1
|
Sedlářová M, Jedelská T, Lebeda A, Petřivalský M. Progress in Plant Nitric Oxide Studies: Implications for Phytopathology and Plant Protection. Int J Mol Sci 2025; 26:2087. [PMID: 40076711 PMCID: PMC11899914 DOI: 10.3390/ijms26052087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Nitric oxide (NO) is a gaseous free radical known to modulate plant metabolism through crosstalk with phytohormones (especially ABA, SA, JA, and ethylene) and other signaling molecules (ROS, H2S, melatonin), and to regulate gene expression (by influencing DNA methylation and histone acetylation) as well as protein function through post-translational modifications (cysteine S-nitrosation, metal nitrosation, tyrosine nitration, nitroalkylation). Recently, NO has gained attention as a molecule promoting crop resistance to stress conditions. Herein, we review innovations from the NO field and nanotechnology on an up-to-date phytopathological background.
Collapse
Affiliation(s)
- Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc-Holice, Czech Republic;
| | - Tereza Jedelská
- Department of Biochemisty, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc-Holice, Czech Republic; (T.J.); (M.P.)
| | - Aleš Lebeda
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc-Holice, Czech Republic;
| | - Marek Petřivalský
- Department of Biochemisty, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc-Holice, Czech Republic; (T.J.); (M.P.)
| |
Collapse
|
2
|
Qian H, Zuo X, Man Y, Xu C, Luo P, Yao L, Geng R, Wang B, Niu S, Lin J, Cui Y. The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization. PLANT PHYSIOLOGY 2024; 197:kiaf023. [PMID: 39823294 DOI: 10.1093/plphys/kiaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity. Here, we demonstrated that the actin cytoskeleton alters the Pep1-triggered immune response. In addition, dual-color total internal reflection fluorescence-structured illumination microscopy (TIRF-SIM) showed that PEPR1 diffusion on the plasma membrane is closely related to the actin cytoskeleton. We performed single-particle tracking to quantify individual protein particles and found that the actin cytoskeleton notably regulates PEPR1 mobility and cluster size. More importantly, we demonstrated that actin filament reconfiguration is sufficient to inhibit Pep1-induced internalization, which alters the immune response. Taken together, these findings suggest that the actin cytoskeleton functions as an integration node for Pep1 signaling and PEPR1 endocytosis.
Collapse
Affiliation(s)
- Hongping Qian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Xinxiu Zuo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yi Man
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Changwen Xu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Pengyun Luo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Lijuan Yao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Ruohan Geng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Binghe Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yaning Cui
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Manickam P, Abulfaraj AA, Alhoraibi HM, Veluchamy A, Almeida-Trapp M, Hirt H, Rayapuram N. Arabidopsis Actin-Binding Protein WLIM2A Links PAMP-Triggered Immunity and Cytoskeleton Organization. Int J Mol Sci 2024; 25:11642. [PMID: 39519192 PMCID: PMC11545931 DOI: 10.3390/ijms252111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Arabidopsis LIM proteins are named after the initials of three proteins Lin-11, Isl-1, and MEC-3, which belong to a class of transcription factors that play an important role in the developmental regulation of eukaryotes and are also involved in a variety of life processes, including gene transcription, the construction of the cytoskeleton, signal transduction, and metabolic regulation. Plant LIM proteins have been shown to regulate actin bundling in different cells, but their role in immunity remains elusive. Mitogen-activated protein kinases (MAPKs) are a family of conserved serine/threonine protein kinases that link upstream receptors to their downstream targets. Pathogens produce pathogen-associated molecular patterns (PAMPs) that trigger the activation of MAPK cascades in plants. Recently, we conducted a large-scale phosphoproteomic analysis of PAMP-induced Arabidopsis plants to identify putative MAPK targets. One of the identified phospho-proteins was WLIM2A, an Arabidopsis LIM protein. In this study, we investigated the role of WLIM2A in plant immunity. We employed a reverse-genetics approach and generated wlim2a knockout lines using CRISPR-Cas9 technology. We also generated complementation and phosphosite-mutated WLIM2A expression lines in the wlim2a background. The wlim2a lines were compromised in their response to Pseudomonas syringae Pst DC3000 but showed enhanced resistance to the necrotrophic fungus Botrytis cinereae. Transcriptome analyses of wlim2a mutants revealed the deregulation of immune hormone biosynthesis and signaling of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways. The wlim2a mutants also exhibited altered stomatal phenotypes. Analysis of plants expressing WLIM2A variants of the phospho-dead or phospho-mimicking MAPK phosphorylation site showed opposing stomatal behavior and resistance phenotypes in response to Pst DC3000 infection, proving that phosphorylation of WLIM2A plays a crucial role in plant immunity. Overall, these data demonstrate that phosphorylation of WLIM2A by MAPKs regulates Arabidopsis responses to plant pathogens.
Collapse
Affiliation(s)
- Prabhu Manickam
- BESE Division 4700, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Hanna M. Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia
| | - Alaguraj Veluchamy
- BESE Division 4700, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| | - Marilia Almeida-Trapp
- Core Labs, King Abdullah University of Science and Technology (KAUST), Makkah 23955, Saudi Arabia
| | - Heribert Hirt
- BESE Division 4700, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| | - Naganand Rayapuram
- BESE Division 4700, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| |
Collapse
|
4
|
Mourad AMI, Börner A, Esmail SM. Effectiveness and Genetic Control of Trichoderma spp. as a Biological Control of Wheat Powdery Mildew Disease. PHYTOPATHOLOGY 2024; 114:2221-2234. [PMID: 38970807 DOI: 10.1094/phyto-05-24-0157-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different Trichoderma spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of Trichoderma in controlling WPM. Of the three species, T. asperellum T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.
