the treatment of colon cancer such as radiotherapy and chemotherapy, the use of targeted nanocarriers in cancer treatment has received wide attention, and among them, especially liposomes have been studied a lot. Based on this, anti-tumor drugs hidden in targeted active liposomes can selectively act on cancer cells. In this systematic review, the use of various ligands such as folic acid, transferrin, aptamer, hyaluronic acid and cRGD for active targeting of liposomes to achieve improved drug delivery to colon cancer cells has been reviewed. The original articles published in English in the databases of Science Direct, PubMed and Google scholar from 2012 to 2022 were reviewed. From the total of 26,256 published articles, 19 studies met the inclusion criteria. The results of in vitro and in vivo studies have revealed that targeted liposomes lead to increasing the efficacy of anti-cancer agents on colon cancer cells with reducing side effects compared to free drugs and non-targeted liposomes. To the best of our knowledge, this is the first systematic review showing promising results for improvement treatment of colon cancer using targeted liposomes.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Gallo E, Diaferia C, Smaldone G, Rosa E, Pecoraro G, Morelli G, Accardo A. Fmoc-FF hydrogels and nanogels for improved and selective delivery of dexamethasone in leukemic cells and diagnostic applications. Sci Rep 2024; 14:9940. [PMID: 38688930 PMCID: PMC11061151 DOI: 10.1038/s41598-024-60145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Dexamethasone (DEX) is a synthetic analogue of cortisol commonly used for the treatment of different pathological conditions, comprising cancer, ocular disorders, and COVID-19 infection. Its clinical use is hampered by the low solubility and severe side effects due to its systemic administration. The capability of peptide-based nanosystems, like hydrogels (HGs) and nanogels (NGs), to serve as vehicles for the passive targeting of active pharmaceutical ingredients and the selective internalization into leukemic cells has here been demonstrated. Peptide based HGs loaded with DEX were formulated via the "solvent-switch" method, using Fmoc-FF homopeptide as building block. Due to the tight interaction of the drug with the peptidic matrix, a significant stiffening of the gel (G' = 67.9 kPa) was observed. The corresponding injectable NGs, obtained from the sub-micronization of the HG, in the presence of two stabilizing agents (SPAN®60 and TWEEN®60, 48/52 w/w), were found to be stable up to 90 days, with a mean diameter of 105 nm. NGs do not exhibit hemolytic effects on human serum, moreover they are selectively internalized by RS4;11 leukemic cells over healthy PBMCs, paving the way for the generation of new diagnostic strategies targeting onco-hematological diseases.
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143, Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | | - Elisabetta Rosa
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
7
|
Shazleen Ibrahim I, Starlin Chellathurai M, Mahmood S, Hakim Azmi A, Harun N, Ulul Ilmie Ahmad Nazri M, Muzamir Mahat M, Mohamed Sofian Z. Engineered liposomes mediated approach for targeted colorectal cancer drug Delivery: A review. Int J Pharm 2024; 651:123735. [PMID: 38142874 DOI: 10.1016/j.ijpharm.2023.123735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC) continues to be one of the most prevalent and deadliest forms of cancer worldwide, despite notable advancements in its management. The prognosis for metastatic CRC remains discouraging, with a relative 5-year survival rate for stage IV CRC patients. Conventional treatments for advanced malignancies such as chemotherapy, often face limitations in effectively targeting cancer cells resulting in off-target distribution and significant side effects. In the quest for better strategies, researchers have explored numerous alternatives. Among these, nanoparticles (NPs) specifically liposomes have emerged as one of the most promising candidates in developing targeted delivery systems for cancer therapeutics. This review discusses the current approaches employing functionalised liposomes to overcome major biological barriers in therapeutics delivery for CRC treatment. We have also shared our perspectives on the technological development of liposomes for future clinical use and highlighted a few useful insights on the material choices for future research work in CRC.
Collapse
Affiliation(s)
- Intan Shazleen Ibrahim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Melbha Starlin Chellathurai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amirul Hakim Azmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | | | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Kwiatkowska I, Hermanowicz JM, Czarnomysy R, Surażyński A, Kowalczuk K, Kałafut J, Przybyszewska-Podstawka A, Bielawski K, Rivero-Müller A, Mojzych M, Pawlak D. Assessment of an Anticancer Effect of the Simultaneous Administration of MM-129 and Indoximod in the Colorectal Cancer Model. Cancers (Basel) 2023; 16:122. [PMID: 38201550 PMCID: PMC10778160 DOI: 10.3390/cancers16010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: The purpose of the given study was to examine the antitumor activity of the simultaneous administration of MM-129, a 1,2,4-triazine derivative, and indoximod (IND), the kynurenine pathway inhibitor, toward colon cancer. (2) Methods: The efficiency of the co-administration of the studied compounds was assessed in xenografted zebrafish embryos. Then, the effects of the combined administration of compounds on cellular processes such as cell viability, apoptosis, and intracellular signaling pathways were evaluated. In vitro studies were performed using two colorectal cancer cell lines, namely, DLD-1 and HT-29. (3) Results: The results indicated that the simultaneous application of MM-129 and indoximod induced a stronger inhibition of tumor growth in zebrafish xenografts. The combination of these compounds intensified the process of apoptosis by lowering the mitochondrial potential, enhancing the externalization of phosphatidylserine (PS) and activation of caspases. Additionally, the expression of protein kinase B (AKT) and indoleamine 2,3-dioxygenase-(1IDO1) was disrupted under the applied compound combination. (4) Conclusions: Simultaneous targeting of ongoing cell signaling that promotes tumor progression, along with inhibition of the kynurenine pathway enzyme IDO1, results in the enhancement of the antitumor effect of the tested compounds against the colon cancer cells.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Mariusz Mojzych
- Faculty of Health Science, Collegium Medicum, The Mazovian Academy in Plock, Plac Dabrowskiego 2, 09-402 Plock, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
9
|
Hajareh Haghighi F, Binaymotlagh R, Fratoddi I, Chronopoulou L, Palocci C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023; 9:953. [PMID: 38131939 PMCID: PMC10742474 DOI: 10.3390/gels9120953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer is the second leading cause of death globally, but conventional anticancer drugs have side effects, mainly due to their non-specific distribution in the body in both cancerous and healthy cells. To address this relevant issue and improve the efficiency of anticancer drugs, increasing attention is being devoted to hydrogel drug-delivery systems for different kinds of cancer treatment due to their high biocompatibility and stability, low side effects, and ease of modifications. To improve the therapeutic efficiency and provide multi-functionality, different types of nanoparticles (NPs) can be incorporated within the hydrogels to form smart hydrogel nanocomposites, benefiting the advantages of both counterparts and suitable for advanced anticancer applications. Despite many papers on non-peptide hydrogel nanocomposites, there is limited knowledge about peptide-based nanocomposites, specifically in anti-cancer drug delivery. The aim of this short but comprehensive review is, therefore, to focus attention on the synergies resulting from the combination of NPs with peptide-based hydrogels. This review, which includes a survey of recent advances in this kind of material, does not aim to be an exhaustive review of hydrogel technology, but it instead highlights recent noteworthy publications and discusses novel perspectives to provide valuable insights into the promising synergic combination of peptide hydrogels and NPs for the design of novel anticancer drug delivery systems.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Yazdian-Robati R, Amiri E, Kamali H, Khosravi A, Taghdisi SM, Jaafari MR, Mashreghi M, Moosavian SA. CD44-specific short peptide A6 boosts cellular uptake and anticancer efficacy of PEGylated liposomal doxorubicin in vitro and in vivo. Cancer Nanotechnol 2023; 14:84. [DOI: 10.1186/s12645-023-00236-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/15/2023] [Indexed: 10/14/2024] Open
Abstract
AbstractAlthough liposomes have improved patient safety and the pharmacokinetic profile of free drugs, their therapeutic efficacy has only shown marginal improvement. The incorporation of active-targeted ligands to enhance cellular uptake has shown promise in preclinical studies. However, no active-targeted liposomes have successfully translated into clinical use thus far. This study aimed to evaluate the targeting ability and antitumor efficiency of A6, a specific short peptide (KPSSPPEE) when incorporated into PEGylated liposomal doxorubicin (PLD). The results revealed significantly enhanced cellular uptake. The cytotoxicity of the formulations was determined by 3 h and 6 h incubation of formulations with cells, followed by 48 h incubation to evaluate the targeted ability of the formulations and the results indicated the higher cytotoxicity of A6-PLD (IC50 of 7.52 µg/mL after 6 h incubation) in the CD44 overexpressing C26 cell line compared to non-targeted PLD (IC50 of 15.02 µg/mL after 6 h incubation). However, CD44-negative NIH-3T3 cells exhibited similar uptake and in vitro cytotoxicity for both A6-PLD (IC50 of 38.05 µg/mL) and PLD (IC50 of 34.87 µg/mL). In animal studies, A6-PLD demonstrated significantly higher tumor localization of doxorubicin (Dox) (~ 8 and 15 µg Dox/g tumor for 24 and 48 after injection) compared to PLD (~ 6 and 8 µg Dox/g tumor for 24 and 48 after injection), resulting in effective inhibition of tumor growth. The median survival time (MST) for Dextrose 5% was 10, PLD was 14 and A6-PLD was 22 days. In conclusion, A6-PLD, a simple and effective targeted liposome formulation, exhibits high potential for clinical translation. Its improved targetability and antitumor efficacy make it a promising candidate for future clinical applications.