Collapse
Affiliation(s)
- Amira M I Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Seeland, OT Gatersleben, Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Seeland, OT Gatersleben, Germany
| | - Samar M Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, 12619 Giza, Egypt
| |
Collapse
|
5
|
Lv Y, Liu S, Zhang J, Cheng J, Wang J, Wang L, Li M, Wang L, Bi S, Liu W, Zhang L, Liu S, Yan D, Diao C, Zhang S, He M, Gao Y, Wang C. Genome-wide identification of actin-depolymerizing factor family genes in melon ( Cucumis melo L.) and CmADF1 plays an important role in low temperature tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1419719. [PMID: 39239192 PMCID: PMC11374638 DOI: 10.3389/fpls.2024.1419719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Actin depolymerizing factors (ADFs), as the important actin-binding proteins (ABPs) with depolymerizing/severing actin filaments, play a critical role in plant growth and development, and in response to biotic and abiotic stresses. However, the information and function of the ADF family in melon remains unclear. In this study, 9 melon ADF genes (CmADFs) were identified, distributed in 4 subfamilies, and located on 6 chromosomes respectively. Promoter analysis revealed that the CmADFs contained a large number of cis-acting elements related to hormones and stresses. The similarity of CmADFs with their Arabidopsis homologue AtADFs in sequence, structure, important sites and tissue expression confirmed that ADFs were conserved. Gene expression analysis showed that CmADFs responded to low and high temperature stresses, as well as ABA and SA signals. In particular, CmADF1 was significantly up-regulated under above all stress and hormone treatments, indicating that CmADF1 plays a key role in stress and hormone signaling responses, so CmADF1 was selected to further study the mechanism in plant tolerance low temperature. Under low temperature, virus-induced gene silencing (VIGS) of CmADF1 in oriental melon plants showed increased sensitivity to low temperature stress. Consistently, the stable genetic overexpression of CmADF1 in Arabidopsis improved their low temperature tolerance, possibly due to the role of CmADF1 in the depolymerization of actin filaments. Overall, our findings indicated that CmADF genes, especially CmADF1, function in response to abiotic stresses in melon.
Collapse
Affiliation(s)
- Yanling Lv
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shihang Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jiawang Zhang
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jianing Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jinshu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lina Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mingyang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuangtian Bi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wei Liu
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Lili Zhang
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shilei Liu
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Dabo Yan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chengxuan Diao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shaobin Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ming He
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yue Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Andronis CE, Jacques S, Lopez-Ruiz FJ, Lipscombe R, Tan KC. Proteomic analysis revealed that the oomyceticide phosphite exhibits multi-modal action in an oomycete pathosystem. J Proteomics 2024; 301:105181. [PMID: 38670258 DOI: 10.1016/j.jprot.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Phytopathogenic oomycetes constitute some of the most devastating plant pathogens and cause significant crop and horticultural yield and economic losses. The phytopathogen Phytophthora cinnamomi causes dieback disease in native vegetation and several crops. The most commonly used chemical to control P. cinnamomi is the oomyceticide phosphite. Despite its widespread use, the mode of action of phosphite is not well understood and it is unclear whether it targets the pathogen, the host, or both. Resistance to phosphite is emerging in P. cinnamomi isolates and other oomycete phytopathogens. The mode of action of phosphite on phosphite-sensitive and resistant isolates of the pathogen and through a model host was investigated using label-free quantitative proteomics. In vitro treatment of sensitive P. cinnamomi isolates with phosphite hinders growth by interfering with metabolism, signalling and gene expression; traits that are not observed in the resistant isolate. When the model host Lupinus angustifolius was treated with phosphite, proteins associated with photosynthesis, carbon fixation and lipid metabolism in the host were enriched. Increased production of defence-related proteins was also observed in the plant. We hypothesise the multi-modal action of phosphite and present two models constructed using comparative proteomics that demonstrate mechanisms of pathogen and host responses to phosphite. SIGNIFICANCE: Phytophthora cinnamomi is a significant phytopathogenic oomycete that causes root rot (dieback) in a number of horticultural crops and a vast range of native vegetation. Historically, areas infected with phosphite have been treated with the oomyceticide phosphite despite its unknown mode of action. Additionally, overuse of phosphite has driven the emergence of phosphite-resistant isolates of the pathogen. We conducted a comparative proteomic study of a sensitive and resistant isolate of P. cinnamomi in response to treatment with phosphite, and the response of a model host, Lupinus angustifolius, to phosphite and its implications on infection. The present study has allowed for a deeper understanding of the bimodal action of phosphite, suggested potential biochemical factors contributing to chemical resistance in P. cinnamomi, and unveiled possible drivers of phosphite-induced host plant immunity to the pathogen.
Collapse
Affiliation(s)
- Christina E Andronis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia; Proteomics International, Nedlands, WA, Australia.
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
7
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Li Y, Nan Z, Matthew C, Wang Y, Duan T. Arbuscular mycorrhizal fungus changes alfalfa (Medicago sativa) metabolites in response to leaf spot (Phoma medicaginis) infection, with subsequent effects on pea aphid (Acyrthosiphon pisum) behavior. THE NEW PHYTOLOGIST 2023; 239:286-300. [PMID: 37010085 DOI: 10.1111/nph.18924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 06/02/2023]
Abstract
Plant disease occurs simultaneously with insect attack. Arbuscular mycorrhizal fungi (AMF) modify plant biotic stress response. Arbuscular mycorrhizal fungi and pathogens may modify plant volatile organic compound (VOC) production and insect behavior. Nevertheless, such effects are rarely studied, particularly for mesocosms where component organisms interact with each other. Plant-mediated effects of leaf pathogen (Phoma medicaginis) infection on aphid (Acyrthosiphon pisum) infestation, and role of AMF (Rhizophagus intraradices) in modifying these interactions were elucidated in a glasshouse experiment. We evaluated alfalfa disease occurrence, photosynthesis, phytohormones, trypsin inhibitor (TI) and total phenol response to pathogen and aphid attack, with or without AMF, and aphid behavior towards VOCs from AMF inoculated and non-mycorrhizal alfalfa, with or without pathogen infection. AM fungus enhanced alfalfa resistance to pathogen and aphid infestation. Plant biomass, root : shoot ratio, net photosynthetic rate, transpiration rate, stomatal conductance, salicylic acid, and TI were significantly increased in AM-inoculated alfalfa. Arbuscular mycorrhizal fungi and pathogen significantly changed alfalfa VOCs. Aphids preferred VOCs of AM-inoculated and nonpathogen-infected to nonmycorrhizal and pathogen-infected alfalfa. We propose that AMF alter plant response to multiple biotic stresses in ways both beneficial and harmful to the plant host, providing a basis for strategies to manage pathogens and herbivore pests.
Collapse
Affiliation(s)
- Yingde Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| | - Cory Matthew
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| | - Yajie Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China
| |
Collapse
|
9
|
The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. Int J Mol Sci 2022; 23:ijms232415553. [PMID: 36555194 PMCID: PMC9779068 DOI: 10.3390/ijms232415553] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The plant cytoskeleton, consisting of actin filaments and microtubules, is a highly dynamic filamentous framework involved in plant growth, development, and stress responses. Recently, research has demonstrated that the plant cytoskeleton undergoes rapid remodeling upon sensing pathogen attacks, coordinating the formation of microdomain immune complexes, the dynamic and turnover of pattern-recognizing receptors (PRRs), the movement and aggregation of organelles, and the transportation of defense compounds, thus serving as an important platform for responding to pathogen infections. Meanwhile, pathogens produce effectors targeting the cytoskeleton to achieve pathogenicity. Recent findings have uncovered several cytoskeleton-associated proteins mediating cytoskeletal remodeling and defense signaling. Furthermore, the reorganization of the actin cytoskeleton is revealed to further feedback-regulate reactive oxygen species (ROS) production and trigger salicylic acid (SA) signaling, suggesting an extremely complex role of the cytoskeleton in plant immunity. Here, we describe recent advances in understanding the host cytoskeleton dynamics upon sensing pathogens and summarize the effectors that target the cytoskeleton. We highlight advances in the regulation of cytoskeletal remodeling associated with the defense response and assess the important function of the rearrangement of the cytoskeleton in the immune response. Finally, we propose suggestions for future research in this area.
Collapse
|
10
|
Hembade VL, Yashveer S, Taunk J, Sangwan S, Tokas J, Singh V, Redhu NS, Grewal S, Malhotra S, Kumar M. Chitosan-Salicylic acid and Zinc sulphate nano-formulations defend against yellow rust in wheat by activating pathogenesis-related genes and enzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:129-140. [PMID: 36228444 DOI: 10.1016/j.plaphy.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Stripe rust instigated by Puccinia striiformis f. sp. tritici causes major yield loss in wheat. In this study, disease resistance was induced in wheat by pre-activation of pathogenesis related (PR) genes using two different nano-formulations (NFs) i.e. Chitosan- Salicylic acid (SA) NFs (CH-NFs) and Zinc sulphate NFs (Zn-NFs). These NFs were synthesized using green approach and were characterized using various techniques. Both NFs effectively controlled stripe rust in wheat genotypes (WH 711 and WH 1123) by significantly increasing activities of phenylalanine ammonia lyase, tyrosine ammonia lyase and polyphenol oxidase enzymes when compared with disease free-control and diseased plants. Total soluble sugar (TSS) level was highest in CH-NF treated plants. TSS was also relatively higher in diseased plants than disease free-control as well as Zn-NF treated plants. Both CH-NFs and Zn-NFs induced the expression of PR genes. In CH-NF treated plants, the relative expression of PR genes was higher on the 3rd day after spraying (DAS) of NFs as compared to diseased and Zn-NF treated plants in both the genotypes. While in case of Zn-NF treated plants, relative expression of PR genes was higher on 5th DAS as compared to diseased and disease free-control plants. Early rise in expression of PR genes due to NF treatments was responsible for disease resistance in both the wheat genotypes as evidenced by a lower average coefficient of infection. These NFs can be synthesized easily with low cost input, are eco-friendly and can be effectively used against yellow rust as well as other wheat diseases.