Collapse
|
11
|
Zarei MH, Lorigooini Z, Amini Khoei H, Bijad E. Acute oral toxicity assessment of galbanic acid in albino rat according to OECD 425 TG. Toxicol Rep 2023; 11:111-115. [PMID: 37456531 PMCID: PMC10345851 DOI: 10.1016/j.toxrep.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
In spite of the broad biological and also anticarcinogenic effects which have been reported for galbanic acid in various studies, its toxic effects are not still well characterized. The study was accomplished to evaluate the acute oral toxicity of galbanic acid pursuant to Organisation for Economic Co-operation and Development (OECD) TG No. 425. Female rats were received asafoetida extract and galbanic acid in distilled water by oral gavage. According to the existing information, limit test was done for aqueous extract of asafoetida and main test was done for galbanic acid. The animals were monitored for 2 weeks. Then under general anesthesia, the blood samples were obtained from the heart for biochemical and hematological assessment and the vital organs of rats were isolated for pathological evaluation. The results showed that although the Median lethal dose (LD50) of asafoetida extract was above the 2000 mg/kg body weight, the galbanic acid estimated LD50 was 310.2 mg/kg. There was no considerable change in body weight of vehicle and extract treated animals but in galbanic acid treated animals, the body weights were not normally increased. A significant rise was observed in high-density lipoprotein (HDL), (aspartate aminotransferase) AST and (alanine aminotransferase) ALT levels as well as in white blood cells (WBC), platelet and lymphocytes counts in galbanic acid group compared to vehicle and extract groups. Based on the obtained results, we suggest that although the asafoetida aqueous extract could be categorized as group 5 (LD50 > 2000 mg/kg), but galbanic acid estimated LD50 is about 310.2 mg/kg and toxicity signs also appeared in lung, liver enzymes and complete blood count (CBC) of galbanic acid treated animals.
Collapse
|
12
|
Hoseini B, Jaafari MR, Golabpour A, Momtazi-Borojeni AA, Eslami S. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning. Int J Pharm 2023; 646:123414. [PMID: 37714314 DOI: 10.1016/j.ijpharm.2023.123414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Curcumin faces challenges in clinical applications due to its low bioavailability and poor water solubility. Liposomes have emerged as a promising delivery system for curcumin. This study aims to apply ensemble learning, a machine learning technique, to determine the most effective experimental conditions for formulating stable curcumin-loaded liposomes with a high entrapment efficiency (EE). METHODS Two liposomal formulations composed of HSPC:DPPG:Chol:DSPE-mPEG2000 and HSPC:Chol:DSPE-mPEG2000 at 55:5:35:5 and 55:40:5 M ratios, respectively, were prepared using the remote loading method, and their particle size and polydispersity index (PDI) were determined using Dynamic Light Scattering. To model the impact of five factors (molar ratios, particle size, sonication time, pH, and PDI) on EE%, the Least-squares boosting (LSBoost) ensemble learning algorithm was employed due to its capability to effectively handle nonlinear and non-stationary problems. The implementation and optimization of LSBoost were performed using MATLAB R2020a. The dataset was randomly split into training and testing sets, with 70% allocated for training. The mean absolute error (MAE) was used as the cost function to evaluate model performance. Additionally, a novel approach was employed to visualize the results using 3D plots, facilitating practical interpretation. RESULTS The optimal model exhibited an MAE of 3.61, indicating its robust predictive capability. The study identified several optimal conditions for achieving the highest EE value of 100%. However, to ensure both the highest EE value and a suitable particle size, it is recommended to set the following conditions: a molar ratio of 55:5:35:5, a PDI within the range of 0.09-0.13, a particle size of approximately 130 nm, a sonication time of 30 min, and a pH within the range of 7.2-8. It is worth mentioning that adjusting the molar ratio to 55:40:5 resulted in a maximum EE of 88.38%. CONCLUSION These findings underscore the high performance of ensemble learning in accurately predicting and optimizing the EE of the curcumin-loaded liposomes. The application of this technique provides valuable insights and holds promise for the development of efficient drug delivery systems.
Collapse
Affiliation(s)
- Benyamin Hoseini
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amin Golabpour
- Department of Health Information Technology, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Department of Advanced Technologies in Medicine, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran; Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Saeid Eslami
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Informatics, Amsterdam UMC Location University of Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Hoseini B, Jaafari MR, Golabpour A, Momtazi-Borojeni AA, Karimi M, Eslami S. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci Rep 2023; 13:18012. [PMID: 37865639 PMCID: PMC10590434 DOI: 10.1038/s41598-023-43689-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023] Open
Abstract
Liposome nanoparticles have emerged as promising drug delivery systems due to their unique properties. Assessing particle size and polydispersity index (PDI) is critical for evaluating the quality of these liposomal nanoparticles. However, optimizing these parameters in a laboratory setting is both costly and time-consuming. This study aimed to apply a machine learning technique to assess the impact of specific factors, including sonication time, extrusion temperature, and compositions, on the size and PDI of liposomal nanoparticles. Liposomal solutions were prepared and subjected to sonication with varying values for these parameters. Two compositions: (A) HSPC:DPPG:Chol:DSPE-mPEG2000 at 55:5:35:5 molar ratio and (B) HSPC:Chol:DSPE-mPEG2000 at 55:40:5 molar ratio, were made using remote loading method. Ensemble learning (EL), a machine learning technique, was employed using the Least-squares boosting (LSBoost) algorithm to accurately model the data. The dataset was randomly split into training and testing sets, with 70% allocated for training. The LSBoost algorithm achieved mean absolute errors of 1.652 and 0.0105 for modeling the size and PDI, respectively. Under conditions where the temperature was set at approximately 60 °C, our EL model predicted a minimum particle size of 116.53 nm for composition (A) with a sonication time of approximately 30 min. Similarly, for composition (B), the model predicted a minimum particle size of 129.97 nm with sonication times of approximately 30 or 55 min. In most instances, a PDI of less than 0.2 was achieved. These results highlight the significant impact of optimizing independent factors on the characteristics of liposomal nanoparticles and demonstrate the potential of EL as a decision support system for identifying the best liposomal formulation. We recommend further studies to explore the effects of other independent factors, such as lipid composition and surfactants, on liposomal nanoparticle characteristics.
Collapse
Affiliation(s)
- Benyamin Hoseini
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Golabpour
- Department of Health Information Technology, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maryam Karimi
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, USA
| | - Saeid Eslami
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Raji E, Vahedian V, Golshanrad P, Nahavandi R, Behshood P, Soltani N, Gharibi M, Rashidi M, Maroufi NF. The potential therapeutic effects of Galbanic acid on cancer. Pathol Res Pract 2023; 248:154686. [PMID: 37487315 DOI: 10.1016/j.prp.2023.154686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Galbanic acid (GBA), as a natural compound has potential anticancer properties. It has been documented that GBA shows promising therapeutic potential against various types of cancer, including breast, lung, colon, liver, and prostate cancer. Several mechanisms involve im anti-tumor effects of GBA include apoptosis induction, cell cycle arrest, inhibition of angiogenesis, suppression of metastasis, and modulation of immune responses. Furthermore, the synergistic effects of GBA along with chemotherapeutic agents led to has enhancing efficiency with reduction in toxicity. Moreover, GBA through antioxidant and anti-inflammatory properties possess indirect anti-tumor effects. In this review, we will summarize the anti-tumor effects of GBA acid along with involve mechanisms.