Collapse
Affiliation(s)
- Vivekanand Laxman Hembade
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Shikha Yashveer
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Jyoti Taunk
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali, 140413, Punjab, India
| | - Sonali Sangwan
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Jayanti Tokas
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Vikram Singh
- Wheat Section, Department of Genetics & Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Neeru Singh Redhu
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Sapna Grewal
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Shalini Malhotra
- Department of Biotechnology, Pt Jawahar Lal Nehru Government College, Faridabad, 121002, Haryana, India
| | - Mukesh Kumar
- Wheat Section, Department of Genetics & Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| |
Collapse
|
11
|
Kalachova T, Škrabálková E, Pateyron S, Soubigou-Taconnat L, Djafi N, Collin S, Sekereš J, Burketová L, Potocký M, Pejchar P, Ruelland E. DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1978-1996. [PMID: 35900211 PMCID: PMC9614507 DOI: 10.1093/plphys/kiac354] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/18/2022] [Indexed: 05/04/2023]
Abstract
Flagellin perception is a keystone of pattern-triggered immunity in plants. The recognition of this protein by a plasma membrane (PM) receptor complex is the beginning of a signaling cascade that includes protein phosphorylation and the production of reactive oxygen species (ROS). In both Arabidopsis (Arabidopsis thaliana) seedlings and suspension cells, we found that treatment with flg22, a peptide corresponding to the most conserved domain of bacterial flagellin, caused a rapid and transient decrease in the level of phosphatidylinositol (PI) 4,5-bisphosphate along with a parallel increase in phosphatidic acid (PA). In suspension cells, inhibitors of either phosphoinositide-dependent phospholipases C (PLC) or diacylglycerol kinases (DGKs) inhibited flg22-triggered PA production and the oxidative burst. In response to flg22, receptor-like kinase-deficient fls2, bak1, and bik1 mutants (FLAGELLIN SENSITIVE 2, BRASSINOSTEROID INSENSITIVE 1-associated kinase 1, and BOTRYTIS-INDUCED KINASE 1, respectively) produced less PA than wild-type (WT) plants, whereas this response did not differ in NADPH oxidase-deficient rbohD (RESPIRATORY BURST OXIDASE HOMOLOG D) plants. Among the DGK-deficient lines tested, the dgk5.1 mutant produced less PA and less ROS after flg22 treatment compared with WT seedlings. In response to flg22, dgk5.1 plants showed lower callose accumulation and impaired resistance to Pseudomonas syringae pv. tomato DC3000 hrcC-. Transcriptomics revealed that the basal expression of defense-related genes was altered in dgk5.1 seedlings compared with the WT. A GFP-DGK5 fusion protein localized to the PM, where RBOHD and PLC2 (proteins involved in plant immunity) are also located. The role of DGK5 and its enzymatic activity in flagellin signaling and fine-tuning of early immune responses in plant-microbe interactions is discussed.
Collapse
Affiliation(s)
- Tetiana Kalachova
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
- Department of Experimental Plant Biology, Charles University, Viničná 5, Prague 12844, Czech Republic
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Nabila Djafi
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Sorbonne Université, F-75005 Paris, France
| | - Sylvie Collin
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Sorbonne Université, F-75005 Paris, France
| | - Juraj Sekereš
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Lenka Burketová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | | | | |
Collapse
|
12
|
Jiang M, Yang Q, Wang H, Luo Z, Guo Y, Shi J, Wang X, Qiang S, Strasser RJ, Chen S. Effect of Mycotoxin Cytochalasin A on Photosystem II in Ageratina adenophora. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202797. [PMID: 36297819 PMCID: PMC9609670 DOI: 10.3390/plants11202797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 05/12/2023]
Abstract
Biological herbicides have received much attention due to their abundant resources, low development cost, unique targets and environmental friendliness. This study reveals some interesting effects of mycotoxin cytochalasin A (CA) on photosystem II (PSII). Our results suggested that CA causes leaf lesions on Ageratina adenophora due to its multiple effects on PSII. At a half-inhibitory concentration of 58.5 μΜ (I50, 58.5 μΜ), the rate of O2 evolution of PSII was significantly inhibited by CA. This indicates that CA possesses excellent phytotoxicity and exhibits potential herbicidal activity. Based on the increase in the J-step of the chlorophyll fluorescence rise OJIP curve and the analysis of some JIP-test parameters, similar to the classical herbicide diuron, CA interrupted PSII electron transfer beyond QA at the acceptor side, leading to damage to the PSII antenna structure and inactivation of reaction centers. Molecular docking model of CA and D1 protein of A. adenophora further suggests that CA directly targets the QB site of D1 protein. The potential hydrogen bonds are formed between CA and residues D1-His215, D1-Ala263 and D1-Ser264, respectively. The binding of CA to residue D1-Ala263 is novel. Thus, CA is a new natural PSII inhibitor. These results clarify the mode of action of CA in photosynthesis, providing valuable information and potential implications for the design of novel bioherbicides.
Collapse
Affiliation(s)
- Mengyun Jiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Yang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - He Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Luo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjing Guo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Shi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Reto Jörg Strasser
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
- Bioenergetics Laboratory, University of Geneva, CH-1254 Geneva, Switzerland
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
13
|
Sharma A, Chandran D. Host nuclear repositioning and actin polarization towards the site of penetration precedes fungal ingress during compatible pea-powdery mildew interactions. PLANTA 2022; 256:45. [PMID: 35864318 DOI: 10.1007/s00425-022-03959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION Actin polarization and actin-driven host nuclear movement towards the fungal penetration site facilitates successful host colonization during compatible pea-Erysiphe pisi interactions. Proper nuclear positioning in plant cells is crucial for developmental processes and response to (a)biotic stimuli. During plant-fungal interactions, the host nucleus moves toward the infection site, a process regulated by the plant cytoskeleton. Notably, rearrangement of the plant cytoskeleton is one of the earliest cellular responses to pathogen invasion and is known to impact penetration efficiency. Yet, the connection between host nuclear movement and fungal ingress is still elusive, particularly in legumes. Here, we investigated the host nuclear dynamics during compatible interactions between Pisum sativum (pea) and the adapted powdery mildew (PM) fungus Erysiphe pisi to gain insights into the functional relevance of PM-induced nuclear movement in legumes. We show that the host nucleus moves towards the fungal appressorium before penetration and becomes associated with the primary haustorium. However, the nucleus migrates away from the primary infection site as the infection progresses toward colony expansion and sporulation. Treatment of pea leaves with the actin-polymerization inhibitor, cytochalasin D, abolished host nuclear movement towards the fungal penetration site and restricted PM growth. In contrast, treatment with oryzalin, a microtubule-polymerization inhibitor, had no effect. In addition to nuclear movement, strong polarization of host actin filaments towards the site of appressorial contact was evident at early infection stages. Our results suggest that actin focusing mediates host nuclear movement to the fungal penetration site and facilitates successful colonization during compatible pea-PM interactions.
Collapse
Affiliation(s)
- Akriti Sharma
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| |
Collapse
|
14
|
Li L, Yang X, Wang Z, Ren M, An C, Zhu S, Xu R. Genetic mapping of powdery mildew resistance genes in wheat landrace Guizi 1 via genotyping by sequencing. Mol Biol Rep 2022; 49:4461-4468. [PMID: 35244868 DOI: 10.1007/s11033-022-07287-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) powdery mildew (Pm), which caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease worldwide that causes severe yield losses in wheat. Resistant wheat cultivars easily lose their ability to effectively resist newly emerged Bgt strains; therefore, identifying new resistance genes is necessary for breeding resistant cultivars. METHODS AND RESULTS Guizi 1 (GZ1) is a Chinese wheat cultivar with moderate and stable resistance to Pm. Genetic analysis indicated that the Pm resistance of GZ1 was controlled by a single dominant gene, designated PmGZ1. In total, 110 F2 individual plants and their 2 parents were subjected to genotyping by sequencing (GBS), which yielded 23,134 high-quality single-nucleotide polymorphisms (SNPs). The SNP distributions across the 21 chromosomes ranged from 134 on chromosome 6D to 6288 on chromosome 3B. Chromosome 6A has 1866 SNPs, among which 16 are physically located between positions 307,802,221 and 309,885,836 in an approximate 2.3-cM region; this region also had the greatest SNP density. The average map distance between SNP markers was 0.1 cM. A quantitative trait locus (QTL) with a significant epistatic effect on Pm resistance was mapped to chromosome 6A. The logarithm of odds (LOD) value of PmGZ1 was 34.8, and PmGZ1 was located within the confidence interval marked by chr6a-307802221 and chr6a-309885836. Moreover, 74.7% of the phenotypic variance was explained by PmGZ1. Four candidate genes (which encoded two TaAP2-A and two actin proteins) were annotated maybe as resistance genes. CONCLUSIONS The present results provide valuable information for wheat genetic improvement, QTL fine mapping, and candidate gene validation.
Collapse
Affiliation(s)
- Luhua Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China.,Guizhou Sub-center of National Wheat Improvement Center, Guiyang, 550025, China
| | - Xicui Yang
- Guizhou Agricultural Technology Extension Station, Guiyang, 550001, China
| | - Zhongni Wang
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Science, Guiyang, 550006, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang, 550025, China.,Guizhou Sub-center of National Wheat Improvement Center, Guiyang, 550025, China
| | - Chang An
- College of Agriculture, Guizhou University, Guiyang, 550025, China.,Guizhou Sub-center of National Wheat Improvement Center, Guiyang, 550025, China
| | - Susong Zhu
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Science, Guiyang, 550006, China
| | - Ruhong Xu
- College of Agriculture, Guizhou University, Guiyang, 550025, China. .,Guizhou Sub-center of National Wheat Improvement Center, Guiyang, 550025, China.
| |
Collapse
|
15
|
Cao L, Wang W, Zhang W, Staiger CJ. Lipid Signaling Requires ROS Production to Elicit Actin Cytoskeleton Remodeling during Plant Innate Immunity. Int J Mol Sci 2022; 23:ijms23052447. [PMID: 35269589 PMCID: PMC8910749 DOI: 10.3390/ijms23052447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
In terrestrial plants a basal innate immune system, pattern-triggered immunity (PTI), has evolved to limit infection by diverse microbes. The remodeling of actin cytoskeletal arrays is now recognized as a key hallmark event during the rapid host cellular responses to pathogen attack. Several actin binding proteins have been demonstrated to fine tune the dynamics of actin filaments during this process. However, the upstream signals that stimulate actin remodeling during PTI signaling remain poorly characterized. Two second messengers, reactive oxygen species (ROS) and phosphatidic acid (PA), are elevated following pathogen perception or microbe-associated molecular pattern (MAMP) treatment, and the timing of signaling fluxes roughly correlates with actin cytoskeletal rearrangements. Here, we combined genetic analysis, chemical complementation experiments, and quantitative live-cell imaging experiments to test the role of these second messengers in actin remodeling and to order the signaling events during plant immunity. We demonstrated that PHOSPHOLIPASE Dβ (PLDβ) isoforms are necessary to elicit actin accumulation in response to flg22-associated PTI. Further, bacterial growth experiments and MAMP-induced apoplastic ROS production measurements revealed that PLDβ-generated PA acts upstream of ROS signaling to trigger actin remodeling through inhibition of CAPPING PROTEIN (CP) activity. Collectively, our results provide compelling evidence that PLDβ/PA functions upstream of RBOHD-mediated ROS production to elicit actin rearrangements during the innate immune response in Arabidopsis.