Collapse
Affiliation(s)
- Elahe Raji
- Department of Biology, Shahrekord Branch, Islamic Azad University, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy, Division of Hematology/oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil; Department of Clinical Medicine, Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM/31), Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Pezhman Golshanrad
- Sharif University of Technology (International Campus) Department of Computer Eng, Iran
| | - Reza Nahavandi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Parisa Behshood
- Department of Microbiology, Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Iran
| | - Nahal Soltani
- Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University (IAU), Marand, Iran
| | - Mahdi Gharibi
- Department of pharmacy, Faculty of Pharmacy, University of Ankara, Ankara, Turkey
| | - Mohsen Rashidi
- The Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Nazila Fathi Maroufi
- Department of Human Genetics, McGill University, Montreal, Canada; Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Canada; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Smaldone G, Rosa E, Gallo E, Diaferia C, Morelli G, Stornaiuolo M, Accardo A. Caveolin-Mediated Internalization of Fmoc-FF Nanogels in Breast Cancer Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15031026. [PMID: 36986886 PMCID: PMC10051563 DOI: 10.3390/pharmaceutics15031026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
INTRODUCTION Hydrogel nanoparticles, also known as nanogels (NGs), have been recently proposed as alternative supramolecular vehicles for the delivery of biologically relevant molecules like anticancer drugs and contrast agents. The inner compartment of peptide based NGs can be opportunely modified according to the chemical features of the cargo, thus improving its loading and release. A full understanding of the intracellular mechanism involved in nanogel uptake by cancer cells and tissues would further contribute to the potential diagnostic and clinical applications of these nanocarriers, allowing the fine tuning of their selectivity, potency, and activity. The structural characterization of nanogels were assessed by Dynamic Light Scattering (DLS) and Nanoparticles Tracking Analysis (NTA) analysis. Cells viability of Fmoc-FF nanogels was evaluated by MTT assay on six breast cancer cell lines at different incubation times (24, 48, and 72 h) and peptide concentrations (in the range 6.25 × 10-4 ÷ 5·10-3 × wt%). The cell cycle and mechanisms involved in Fmoc-FF nanogels intracellular uptake were evaluated using flow cytometry and confocal analysis, respectively. Fmoc-FF nanogels, endowed with a diameter of ~130 nm and a zeta potential of ~-20.0/-25.0 mV, enter cancer cells via caveolae, mostly those responsible for albumin uptake. The specificity of the machinery used by Fmoc-FF nanogels confers a selectivity toward cancer cell lines overexpressing the protein caveolin1 and efficiently performing caveolae-mediated endocytosis.
Collapse
Affiliation(s)
| | - Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
16
|
Askarizadeh A, Mashreghi M, Mirhadi E, Mirzavi F, Shargh VH, Badiee A, Alavizadeh SH, Arabi L, Jaafari MR. Doxorubicin-loaded liposomes surface engineered with the matrix metalloproteinase-2 cleavable polyethylene glycol conjugate for cancer therapy. Cancer Nanotechnol 2023; 14:18. [PMID: 36910721 PMCID: PMC9988605 DOI: 10.1186/s12645-023-00169-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Background Colorectal cancer is one of the prominent leading causes of fatality worldwide. Despite recent advancements within the field of cancer therapy, the cure rates and long-term survivals of patients suffering from colorectal cancer have changed little. The application of conventional chemotherapeutic agents like doxorubicin is limited by some drawbacks such as cardiotoxicity and hematotoxicity. Therefore, nanotechnology has been exploited as a promising solution to address these problems. In this study, we synthesized and compared the anticancer efficacy of doxorubicin-loaded liposomes that were surface engineered with the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-matrix metalloproteinase-2 (MMP-2) cleavable peptide-polyethylene glycol (PEG) conjugate. The peptide linker was used to cleave in response to the upregulated MMP-2 in the tumor microenvironment, thus exposing a positive charge via PEG-deshielding and enhancing liposomal uptake by tumor cells/vasculature. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell binding and uptake, and cytotoxicity. Results The formulations had particle sizes of ~ 100-170 nm, narrow distribution (PDI ˂ 0.2), and various surface charges (- 10.2 mV to + 17.6 mV). MMP-2 overexpression was shown in several cancer cell lines (C26, 4T1, and B16F10) as compared to the normal NIH-3T3 fibroblast cells by gelatin zymography and qRT-PCR. In vitro results demonstrated enhanced antitumor efficacy of the PEG-cleavable cationic liposomes (CLs) as compared to the commercial Caelyx® (up to fivefold) and the chick chorioallantoic membrane assay showed their great antiangiogenesis potential to target and suppress tumor neovascularization. The pharmacokinetics and efficacy studies also indicated higher tumor accumulation and extended survival rates in C26 tumor-bearing mice treated with the MMP-2 cleavable CLs as compared to the non-cleavable CLs with no remarkable sign of toxicity in healthy tissues. Conclusion Altogether, the MMP-2-cleavable CLs have great potency to improve tumor-targeted drug delivery and cellular/tumor-vasculature uptake which merits further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12645-023-00169-8.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Vahid Heravi Shargh
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Soleimani A, Mirzavi F, Nikoofal-Sahlabadi S, Nikpoor AR, Taghizadeh B, Barati M, Soukhtanloo M, Jaafari MR. CD73 downregulation by EGFR-targeted liposomal CD73 siRNA potentiates antitumor effect of liposomal doxorubicin in 4T1 tumor-bearing mice. Sci Rep 2022; 12:10423. [PMID: 35729230 PMCID: PMC9213518 DOI: 10.1038/s41598-022-14392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
Blocking CD73 ectonucleotidase has been proposed as a potential therapeutic approach for cancer treatment. The present study aimed to investigate the antitumor effect of a novel EGFR-Targeted liposomal CD73 siRNA formulation in combination therapy with liposomal doxorubicin in the 4T1 mouse model. CD73 siRNA was encapsulated into nanoliposomes by the ethanol injection method. After preparation, characterization, morphology, and stability evaluation of formulations, the toxicity was measured by MTT assay. Uptake assay and efficiency of the liposomal formulations were investigated on the 4T1 cell line. The liposomal formulation containing CD73 siRNA was targeted with GE11 peptide for in vivo evaluations. Following biodistribution analysis, the antitumor activity of prepared formulations in combination with liposomal doxorubicin was studied in mice bearing 4T1 metastatic breast cancer cells. Finally, the induction of immune response of formulations in concomitant treatment with liposomal doxorubicin was evaluated in the tumor microenvironment of a mouse model of breast cancer. The size of prepared liposomal formulations at N/P = 16 for the liposomal CD73 siRNA and GE11-liposomal CD73 siRNA groups were 89 nm ± 4.4 and 95 nm ± 6.6, respectively. The nanoparticle's PDI was less than 0.3 and their surface charge was below 10 mV. The results demonstrated that N/P = 16 yielded the best encapsulation efficiency which was 94% ± 3.3. AFM results showed that the liposomes were spherical in shape and were less than 100 nm in size. The results of the MTT assay showed significant toxicity of the liposomes containing CD73 siRNA during the 48-h cell culture. Real-time PCR and flow cytometry results showed that liposomes containing CD73 siRNA could effectively downregulate CD73 expression. Liposomal formulations were able to significantly downregulate CD73 gene expression, in vivo. However, CD73 downregulation efficiency was significantly higher for the targeted form compared to the non-targeted formulation (P value < 0.01). The combination showed maximum tumor growth delay with remarkable survival improvement compared to the control group. Studying the immune responses in the treatment groups which received doxorubicin, showed decreased number of lymphocytes in the tumor environment. However, this decrease was lower in the combination therapy group. Finally, our results clearly showed that CD73 downregulation increases the activity of CD8+ lymphocytes (IFN-ℽ production) and also significantly decreases the Foxp3 in the CD25+ lymphocytes compared to the control group. GE11-Lipo CD73 siRNA formulation can efficiently knockdown CD73 ectonucleotidase. Also, the efficacy of liposomal doxorubicin is significantly enhanced via the downregulation of CD73 ectonucleotidase.
Collapse
Affiliation(s)
- Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Nikoofal-Sahlabadi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Bita Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Barati
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Rahiminezhad Z, Tamaddon A, Dehshahri A, Borandeh S, Abolmaali SS, Najafi H, Azarpira N. PLGA-graphene quantum dot nanocomposites targeted against α vβ 3 integrin receptor for sorafenib delivery in angiogenesis. BIOMATERIALS ADVANCES 2022; 137:212851. [PMID: 35929279 DOI: 10.1016/j.bioadv.2022.212851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Angiogenesis is a vital step in many severe diseases such as cancer, diabetic retinopathy, and rheumatoid arthritis. Sorafenib (SFB), a multi-tyrosine kinase inhibitor, has recently been shown to inhibit tumor progression and suppress angiogenesis. Its narrow therapeutic window, however, has limited its clinical application and therapeutic efficacy. Accordingly, in this study, a nanocomposite formulation comprising of graphene quantum dots (GQDs) and poly (D, l-lactide-co-glycolide) (PLGA) nanoparticles was functionalized with an integrin-targeting ligand (RGD peptide) to improve SFB delivery for the treatment of angiogenesis. Physicochemical and biological properties of the targeted nanocomposite were evaluated in terms of chemical structure, morphology, particle size, zeta potential, photoluminescence, and cell toxicity. The loading capacity of the nanocomposite was optimized at different drug-to-PLGA ratios. Drug release behavior was also investigated at 37 °C in pH = 7.4. The SFB-to-PLGA ratio of 1:3 was selected as the optimum condition which resulted in the encapsulation efficiency and encapsulation capacity of 68.93 ± 1.39 and 18.77 ± 0.46, respectively. Photoluminescence properties of GQD in nanocomposite were used to track the delivery system. The results indicated that conjugating targeting ligand could enhance cellular uptake of nanocomposite in cells overexpressing integrin receptors. In vivo anti-angiogenesis activity of targeted nanocomposite was investigated in chick chorioallantoic membrane (CAM). The findings showed that SFB loaded in the targeted nanocomposite reduced VEGF secretion in vitro and its anti-angiogenic effect surpass free SFB. Thanks to its unique therapeutic and bioimaging properties, the developed nanocomposite could be an effective drug delivery system for poorly water-soluble therapeutic agents.