Collapse
Affiliation(s)
- Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (L.C.); (C.J.S.)
| | - Wenyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (L.C.); (C.J.S.)
| |
Collapse
|
16
|
Sun Y, Zhong M, Li Y, Zhang R, Su L, Xia G, Wang H. GhADF6-mediated actin reorganization is associated with defence against Verticillium dahliae infection in cotton. MOLECULAR PLANT PATHOLOGY 2021; 22:1656-1667. [PMID: 34515397 PMCID: PMC8578822 DOI: 10.1111/mpp.13137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 05/07/2023]
Abstract
Several studies have revealed that actin depolymerizing factors (ADFs) participate in plant defence responses; however, the functional mechanisms appear intricate and need further exploration. In this study, we identified an ADF6 gene in upland cotton (designated as GhADF6) that is evidently involved in cotton's response to the fungal pathogen Verticillium dahliae. GhADF6 binds to actin filaments and possesses actin severing and depolymerizing activities in vitro and in vivo. When cotton root (the site of the fungus invasion) was inoculated with the pathogen, the expression of GhADF6 was markedly down-regulated in the epidermal cells. By virus-induced gene silencing analysis, the down-regulation of GhADF6 expression rendered the cotton plants tolerant to V. dahliae infection. Accordingly, the abundance of actin filaments and bundles in the root cells was significantly higher than that in the control plant, which phenocopied that of the V. dahliae-challenged wild-type cotton plant. Altogether, our results provide evidence that an increase in filament actin (F-actin) abundance as well as dynamic actin remodelling are required for plant defence against the invading pathogen, which are likely to be fulfilled by the coordinated expressional regulation of the actin-binding proteins, including ADF.
Collapse
Affiliation(s)
- Yongduo Sun
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengmeng Zhong
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuanbao Li
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruihui Zhang
- University of Chinese Academy of SciencesBeijingChina
- Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Lei Su
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| | - Guixian Xia
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| | - Haiyun Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| |
Collapse
|
17
|
Giovannoni M, Marti L, Ferrari S, Tanaka‐Takada N, Maeshima M, Ott T, De Lorenzo G, Mattei B. The plasma membrane-associated Ca 2+ -binding protein, PCaP1, is required for oligogalacturonide and flagellin-induced priming and immunity. PLANT, CELL & ENVIRONMENT 2021; 44:3078-3093. [PMID: 34050546 PMCID: PMC8457133 DOI: 10.1111/pce.14118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/12/2023]
Abstract
Early signalling events in response to elicitation include reversible protein phosphorylation and re-localization of plasma membrane (PM) proteins. Oligogalacturonides (OGs) are a class of damage-associated molecular patterns (DAMPs) that act as endogenous signals to activate the plant immune response. Previous data on early phosphoproteome changes in Arabidopsis thaliana upon OG perception uncovered the immune-related phospho-regulation of several membrane proteins, among which PCaP1, a PM-anchored protein with actin filament-severing activity, was chosen for its potential involvement in OG- and flagellin-triggered responses. Here, we demonstrate that PCaP1 is required for late, but not early, responses induced by OGs and flagellin. Moreover, pcap1 mutants, unlike the wild type, are impaired in the recovery of full responsiveness to a second treatment with OGs performed 24 h after the first one. Localization studies on PCaP1 upon OG treatment in plants expressing a functional PCaP1-GFP fusion under the control of PCaP1 promoter revealed fluorescence on the PM, organized in densely packed punctate structures, previously reported as microdomains. Fluorescence was found to be associated also with endocytic vesicles, the number of which rapidly increased after OG treatment, suggesting both an endocytic turnover of PCaP1 for maintaining its homeostasis at the PM and an OG-induced endocytosis.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
- Department of Health, Life and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Lucia Marti
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
| | - Simone Ferrari
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
| | - Natsuki Tanaka‐Takada
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Thomas Ott
- Faculty of Biology, Cell BiologyUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
| | - Benedetta Mattei
- Department of Health, Life and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| |
Collapse
|
18
|
Starodubtseva A, Kalachova T, Iakovenko O, Stoudková V, Zhabinskii V, Khripach V, Ruelland E, Martinec J, Burketová L, Kravets V. BODIPY Conjugate of Epibrassinolide as a Novel Biologically Active Probe for In Vivo Imaging. Int J Mol Sci 2021; 22:3599. [PMID: 33808421 PMCID: PMC8036458 DOI: 10.3390/ijms22073599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Brassinosteroids (BRs) are plant hormones of steroid nature, regulating various developmental and adaptive processes. The perception, transport, and signaling of BRs are actively studied nowadays via a wide range of biochemical and genetic tools. However, most of the knowledge about BRs intracellular localization and turnover relies on the visualization of the receptors or cellular compartments using dyes or fluorescent protein fusions. We have previously synthesized a conjugate of epibrassinolide with green fluorescent dye BODIPY (eBL-BODIPY). Here we present a detailed assessment of the compound bioactivity and its suitability as probe for in vivo visualization of BRs. We show that eBL-BODIPY rapidly penetrates epidermal cells of Arabidopsis thaliana roots and after long exposure causes physiological and transcriptomic responses similar to the natural hormone.
Collapse
Affiliation(s)
- Anastasiia Starodubtseva
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
- Institute of Ecology and Environmental Sciences of Paris, Paris-Est University, UPEC, 94010 Créteil, France
| | - Tetiana Kalachova
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
| | - Oksana Iakovenko
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine;
| | - Vera Stoudková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
| | - Vladimir Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus; (V.Z.); (V.K.)
| | - Vladimir Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus; (V.Z.); (V.K.)
| | - Eric Ruelland
- UMR 7025 CNRS, GEC Génie Enzymatique et Cellulaire, Centre de Recherches, Rue Personne de Roberval, CS 60319, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne CEDEX, France;
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
| | - Lenka Burketová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic; (A.S.); (O.I.); (V.S.); (J.M.); (L.B.)
| | - Volodymyr Kravets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine;
| |
Collapse
|
19
|
García-González J, van Gelderen K. Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:777119. [PMID: 34975959 PMCID: PMC8716943 DOI: 10.3389/fpls.2021.777119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 05/19/2023]
Abstract
Primary root growth is required by the plant to anchor in the soil and reach out for nutrients and water, while dealing with obstacles. Efficient root elongation and bending depends upon the coordinated action of environmental sensing, signal transduction, and growth responses. The actin cytoskeleton is a highly plastic network that constitutes a point of integration for environmental stimuli and hormonal pathways. In this review, we present a detailed compilation highlighting the importance of the actin cytoskeleton during primary root growth and we describe how actin-binding proteins, plant hormones, and actin-disrupting drugs affect root growth and root actin. We also discuss the feedback loop between actin and root responses to light and gravity. Actin affects cell division and elongation through the control of its own organization. We remark upon the importance of longitudinally oriented actin bundles as a hallmark of cell elongation as well as the role of the actin cytoskeleton in protein trafficking and vacuolar reshaping during this process. The actin network is shaped by a plethora of actin-binding proteins; however, there is still a large gap in connecting the molecular function of these proteins with their developmental effects. Here, we summarize their function and known effects on primary root growth with a focus on their high level of specialization. Light and gravity are key factors that help us understand root growth directionality. The response of the root to gravity relies on hormonal, particularly auxin, homeostasis, and the actin cytoskeleton. Actin is necessary for the perception of the gravity stimulus via the repositioning of sedimenting statoliths, but it is also involved in mediating the growth response via the trafficking of auxin transporters and cell elongation. Furthermore, auxin and auxin analogs can affect the composition of the actin network, indicating a potential feedback loop. Light, in its turn, affects actin organization and hence, root growth, although its precise role remains largely unknown. Recently, fundamental studies with the latest techniques have given us more in-depth knowledge of the role and organization of actin in the coordination of root growth; however, there remains a lot to discover, especially in how actin organization helps cell shaping, and therefore root growth.
Collapse
Affiliation(s)
- Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Judith García-González,
| | - Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Kasper van Gelderen,
| |
Collapse
|
20
|
Bhandari DD, Brandizzi F. Plant endomembranes and cytoskeleton: moving targets in immunity. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:8-16. [PMID: 33099211 DOI: 10.1016/j.pbi.2020.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Pathogens attack plant cells to divert resources toward pathogen proliferation. To resist pathogens, plant cells rely on multilayered signaling pathways that hinge upon the secretory pathway for the synthesis and trafficking of pathogen sensors and defense molecules. In recent years, significant strides have been made in the understanding of the functional relationship between pathogen response and membrane traffic. Here we discuss how the plant cytoskeleton and endomembranes are targeted by pathogen effectors and highlight an emerging role of membrane contact sites in biotic stress responses.
Collapse
Affiliation(s)
- Deepak D Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
21
|
Tomato Metabolic Changes in Response to Tomato-Potato Psyllid ( Bactericera cockerelli) and Its Vectored Pathogen Candidatus Liberibacter solanacearum. PLANTS 2020; 9:plants9091154. [PMID: 32900000 PMCID: PMC7570104 DOI: 10.3390/plants9091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022]
Abstract
The bacterial pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) is transmitted by the tomato potato psyllid (TPP), Bactericera cockerelli, to solanaceous crops. In the present study, the changes in metabolic profiles of insect-susceptible (cv CastleMart) and resistant (RIL LA3952) tomato plants in response to TPP vectoring Lso or not, were examined after 48 h post infestation. Non-volatile and volatile metabolites were identified and quantified using headspace solid-phase microextraction equipped with a gas chromatograph-mass spectrometry (HS-SPME/GC-MS) and ultra-high pressure liquid chromatography coupled to electrospray quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS), respectively. Partial least squares-discriminant analysis (PLS-DA) was used to define the major uncorrelated metabolite components assuming the treatments as the correlated predictors. Metabolic changes in various classes of metabolites, including volatiles, hormones, and phenolics, were observed in resistant and susceptible plants in response to the insects carrying the pathogen or not. The results suggest the involvement of differentially regulated and, in some cases, implicates antagonistic metabolites in plant defensive signaling. Upon validation, the identified metabolites could be used as markers to screen and select breeding lines with enhanced resistance to reduce economic losses due to the TPP-Lso vector-pathogen complex in Solanaceous crops.