Collapse
Affiliation(s)
- Zahra Rahiminezhad
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - AliMohammad Tamaddon
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Feng Z, Gu Y, Yuan M, Xiao R, Fei Z. Clinical Trials of Liposomes in Children’s Anticancer Therapy: A Comprehensive Analysis of Trials Registered on ClinicalTrials.gov. Int J Nanomedicine 2022; 17:1843-1850. [PMID: 35502234 PMCID: PMC9056094 DOI: 10.2147/ijn.s359666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Clinical trials have become essential for driving the development of medicine. However, little is known about the current status of clinical trials on liposomes in children’s anticancer therapy (LCAT). This study aimed to synthesize current finding from clinical trials of LCAT in ClinicalTrials.gov. Methods A cross-sectional descriptive study of clinical trials on LCAT was conducted, using studies registered on ClinicalTrials.gov through December 30, 2021. Results A total of 74 eligible trials were identified, accounting for 4.8% (74/1552) of all trials on liposomes for cancer therapy. Among these trials, 70 (94.6%) were interventional trials, and the remaining 4 (5.4%) were observational trials. Of the 70 interventional trials, 63 (90.0%) were for treatment, 48.6% were involving unlabeled allocations, 30.0% were randomized, 52.9% were single group assignment, 71.4% were without masking, 28.6% were Phase 3 trials, 30.0% were Phase 1 trials, and 24.3% were Phase 2 trials. Furthermore, 17 liposomal drugs for 123 types of cancer were investigated in the interventional trials, and these were mainly focused on organic chemicals (43/70, 61.4%). Of these cancers, the highest proportion was leukemia (15.4%), followed by lymphoma (9.8%) and ovarian cancer (8.9%). Conclusion High quality, adequately powered, masked, appropriately sized, and randomized clinical trials represent the critical priorities for conducting a high-quality clinical trial. However, most of these trials for LCAT were non-randomized, single group assignment, and non-blinded interventional trials of small scale, with various eligibility criteria and outcome measures. Our analysis highlights the need for improvement in the completeness of study designs curated on clinicalTrials.gov. We urge for decision-makers to avoid adopting entrenched positions about the study design of cancer clinical trials to avoid this problem. As such, tackling the problematic challenges related to cancer and designing efficient trials for cancer requires developing and applying new approaches and multiple strategies.
Collapse
Affiliation(s)
- Zhaosong Feng
- Pharmacy Department, Jianhu People’s Hospital, Jianhu, Jiangsu Province, 224700, People’s Republic of China
| | - Yuyang Gu
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China
| | - Mengping Yuan
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China
| | - Renzhong Xiao
- R&D Center, Hunan Royal Pharmaceutical Technology Co., Ltd., Changsha, Hunan Province, 410000, People’s Republic of China
- Correspondence: Renzhong Xiao, R&D Center, Hunan Royal Pharmaceutical Technology Co., Ltd., Changsha City, Hunan Province, 410000, People’s Republic of China, Email
| | - Zhenghua Fei
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China
- Zhenghua Fei, Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China, Email
| |
Collapse
|
20
|
Chavda VP, Vihol D, Mehta B, Shah D, Patel M, Vora LK, Pereira-Silva M, Paiva-Santos AC. Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine (Lond) 2022; 17:547-568. [PMID: 35259920 DOI: 10.2217/nnm-2021-0463] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The major obstacles observed in current chemotherapy are severe adverse effects, narrow therapeutic indexes and multidrug resistance. Anticancer phytochemicals are extracted and purified from natural plants, providing alternative therapeutic approaches with recognized biomedical benefits. However, poor bioavailability, high dose requirements and non-specific targeting have made those molecules less effective. To tackle those issues, liposomal nanovesicles for phytochemical delivery are taken into consideration for improving the therapeutic effectiveness by increasing transportation across cell barriers and conferring attractive cancer-specific targeting capabilities. In the present review, the liposomal approaches of anticancer phytochemicals are discussed, and recent advances in these formulations applied to cancer phytotherapy are further reviewed by an informed approach.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | - Disha Vihol
- Pharmacy Section, L M College of Pharmacy, Ahmedabad, 380009, India
| | - Bhavya Mehta
- Pharmacy Section, L M College of Pharmacy, Ahmedabad, 380009, India
| | - Dhruvil Shah
- Pharmacy Section, L M College of Pharmacy, Ahmedabad, 380009, India
| | - Manan Patel
- Pharmacy Section, L M College of Pharmacy, Ahmedabad, 380009, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| |
Collapse
|
21
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
22
|
Mohammadi M, Karimi M, Malaekeh-Nikouei B, Torkashvand M, Alibolandi M. Hybrid in situ- forming injectable hydrogels for local cancer therapy. Int J Pharm 2022; 616:121534. [PMID: 35124117 DOI: 10.1016/j.ijpharm.2022.121534] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023]
Abstract
Injectable in situ forming hydrogels are amongst the efficient local drug delivery systems for cancer therapy. Providing a 3D hydrogel network within the target tissue capable of sustained release of the chemotherapeutics made them attractive candidates for increasing the therapeutic index. Remarkable swelling properties, mechanical strength, biocompatibility, wide composition variety and tunable polymeric moieties have led to preparation of injectable hydrogels which also could be used as cavity adaptive chemotherapeutic-loaded implants to prevent post -surgical cancer recurrence. Implementation of various polymers, nanoparticles, peptide and proteins and different crosslinking chemistry facilitated the fabrication of hybrid hydrogels with favorable characteristics such as stimuli sensitive platforms or multifunctional systems. In the current review, we focused on design and fabrication strategies of injectable in situ forming hydrogels and summarized recent hybrid hydrogels used for local cancer therapy.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Torkashvand
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Ebrahimian M, Shahgordi S, Yazdian-Robati R, Etemad L, Hashemi M, Salmasi Z. Targeted delivery of galbanic acid to colon cancer cells by PLGA nanoparticles incorporated into human mesenchymal stem cells. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:295-308. [PMID: 36186932 PMCID: PMC9482708 DOI: 10.22038/ajp.2022.20022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/06/2022]
Abstract
Objective The aim of this study was to investigate the efficacy of mesenchyme stem cells (MSCs) derived from human adipose tissue (hMSCs) as carriers for delivery of galbanic acid (GBA), a potential anticancer agent, loaded into poly (lactic-co-glycolic acid) (PLGA) nanoparticles (nano-engineered hMSCs) against tumor cells. Materials and Methods GBA-loaded PLGA nanoparticles (PLGA/GBA) were prepared by single emulsion method and their physicochemical properties were evaluated. Then, PLGA/GBA nanoparticles were incorporated into hMSCs (hMSC/PLGA-GBA) and their migration ability and cytotoxicity against colon cancer cells were investigated. Results The loading efficiency of PLGA/GBA nanoparticles with average size of 214±30.5 nm into hMSCs, was about 85 and 92% at GBA concentration of 20 and 40 μM, respectively. Nano-engineered hMSCs showed significant higher migration to cancer cells (C26) compared to normal cells (NIH/3T3). Furthermore, nano-engineered hMSCs could effectively induce cell death in C26 cells in comparison with non-engineered hMSCs. Conclusion hMSCs could be implemented for efficient loading of PLGA/GBA nanoparticles to produce a targeted cellular carrier against cancer cells. Thus, according to minimal toxicity on normal cells, it deserves to be considered as a valuable platform for drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Mahboubeh Ebrahimian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sanaz Shahgordi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran ,Corresponding Author: Tel: +98-5131801208, Fax: +98-38823251, ,
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author: Tel: +98-5131801208, Fax: +98-38823251, ,
| |
Collapse
|
24
|
Kennedy DC, Coen B, Wheatley AM, McCullagh KJA. Microvascular Experimentation in the Chick Chorioallantoic Membrane as a Model for Screening Angiogenic Agents including from Gene-Modified Cells. Int J Mol Sci 2021; 23:452. [PMID: 35008876 PMCID: PMC8745510 DOI: 10.3390/ijms23010452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.