Collapse
|
22
|
Leontovyčová H, Kalachova T, Janda M. Disrupted actin: a novel player in pathogen attack sensing? THE NEW PHYTOLOGIST 2020; 227:1605-1609. [PMID: 32259281 DOI: 10.1111/nph.16584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The actin cytoskeleton is widely involved in plant immune responses. The majority of studies show that chemical disruption of the actin cytoskeleton increases plant susceptibility to pathogen infection. Similarly, several pathogens have adopted this as a virulence strategy and produce effectors that affect cytoskeleton integrity. Such effectors either exhibit actin-depolymerizing activity themselves or prevent actin polymerization. Is it thus possible for plants to recognize the actin's status and launch a counterattack? Recently we showed that chemical depolymerization of actin filaments can trigger resistance to further infection via the specific activation of salicylic acid (SA) signalling. This is accompanied by several defence-related, but SA-independent, effects (e.g. callose deposition, gene expression), relying on vesicular trafficking and phospholipid metabolism. These data suggest that the role of actin in plant-pathogen interactions is more complex than previously believed. It raises the question of whether plants have evolved a mechanism of sensing pathological actin disruption that eventually triggers defence responses. If so, what is the molecular basis of it? Otherwise, why does actin depolymerization specifically influence SA content but not any other phytohormone? Here we propose an updated model of actin's role in plant-microbe interactions and suggest some future directions of research to be conducted in this area.
Collapse
Affiliation(s)
- Hana Leontovyčová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 44, Prague 2, Czech Republic
| | - Tetiana Kalachova
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Martin Janda
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6, Czech Republic
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
- Faculty of Biology, Biocenter, Department Genetics, Ludwig-Maximilians-University of Munich (LMU), Grosshaderner Str. 2-4, D-82152, Martinsried, Germany
| |
Collapse
|
23
|
Plant Cells under Attack: Unconventional Endomembrane Trafficking during Plant Defense. PLANTS 2020; 9:plants9030389. [PMID: 32245198 PMCID: PMC7154882 DOI: 10.3390/plants9030389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane is a prerequisite for a diverse set of immune responses. Pathogen recognition, signaling into the nucleus, cell wall enforcement, secretion of antimicrobial proteins and compounds, as well as generation of reactive oxygen species, all heavily depend on vesicle transport. In contrast, pathogens have developed a variety of different means to manipulate vesicle trafficking to prevent detection or to inhibit specific plant responses. Intriguingly, the plant endomembrane system exhibits remarkable plasticity upon pathogen attack. Unconventional trafficking pathways such as the formation of endoplasmic reticulum (ER) bodies or fusion of the vacuole with the plasma membrane are initiated and enforced as the counteraction. Here, we review the recent findings on unconventional and defense-induced trafficking pathways as the plant´s measures in response to pathogen attack. In addition, we describe the endomembrane system manipulations by different pathogens, with a focus on tethering and fusion events during vesicle trafficking.
Collapse
|
24
|
Trdá L, Janda M, Macková D, Pospíchalová R, Dobrev PI, Burketová L, Matušinsky P. Dual Mode of the Saponin Aescin in Plant Protection: Antifungal Agent and Plant Defense Elicitor. FRONTIERS IN PLANT SCIENCE 2019; 10:1448. [PMID: 31850004 PMCID: PMC6893899 DOI: 10.3389/fpls.2019.01448] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 05/13/2023]
Abstract
Being natural plant antimicrobials, saponins have potential for use as biopesticides. Nevertheless, their activity in plant-pathogen interaction is poorly understood. We performed a comparative study of saponins' antifungal activities on important crop pathogens based on their effective dose (EC50) values. Among those saponins tested, aescin showed itself to be the strongest antifungal agent. The antifungal effect of aescin could be reversed by ergosterol, thus suggesting that aescin interferes with fungal sterols. We tested the effect of aescin on plant-pathogen interaction in two different pathosystems: Brassica napus versus (fungus) Leptosphaeria maculans and Arabidopsis thaliana versus (bacterium) Pseudomonas syringae pv tomato DC3000 (Pst DC3000). We analyzed resistance assays, defense gene transcription, phytohormonal production, and reactive oxygen species production. Aescin activated B. napus defense through induction of the salicylic acid pathway and oxidative burst. This defense response led finally to highly efficient plant protection against L. maculans that was comparable to the effect of fungicides. Aescin also inhibited colonization of A. thaliana by Pst DC3000, the effect being based on active elicitation of salicylic acid (SA)-dependent immune mechanisms and without any direct antibacterial effect detected. Therefore, this study brings the first report on the ability of saponins to trigger plant immune responses. Taken together, aescin in addition to its antifungal properties activates plant immunity in two different plant species and provides SA-dependent resistance against both fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Lucie Trdá
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Lucie Trdá, ;
| | - Martin Janda
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Department Genetics, Faculty of Biology, Biocenter, Ludwig-Maximilian-University of Munich (LMU), Martinsried, Germany
| | - Denisa Macková
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Romana Pospíchalová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
| | - Pavel Matušinsky
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměrˇíž, Czechia
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|