Collapse
Affiliation(s)
| | | | - Antony M. Wheatley
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| | - Karl J. A. McCullagh
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| |
Collapse
|
25
|
Ke R, Zhen X, Wang HS, Li L, Wang H, Wang S, Xie X. Surface functionalized biomimetic bioreactors enable the targeted starvation-chemotherapy to glioma. J Colloid Interface Sci 2021; 609:307-319. [PMID: 34896831 DOI: 10.1016/j.jcis.2021.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
Altering the glucose supply and the metabolic pathways would be an intriguing strategy in starvation therapy toward cancers. Nevertheless, starvation therapy alone could be inadequate to eliminate tumor cells completely. Herein, a multifunctional bioreactor was fabricated for synergistic starvation-chemotherapy through embedding glucose oxidase (GOx) and doxorubicin (DOX) in the tumor targeting ligands (RGD) modified red blood cell membrane camouflaged metal-organic framework (MOF) nanoparticle (denoted as RGD-mGZD). Owing to the remarkable biointerfacing property, the designed RGD-mGZD could not only possess enhanced blood retention time inherited from red blood cells, but also preferentially target the tumor site after the modification with RGD peptide. Once the bioreactor reached the desired region, GOx promptly consumed the intratumoral glucose and oxygen to starve cancer cells for robust starvation therapy. More importantly, the aggravated acidic microenvironment at the tumor region was found to induce the decomposition of the MOF structure, thus triggering the release of DOX for reinforced chemotherapy. This bioreactor would further prompt the development of synergistic patterns toward cancer treatment in a spatiotemporally controlled manner.
Collapse
Affiliation(s)
- Ruifang Ke
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueyan Zhen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Linhao Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hongying Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
26
|
Moghassemi S, Dadashzadeh A, Azevedo RB, Feron O, Amorim CA. Photodynamic cancer therapy using liposomes as an advanced vesicular photosensitizer delivery system. J Control Release 2021; 339:75-90. [PMID: 34562540 DOI: 10.1016/j.jconrel.2021.09.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
The multidisciplinary field of photodynamic therapy (PDT) is a combination of photochemistry and photophysics sciences, which has shown tremendous potential for cancer therapy application. PDT employs a photosensitizing agent (PS) and light to form cytotoxic reactive oxygen species and subsequently oxidize light-exposed tissue. Despite numerous advantages of PDT and enormous progress in this field, common PSs are still far from ideal treatment because of their poor permeability, non-specific phototoxicity, side effects, hydrophobicity, weak bioavailability, and tendency to self-aggregation. To circumvent these limitations, PS can be encapsulated in liposomes, an advanced drug delivery system that has demonstrated the ability to enhance drug permeability into biological membranes and loading both hydrophobic and lipophilic agents. Moreover, liposomes can also be coated by targeting agents to improve delivery efficiency. The present review aims to summarize the principles of PDT, various PS generations, PS-loaded nanoparticles, liposomes, and their impact on PDT, then discuss recent photodynamic cancer therapy strategies using liposomes as PS-loaded vectors, and highlight future possibilities and perspectives.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Olivier Feron
- Pôle de Pharmacologie et thérapeutique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
27
|
Azadi R, Mousavi SE, Kazemi NM, Yousefi-Manesh H, Rezayat SM, Jaafari MR. Anti-inflammatory efficacy of Berberine Nanomicelle for improvement of cerebral ischemia: formulation, characterization and evaluation in bilateral common carotid artery occlusion rat model. BMC Pharmacol Toxicol 2021; 22:54. [PMID: 34600570 PMCID: PMC8487542 DOI: 10.1186/s40360-021-00525-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/21/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Berberine (BBR) is a plant alkaloid that possesses anti-inflammatory and anti-oxidant effects with low oral bioavailability. In this study, micelle formulation of BBR was investigated to improve therapeutic efficacy and examined its effect on the secretion of inflammatory cytokines in cerebral ischemia in the animal model. MATERIAL AND METHODS Nano formulation was prepared by thin-film hydration method, and characterized by particle size, zeta potential, morphology, encapsulation efficacy, and drug release in Simulated Gastric Fluid (SGF) and Simulated Intestine Fluid (SIF). Then, Wistar rats were pretreated with the drug (100 mg/kg) and nano-drug (25, 50, 75, 100 mg/kg) for 14 days. Then, on the fourteenth day, stroke induction was accomplished by Bilateral Common Carotid Artery Occlusion (BCCAO); after that, Tumor Necrosis Factor - Alpha (TNF-α), Interleukin - 1 Beta (IL-1ß), and Malondialdehyde (MDA) levels were measured in the supernatant of the whole brain, then the anti-inflammatory effect of BBR formulations was examined. RESULT AND DISCUSSION Micelles were successfully formed with appropriate characteristics and smaller sizes than 20 nm. The Poly Dispersity Index (PDI), zeta potential, encapsulation efficacy of micelles was 0.227, - 22 mV, 81%, respectively. Also, the stability of nano micelles was higher in SGF as compared to SIF. Our outcomes of TNF-a, IL-1B, and MDA evaluation show a significant ameliorating effect of the Berberine (BBR) and BBR-loaded micelles in pretreated groups. CONCLUSION Our experimental data show that pretreated groups in different doses (nano BBR 100, 75, 50 mg/kg, and BBR 100 mg/kg) successfully showed decreased levels of the inflammatory factors in cerebral ischemia compared with the stroke group and pretreated group with nano BBR in the dose of 25 mg/kg. Nano BBR formulation with a lower dose can be a better candidate than conventional BBR formulation to reduce oxidative and inflammatory factors in cerebral ischemia. Therefore, BBR-loaded micelle formulation could be a promising protective agent on cerebral ischemia.
Collapse
Affiliation(s)
- Roza Azadi
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Negar Motakef Kazemi
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Khabazian E, Vakhshiteh F, Norouzi P, Fatahi Y, Dinarvand R, Atyabi F. Cationic Liposome Decorated with Cyclic RGD Peptide for Targeted Delivery of anti-STAT3 siRNA to Melanoma Cancer Cells. J Drug Target 2021; 30:522-533. [PMID: 34482780 DOI: 10.1080/1061186x.2021.1973481] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gene therapy is regarded as a valuable strategy for efficient cancer treatment. However, the design of effective delivery systems that can deliver gene materials such as siRNA specifically to the tumour tissues plays a pivotal role in cancer therapy. For this reason, a targeted cationic liposome for melanoma treatment was developed. This system consists of cyclic RGD peptide conjugated to DSPE-PEG2000, cholesterol, DOTAP, and DSPC as cationic and neutral lipids, respectively. Cyclic RGD was selected based on speculation that cyclic RGD would effectively transport anti-signal transducer and activator of transcription 3 (STAT3) siRNA into melanoma cell via integrin receptors. The prepared liposomes provided excellent stability against electrolyte and serum nucleases. Targeted liposomes remarkably exhibited higher cellular internalisation in comparison with the non-targeted system in flow cytometry and confocal microscopy. Furthermore, incorporating peptide on the surface of liposomes resulted in considerably high cytotoxicity, a 2.1-times raise in apoptosis induction, and a significantly enhanced STAT3 gene suppression as compared with the corresponding non-targeted formulation on B16F10 murine melanoma cells. Whole-body imaging confirmed the more significant tumour accumulation of targeted liposomes in B16F10 melanoma xenograft tumour-bearing mice. Consequently, c-RGD peptide modified liposome suggests a promising option for specific siRNA delivery into melanoma cells.
Collapse
Affiliation(s)
- Ehsan Khabazian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran
| | - Faezeh Vakhshiteh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Norouzi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Wang G, Zannikou M, Lofchy L, Li Y, Gaikwad H, Balyasnikova IV, Simberg D. Liposomal Extravasation and Accumulation in Tumors as Studied by Fluorescence Microscopy and Imaging Depend on the Fluorescent Label. ACS NANO 2021; 15:11880-11890. [PMID: 34197075 PMCID: PMC8789216 DOI: 10.1021/acsnano.1c02982] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumor trafficking of liposomes is routinely monitored via fluorescence microscopy and imaging. To investigate whether an accumulation of liposomes depends on the type of fluorescent label, we prepared PEGylated liposomes dual-labeled with indocarbocyanine lipids (ICLs: DiD or DiI) and fluorescent phospholipids (FPLs: Cy3-DSPE or Cy5-DSPE) with similar cyanine headgroups but different spectra. Using ex vivo confocal microscopy and imaging, we compared tumor extravasation and accumulation of ICLs and FPLs. After systemic injection in a syngeneic mouse model of 4T1 breast cancer, ICLs and FPLs initially colocalized in tumor blood vessels and perivascular space. At later time points, ICLs spread over a significantly larger tumor area and accumulated in tumor macrophages, whereas FPLs were mostly restricted to the vasculature with limited extravascular signal. This phenomenon was independent of liposomal composition and ICL/FPL type and was also observed in syngeneic intracranial GL261 glioma and LY2 head and neck cancer models. The dual-labeled liposomes were stable in plasma and delivered both dyes to tumors at early time points. Notably, while the level of ICLs increased over time, FPLs gradually disappeared from tumors and other organs in vivo, likely due to degradation of the phospholipid. These findings demonstrate that trafficking and stability of the label is of critical importance when assessing extravasation and accumulation of nanocarriers in tumors and other organs by fluorescence microscopy and imaging.
Collapse
Affiliation(s)
| | - Markella Zannikou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | | | | | | | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | | |
Collapse
|
30
|
Wang R, Zhang Z, Liu B, Xue J, Liu F, Tang T, Liu W, Feng F, Qu W. Strategies for the design of nanoparticles: starting with long-circulating nanoparticles, from lab to clinic. Biomater Sci 2021; 9:3621-3637. [PMID: 34008587 DOI: 10.1039/d0bm02221g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Short half-life is one of the main causes of drug attrition in clinical development, which also leads to the failure of many leading compounds and hits to become drug candidates. Nowadays, nanomaterials have been applied to drug development to address this problem. In fact, the clinical application of nanoparticles (NPs) is severely limited due to their rapid elimination by the reticuloendothelial system (RES) in vivo. In this paper, we aim to summarize representative strategies on prolonging the circulation time for bridging the gap between excellent pharmaceutics and proper half-life and encourage clinical translation.
Collapse
Affiliation(s)
- Ruyi Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Zhongtao Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Bowen Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Jingwei Xue
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, 271000, China and Taian City institute of Digestive Disease, Taian City Central Hospital, Taian, 271000, China
| | - Fulei Liu
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, 271000, China and Pharmaceutical Department, Taian City Central Hospital, Taian, 271000, China
| | - Tongzhong Tang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China and Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China. and Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
31
|
Nik ME, Jaafari MR, Mashreghi M, Nikoofal-Sahlabadi S, Amin M, Sadeghnia HR, Iranshahi M, Navashenaq JG, Malaekeh-Nikouei B. The effect of RGD-targeted and non-targeted liposomal Galbanic acid on the therapeutic efficacy of pegylated liposomal doxorubicin: From liposomal preparation to in-vivo studies. Int J Pharm 2021; 604:120710. [PMID: 34019972 DOI: 10.1016/j.ijpharm.2021.120710] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The anti-cancer therapeutic application of Galbanic acid (Gba) as a strong antiangiogenic sesquiterpene coumarin has been limited due to its low water solubility. This issue necessitates developing new liposomal formulations for the efficient delivery of Gba in vivo. In this study, various liposomal formulations were prepared by a thin-film hydration method, and Gba was incorporated into the liposomal bilayers, which consequently increased its release profile compared to formulations in our previous study prepared by remote loading methods. The most stable formulation with desired properties was selected and decorated with RGD peptide (cyclo [Arg-Gly-Asp-D-Tyr-Cys]) to target tumor vasculature actively. The fluorescently-labeled model liposomes showed that the targeting could improve the receptor-mediated endocytosis of the liposomes higher than those prepared in our previous study in vitro in human umbilical vein endothelial cells (HUVECs), which was confirmed by chicken chorioallantoic membrane angiogenesis (CAM) model in vivo. Although not significant, it also could increase the accumulation of liposomes in colon tumors. In BALB/c mice bearing colon cancer, not only non-targeted Gba liposomes but also even RGD-targeted ones combinatorial therapy with pegylated liposomal doxorubicin could improve the anti-tumor efficacy as compared to their monotherapy. These outcomes have strong consequences for cancer therapy.
Collapse
Affiliation(s)
- Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Nikoofal-Sahlabadi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohamadreza Amin
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Gallo E, Diaferia C, Rosa E, Smaldone G, Morelli G, Accardo A. Peptide-Based Hydrogels and Nanogels for Delivery of Doxorubicin. Int J Nanomedicine 2021; 16:1617-1630. [PMID: 33688182 PMCID: PMC7935351 DOI: 10.2147/ijn.s296272] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The clinical use of the antitumoral drug doxorubicin (Dox) is reduced by its dose-limiting toxicity, related to cardiotoxic side effects and myelosuppression. In order to overcome these drawbacks, here we describe the synthesis, the structural characterization and the in vitro cytotoxicity assays of hydrogels (HGs) and nanogels (NGs) based on short peptide sequences loaded with Dox or with its liposomal formulation, Doxil. METHODS Fmoc-FF alone or in combination with (FY)3 or PEG8-(FY)3 peptides, at two different ratios (1/1 and 2/1 v/v), were used for HGs and NGs formulations. HGs were prepared according to the "solvent-switch" method, whereas NGs were obtained through HG submicronition by the top-down methodology in presence of TWEEN®60 and SPAN®60 as stabilizing agents. HGs gelation kinetics were assessed by Circular Dichroism (CD). Stability and size of NGs were studied using Dynamic Light Scattering (DLS) measurements. Cell viability of empty and filled Dox HGs and NGs was evaluated on MDA-MB-231 breast cancer cells. Moreover, cell internalization of the drug was evaluated using immunofluorescence assays. RESULTS Dox filled hydrogels exhibit a high drug loading content (DLC=0.440), without syneresis after 10 days. Gelation kinetics (20-40 min) and the drug release (16-28%) over time of HGs were found dependent on relative peptide composition. Dox filled NGs exhibit a DLC of 0.137 and a low drug release (20-40%) after 72 h. Empty HGs and NGs show a high cell viability (>95%), whereas Dox loaded ones significantly reduce cell viability after 24 h (49-57%) and 72 h (7-25%) of incubation, respectively. Immunofluorescence assays evidenced a different cell localization for Dox delivered through HGs and NGs with respect to the free drug. DISCUSSION A modulation of the Dox release can be obtained by changing the ratios of the peptide components. The different cellular localization of the drug loaded into HGs and NGs suggests an alternative internalization mechanism. The high DLC, the low drug release and preliminary in vitro results suggest a potential employment of peptide-based HGs and NGs as drug delivery tools.
Collapse
Affiliation(s)
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| | - Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| | | | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| |
Collapse
|
33
|
Shahraki N, Mehrabian A, Amiri-Darban S, Moosavian SA, Jaafari MR. Preparation and characterization of PEGylated liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in mice bearing C26 colon carcinoma. Colloids Surf B Biointerfaces 2021; 200:111589. [PMID: 33545570 DOI: 10.1016/j.colsurfb.2021.111589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Employing targeting ligands on the surface of liposomes has the great potential to improve therapeutic efficacy and decreases off-target effects of liposomal formulations. In the present study, a leptin-derived peptide (Lp31) was evaluated to optimize the therapeutic efficacy of PEGylated liposomal Doxorubicin (PLD, Caelyx®). Leptin is an appetite regulatory hormone that is secreted into the blood circulation by the adipose tissue and it functions via its over expressed receptors (Ob-R) in a wide variety of cancers. Lp31, as targeting ligand, was conjugated to Maleimide-PEG2000-DSPE and then post-inserted into Caelyx. The anti-tumor activity and therapeutic efficacy of leptin modified Caelyx were evaluated and compared with Caelyx. The in vitro experiments demonstrated enhanced cytotoxicity and cellular uptake of Lp31-targeted Caelyx in C26 cell line compared to Caelyx. In BALB/c mice bearing C-26 murine carcinoma, Lp31 modified Caelyx groups exhibited significantly higher doxorubicin concentration at tumor tissue. Furthermore, Lp31 modified Caelyx at the dose of 10 mg/kg resulted in significant tumor growth inhibition and enhanced survival time compared to Caelyx. According to these results, the novel Lp31-liposomal doxorubicin offers great promise for the treatment of colon cancer and merits further investigation.
Collapse
Affiliation(s)
- Naghmeh Shahraki
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mehrabian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrazad Amiri-Darban
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Mirhadi E, Mashreghi M, Faal Maleki M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Redox-sensitive nanoscale drug delivery systems for cancer treatment. Int J Pharm 2020; 589:119882. [PMID: 32941986 DOI: 10.1016/j.ijpharm.2020.119882] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
35
|
El Maghraby GM, Arafa MF. Liposomes for Enhanced Cellular Uptake of Anticancer Agents. Curr Drug Deliv 2020; 17:861-873. [PMID: 32640957 DOI: 10.2174/1567201817666200708113131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/08/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Cancers are life threatening diseases and their traditional treatment strategies have numerous limitations which include poor pharmacokinetic profiles, non-specific drug distribution in the body tissues and organs and deprived tumor cells penetration. This attracted the attention of researchers to tailor efficient drug delivery system for anticancer agents to overcome these limitations. Liposomes are one of the newly developed delivery systems for anticancer agents. They are vesicular structures, which were fabricated to enhance drug targeting to tumor tissues either via active or passive targeting. They can be tailored to penetrate tumor cells membrane which is considered the main rate limiting step in antineoplastic therapy. This resulted in enhancing drug cellular uptake and internalization and increasing drug cytotoxic effect. These modifications were achieved via various approaches which included the use of cell-penetrating peptides, the use of lipid substances that can increase liposome fusogenic properties or increase the cell membrane permeability toward amphiphilic drugs, surface modification or ligand targeted liposomes and immuno-liposomes. The modified liposomes were able to enhance anticancer agent's cellular uptake and this was reflected in their ability to destroy tumor tissues. This review outlines different approaches employed for liposomes modification for enhancing anticancer agent's cellular uptake.
Collapse
Affiliation(s)
- Gamal M El Maghraby
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mona F Arafa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
36
|
Farcas CG, Dehelean C, Pinzaru IA, Mioc M, Socoliuc V, Moaca EA, Avram S, Ghiulai R, Coricovac D, Pavel I, Alla PK, Cretu OM, Soica C, Loghin F. Thermosensitive Betulinic Acid-Loaded Magnetoliposomes: A Promising Antitumor Potential for Highly Aggressive Human Breast Adenocarcinoma Cells Under Hyperthermic Conditions. Int J Nanomedicine 2020; 15:8175-8200. [PMID: 33122905 PMCID: PMC7591238 DOI: 10.2147/ijn.s269630] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Breast cancer presents one of the highest rates of prevalence around the world. Despite this, the current breast cancer therapy is characterized by significant side effects and high risk of recurrence. The present work aimed to develop a new therapeutic strategy that may improve the current breast cancer therapy by developing a heat-sensitive liposomal nano-platform suitable to incorporate both anti-tumor betulinic acid (BA) compound and magnetic iron nanoparticles (MIONPs), in order to address both remote drug release and hyperthermia-inducing features. To address the above-mentioned biomedical purposes, the nanocarrier must possess specific features such as specific phase transition temperature, diameter below 200 nm, superparamagnetic properties and heating capacity. Moreover, the anti-tumor activity of the developed nanocarrier should significantly affect human breast adenocarcinoma cells. METHODS BA-loaded magnetoliposomes and corresponding controls (BA-free liposomes and liposomes containing no magnetic payload) were obtained through the thin-layer hydration method. The quality and stability of the multifunctional platforms were physico-chemically analysed by the means of RAMAN, scanning electron microscopy-EDAX, dynamic light scattering, zeta potential and DSC analysis. Besides this, the magnetic characterization of magnetoliposomes was performed in terms of superparamagnetic behaviour and heating capacity. The biological profile of the platforms and controls was screened through multiple in vitro methods, such as MTT, LDH and scratch assays, together with immunofluorescence staining. In addition, CAM assay was performed in order to assess a possible anti-angiogenic activity induced by the test samples. RESULTS The physico-chemical analysis revealed that BA-loaded magnetoliposomes present suitable characteristics for the purpose of this study, showing biocompatible phase transition temperature, a diameter of 198 nm, superparamagnetic features and heating capacity. In vitro results showed that hyperthermia induces enhanced anti-tumor activity when breast adenocarcinoma MDA-MB-231 cells were exposed to BA-loaded magnetoliposomes, while a low cytotoxic rate was exhibited by the non-tumorigenic breast epithelial MCF 10A cells. Moreover, the in ovo angiogenesis assay endorsed the efficacy of this multifunctional platform as a good strategy for breast cancer therapy, under hyperthermal conditions. Regarding the possible mechanism of action of this multifunctional nano-platform, the immunocytochemistry of the MCF7 and MDA-MB-231 breast carcinoma cells revealed a microtubule assembly modulatory activity, under hyperthermal conditions. CONCLUSION Collectively, these findings indicate that BA-loaded magnetoliposomes, under hyperthermal conditions, might serve as a promising strategy for breast adenocarcinoma treatment.
Collapse
Affiliation(s)
- Claudia Geanina Farcas
- Faculty of Pharmacy, Department of Toxicology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Iulia Andreea Pinzaru
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Vlad Socoliuc
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy – Timisoara Branch, Timisoara, Romania
- Research Center for Complex Fluids Systems Engineering, Politehnica University of Timisoara, Timisoara, Romania
| | - Elena-Alina Moaca
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Stefana Avram
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Ioana Pavel
- Department of Chemistry, Wright State University, Dayton, OH, USA
| | | | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Felicia Loghin
- Faculty of Pharmacy, Department of Toxicology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| |
Collapse
|
37
|
Karpuz M, Silindir-Gunay M, Ozer AY, Ozturk SC, Yanik H, Tuncel M, Aydin C, Esendagli G. Diagnostic and therapeutic evaluation of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer. Eur J Pharm Sci 2020; 156:105576. [PMID: 32987115 DOI: 10.1016/j.ejps.2020.105576] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
NSCLC is the most common type of lung cancer. However, non-specific contrast agents, radiopharmaceuticals, and treatment methods are insufficient in early diagnosis and eradication of all tumor tissue. Therefore, the formulation of a novel, targeted, specific theranostic agents possess critical importance. In our previous study, paclitaxel and vinorelbine encapsulating, Tc-99m radiolabeled, folate targeted, nanosized liposomes were formulated and found promising due to characterization properties, high cellular uptake, and cytotoxicity. In this study, in vivo therapeutic and diagnostic efficacy of liposomal formulations were tested by biodistribution study, evaluation of tumor growth inhibition, and histopathologic examination after in vitro assays on LLC1 cells. Both actively and passively targeted liposomal formulations exhibited high cellular uptake, and co-drug encapsulating liposomes showed a greater cytotoxicity profiles than free drug combination in LLC1 cells. By the results of biodistribution studies performed in NSCLC tumor-bearing C57BL/6 mice, the uptake of radiolabeled, actively folate targeted, co-drug encapsulating liposomal formulation was found to be higher in tumor tissue when compared to non-actively targeted one. Also, more effective treatment was achieved by using folate-targeted, co-drug encapsulating liposomal formulation when compared to free drugs combination according to changes in tumor size of mice. Furthermore, liposomal formulations showed lower toxicity compared to free drug combinations in the toxicity study considering body weight. Moreover, according to the histopathological study, folate targeted, co-drug encapsulating liposomes not only inhibited the tumor growth effectively but also restricted the lung metastasis entirely.
Collapse
Affiliation(s)
- Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Department of Radiopharmacy, Faculty of Pharmacy, Izmir KatipCelebi University, Izmir, Turkey
| | - Mine Silindir-Gunay
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - A Yekta Ozer
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Suleyman Can Ozturk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Hamdullah Yanik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Murat Tuncel
- Department of Nuclear Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Cisel Aydin
- Department of Pathology, Faculty of Medicine, Koc University, Istanbul, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
38
|
Jia D, Yang Y, Yuan F, Fan Q, Wang F, Huang Y, Song H, Hu P, Wang R, Li G, Liu R, Li J. Increasing the antitumor efficacy of doxorubicin liposomes with coupling an anti-EGFR affibody in EGFR-expressing tumor models. Int J Pharm 2020; 586:119541. [PMID: 32544521 DOI: 10.1016/j.ijpharm.2020.119541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in a wide range of solid tumors. In this study, we exploited a high-affinity EGFR-antagonistic affibody (ZEGFR) coupled to a doxorubicin loaded pegylated liposome (LS-Dox) for concurrent passive and active targeting of EGFR+ A431 tumor cells in vitro and in vivo. The in vitro studies revealed that the Dox liposomes coupled with ZEGFR (AS-Dox) showed a higher Dox uptake than LS-Dox in EGFR+ A431 cells but not in EGFR- B16F10 cells, resulting in a selectively enhanced cytotoxicity. In vivo, AS-Dox confirmed its long circulation time and efficient accumulation in tumors. This targeted chemotherapy achieved greater tumor suppression. Further, this low-dose but effective targeted treatment reduced systemic toxicity such as body weight loss and organ injury demonstrated by H&E staining. Thus, selective targeting of LS-Dox coupled with ZEGFR enhanced antitumor effects and improved systemic safety. These results demonstrated that LS-Dox coupled with ZEGFR might be developed as a potential tool for therapy of EGFR+ tumors.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Yujiao Yang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China.
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Feifei Wang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Yujiao Huang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Hao Song
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/ Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Ping Hu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Rui Wang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Guangyong Li
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Renmin Liu
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China.
| |
Collapse
|
39
|
Alavi M, Varma RS. Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformulations. Int J Biol Macromol 2020; 164:2197-2203. [PMID: 32763404 DOI: 10.1016/j.ijbiomac.2020.07.274] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Severe side effects and the rapid emergence of drug resistance in cancer cells are major problems in the chemotherapy utilizing anthracyclines, with a difference between cellular response at nano and micro scale levels. Understanding this situation is more complicated issue to attain efficient targeted formulations with low unexpected toxicity in patients. On nano-scale level, considering properties of nano-bio interaction in all relevant parts of the body may offer clue for suitable formulations. Four main strategies comprising PEGylation, surface charging, targeting, and stimuli responsiveness can be deployed to improve the liposomal and polymeric nanoformulations that can efficiently deliver common anthracyclines namely daunorubicin (DAU), doxorubicin (DOX), idarubicin (IDA), and epirubicin (EPI). Herein, the advances and challenges pertaining to the formulations of these anticancer drugs via liposomal and polymeric nanoformulations, are discussed.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
40
|
Bao H, Zheng N, Li Z, Zhi Y. Synergistic Effect of Tangeretin and Atorvastatin for Colon Cancer Combination Therapy: Targeted Delivery of These Dual Drugs Using RGD Peptide Decorated Nanocarriers. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3057-3068. [PMID: 32801644 PMCID: PMC7397562 DOI: 10.2147/dddt.s256636] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Purpose Colorectal cancer (CRC) is the third most frequently diagnosed cancer and the fourth leading cause of cancer death over the world. Nano-sized drug delivery systems are used for the treatment of cancers. The aim of this study was to develop a tangeretin (TAGE) and atorvastatin (ATST) combined nano-system decorated with RGD (RGD-ATST/TAGE CNPs) for colon cancer combination therapy. Materials and Methods In this study, cyclized arginine-glycine-aspartic acid sequences (RGD) contained ligand was synthesized by conjugating cyclo (Arg-Gly-Asp-d-Phe-Lys) (cRGDfK) with D-α-tocopheryl succinate dichloromethane (TOSD) using polyethylene glycol (PEG) as a linker to obtain cRGDfK-PEG-TOSD. ATST and TAGE combined nano-systems: RGD-ATST/TAGE CNPs were prepared. The combination effects as well as antitumor effects of these two agents were evaluated on colon cancer cells and mice bearing cancer models. Results Drug entrapment efficiencies of nano-systems were high (around 90%), suggesting the good loading capacity. The release profiles of ATST or TAGE from RGD-ATST/TAGE CNPs followed Higuchi model. The RGD-decorated nano-system showed more obvious cytotoxicity on HT-29 cells than the undecorated nano-system, but no obvious difference was found on normal CCD-18 cells. The strongest synergism was observed when the weight ratio of ATST to TAGE was 1:1. In vivo biodistribution of RGD-ATST/TAGE CNPs in the tumor site is high and prominently inhibited the in vivo tumor growth. Conclusion The results demonstrated that RGD-ATST/TAGE CNPs showed the most significant synergistic therapeutic efficacy, exhibited no significant toxicity to major organs and tissues, and body weight of the treated mice was stable. Therefore, the combination nano-system is a promising platform for colon cancer therapy.
Collapse
Affiliation(s)
- He Bao
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Nanbo Zheng
- Department of Pharmacy, Xi'an Central Hospital, Xi'an 710003, People's Republic of China
| | - Zhuanting Li
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Yuan Zhi
- Department of Pharmacy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, Shaanxi, People's Republic of China
| |
Collapse
|
41
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020; 235:9241-9268. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
42
|
Song X, Fan J, Liu L, Liu X, Gao F. Coumarin derivatives with anticancer activities: An update. Arch Pharm (Weinheim) 2020; 353:e2000025. [DOI: 10.1002/ardp.202000025] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Xu‐Feng Song
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy EngineeringBeijing University of Technology Beijing China
| | - Jing Fan
- Hengshui University Hengshui Hebei China
| | - Lan Liu
- Medicine Vocational and Technical SchoolWuhan University Wuhan Hubei China
| | - Xiao‐Feng Liu
- Sinolite Industrial Co., Ltd. Hangzhou Zhejiang China
| | - Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP)Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong China
| |
Collapse
|
43
|
Preparation and characterization of stable nanoliposomal formulations of curcumin with high loading efficacy: In vitro and in vivo anti-tumor study. Int J Pharm 2020; 580:119211. [DOI: 10.1016/j.ijpharm.2020.119211] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
|
44
|
Dehghani S, Dalirfardouei R, Jafari Najaf Abadi MH, Ebrahimi Nik M, Jaafari MR, Mahdipour E. Topical application of curcumin regulates the angiogenesis in diabetic-impaired cutaneous wound. Cell Biochem Funct 2020; 38:558-566. [PMID: 32030812 DOI: 10.1002/cbf.3500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/24/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
Diabetic wound characterizes with a delayed repair as a result of the lack of neoangiogenesis and the excess of inflammation. Natural products such as curcumin have shown great promises in their regulatory potentials on inflammation and angiogenesis. However, natural agents have several shortages in their bioavailability and stability when used in vivo. In this study, we have evaluated the efficacy of a topical formulation of curcumin in the enhancement of diabetic wound repair. Streptozocin-induced diabetic mice were wounded, and cream of curcumin (1%) was applied topically to wounds twice daily for different treatment periods. Inflammation, neoangiogenesis, and re-epithelialization were evaluated in each experimental group. Wounds of animals treated with curcumin showed an enhanced neoangiogenesis. Application of topical curcumin also increased the expression level of RelA as the main subunit of the nuclear factor-κB (NF-κB) signalling pathway. However, no significant effects on macrophage polarization and re-epithelialization were observed in the curcumin-treated animals. Our study using a higher concentration of curcumin in the form of a topical cream further confirmed the efficacy of curcumin as an angiogenesis-promoting agent; however, it also conveyed uncertainty over the claimed regulatory effects of curcumin on inflammation. SIGNIFICANCE OF THE STUDY: Diabetes results in several complications such as impaired cutaneous wound repair. Excess of inflammation and lack of angiogenesis are among the main causes of delayed healing in diabetes. Curcumin is famous for its anti-inflammatory properties. However, when in the body curcumin has shown to have a limited benefit unless in high-dosage consumes. This is because of its poor absorption from digestive system and its bioavailability. In this study, we have used a topical formulation of curcumin at a relatively high concentration to enhance the healing of a diabetic wound in an animal model of diabetes. We also have studied different cellular and molecular mechanisms by which curcumin may help the wound repair. Our results re-emphasize the proangiogenic potential of curcumin in diabetic wound environment.
Collapse
Affiliation(s)
- Sadegh Dehghani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Dalirfardouei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Targeting Tumor Endothelial Cells with Nanoparticles. Int J Mol Sci 2019; 20:ijms20235819. [PMID: 31756900 PMCID: PMC6928777 DOI: 10.3390/ijms20235819] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Because angiogenesis is a major contributor to cancer progression and metastasis, it is an attractive target for cancer therapy. Although a diverse number of small compounds for anti-angiogenic therapy have been developed, severe adverse effects commonly occur, since small compounds can affect not only tumor endothelial cells (TECs), but also normal endothelial cells. This low selectivity for TECs has motivated researchers to develop alternate types of drug delivery systems (DDSs). In this review, we summarize the current state of knowledge concerning the delivery of nano DDSs to TECs. Their payloads range from small compounds to nucleic acids. Perspectives regarding new therapeutic targets are also mentioned.
Collapse
|
46
|
Niu R, Zhang P, Wang FQ, Liu M, Liu Q, Jia N, Yang S, Tao X, Wei D. Preparation and purification of novel phosphatidyl prodrug and performance modulation of phosphatidyl nanoprodrug. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0277-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
A novel phosphatidyl nanoprodrug system can be selectively released parent drugs in cancer cells, triggered by the local overexpression of phospholipase D (PLD). This system significantly reduces the intrinsic disadvantages of conventional chemotherapeutic drugs. However, the separation and purification processes of phosphatidyl prodrug, the precursor of phosphatidyl nanoprodrug, have not been established, and the preparation of nanocrystals with good stability and tumor-targeting capability is still challenging.
Results
In this study, we established a successive elution procedure for the phosphatidyl prodrug—phosphatidyl mitoxantrone (PMA), using an initial ten-bed volume of chloroform/methanol/glacial acetic acid/water (26/10/0.8/0.7) (v/v/v/v) followed by a five-bed volume (26/10/0.8/3), with which purity rates of 96.93% and overall yields of 50.35% of PMA were obtained. Moreover, to reduce the intrinsic disadvantages of conventional chemotherapeutic drugs, phosphatidyl nanoprodrug—PMA nanoprodrug (NP@PMA)—was prepared. To enhance their stability, nanoparticles were modified with polyethylene glycol (PEG). We found that nanoprodrugs modified by PEG (NP@PEG–PMA) were stably present in RPMI-1640 medium containing 10% FBS, compared with unmodified nanoprodrug (NP@PMA). To enhance active tumor-targeting efficiency, we modified nanoparticles with an arginine-glycine-aspartic acid (RGD) peptide (NP@RGD–PEG–PMA). In vitro cytotoxicity assays showed that, compared with the cytotoxicity of NP@PEG–PMA against tumor cells, that of NP@RGD–PEG–PMA was enhanced. Thus, RGD modification may serve to enhance the active tumor-targeting efficiency of a nanoprodrug, thereby increasing its cytotoxicity.
Conclusions
A process for the preparation and purification of novel phosphatidyl prodrugs was successfully established, and the nanoprodrug was modified using PEG for enhanced nanoparticle stability, and using RGD peptide for enhanced active tumor-targeting efficiency. These procedures offer considerable potential in the development of functional antitumor prodrugs.
Collapse
|