1
|
Legese MH, Asrat D, Mihret A, Hasan B, Aseffa A, Swedberg G. Genomic characterizations of Klebsiella variicola: emerging pathogens identified from sepsis patients in Ethiopian referral hospitals. Emerg Microbes Infect 2025; 14:2440494. [PMID: 39648897 DOI: 10.1080/22221751.2024.2440494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Healthcare in low- and middle-income countries is becoming problematic due to the emergence of multidrug-resistant bacteria causing serious morbidity and mortality. Klebsiella variicola carrying multiple antimicrobial resistance (AMR) genes were found significantly among sepsis patients in a study done between October 2019 and September 2020 at four Ethiopian hospitals located in the central (Tikur Anbessa and Yekatit 12), southern (Hawassa), and northern (Dessie) parts. Among 1416 sepsis patients, 74 K. variicola isolates were identified using MALDI-TOF, most of them at Dessie (n = 44) and Hawassa (n = 28) hospitals. Whole genome sequencing showed that K. variicola strains identified at Dessie Hospital displayed phylogenetic clonality, carried an IncM1 plasmid and the majority were ST3924. Many K. variicola identified at Hawassa Hospital were clonally clustered and the majority belonged to novel STs and carried IncFIB(K) and IncFII(K) plasmids concurrently. Fifty K. variicola carried ESBL genes while 2 isolates harboured AmpC. Other frequently found genes were aac(3)-lla, blaCTX-M-15, blaTEM-1B, blaLEN2, blaOXA-1, blaSCO-1, catB3, dfrA14, QnrB1, aac(6')-lb-cr and sul2. Virulence genes detected at both sites were mrk operons for biofilm formation and siderophore ABC transporter operons for iron uptake. Capsular alleles varied, with wzi 269 at Dessie and wzi 582 at Hawassa. The isolation of multidrug-resistant K. variicola as an emerging sepsis pathogen calls for strong infection prevention strategies and antimicrobial stewardship supported by advanced bacterial identification techniques.
Collapse
Affiliation(s)
- Melese Hailu Legese
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Asrat
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Badrul Hasan
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Ohno T, Harada S, Saito H, Tanii R, Komori K, Kurosawa M, Wakatake H, Kanazawa M, Ohki U, Minoura A, Yamada M, Kaneko S, Anzai M, Tsutsui Y, Kuhara A, Oyanagi T, Tanaka Y, Takemura H, Takeuchi H, Kunishima H. Molecular epidemiology and clinical features of Klebsiella variicola bloodstream infection compared with infection with other Klebsiella pneumoniae species complex strains. Microbiol Spectr 2025:e0301724. [PMID: 40277351 DOI: 10.1128/spectrum.03017-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/29/2025] [Indexed: 04/26/2025] Open
Abstract
Klebsiella variicola is an emerging pathogen within the Klebsiella pneumoniae species complex, and its clinical and microbiological characteristics remain poorly understood. This retrospective case-control study analyzed 252 patients with bloodstream infections caused by K. pneumoniae species complex, including 60 with K. variicola infection, to elucidate these characteristics. Our study showed no significant differences in clinical outcomes, such as 30-day mortality, between K. variicola and K. pneumoniae. However, a significant difference was found in the rate of harboring [peg-344, iucA, and rmpA] genes, which are associated with virulence in K. pneumoniae, suggesting that K. variicola may be generally less virulent. Notably, we identified two patients with community-acquired liver abscess caused by hypervirulent K. variicola, representing the first genetically analyzed case of this phenomenon in Japan and highlighting the potential virulence of this species. While there have been several reports on K. variicola carrying hypervirulence genes, this is the first report in Japan, to our knowledge, to genetically characterize a hypervirulent K. variicola isolated from a patient with disseminated liver abscesses using whole-genome sequencing. Multilocus sequence typing revealed high diversity among K. variicola isolates, with 49 distinct sequence types identified, 30 of which were newly registered, highlighting the genetic heterogeneity of this pathogen. No significant clinical differences were observed between K. variicola and other Klebsiella spp. The emergence of hypervirulent K. variicola strains with the potential to cause severe complications warrants further surveillance and research. IMPORTANCE Klebsiella variicola is increasingly recognized as an emerging pathogen commonly found in the environment and human gut. However, its clinical and microbiological characteristics remain poorly understood. This study provides a comprehensive analysis of K. variicola bloodstream infections (BSIs), comparing clinical and genetic features with the closely related K. pneumoniae. We identified significant differences in the prevalence of virulence genes between the two species. Notably, we observed K. variicola causing disseminated liver abscesses, similar to hypervirulent K. pneumoniae strains. These findings have important implications for accurate species identification, informing treatment strategies, and improving patient outcomes in the face of this emerging infectious threat.
Collapse
Affiliation(s)
- Tatsuya Ohno
- Department of Clinical Laboratory, St. Marianna University Yokohama Seibu Hospital, Yokohama, Kanagawa, Japan
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, Kouzunomori, Narita, Japan
| | - Sohei Harada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Hiroki Saito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rimi Tanii
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kohji Komori
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Miki Kurosawa
- Department of Clinical Laboratory Technology, St. Marianna University Hospital, Kawasaki, Kanagawa, Japan
| | - Haruaki Wakatake
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Minoru Kanazawa
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Uiri Ohki
- Division of Cardiovascular Medicine Saitama Medical Center, Jichi Medical University, Omiya-ku, Saitama, Japan
| | - Ayu Minoura
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Mario Yamada
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Satsuki Kaneko
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Momoko Anzai
- Department of Clinical Laboratory, St. Marianna University Yokohama Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Yuto Tsutsui
- Department of Clinical Laboratory, St. Marianna University Yokohama Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Asuka Kuhara
- Department of Nursing, St. Marianna University Yokohama Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Tadatomo Oyanagi
- Department of Clinical Laboratory Technology, St. Marianna University Hospital, Kawasaki, Kanagawa, Japan
| | - Yosuke Tanaka
- Department of Clinical Laboratory, St. Marianna University Yokohama Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Hiroaki Takeuchi
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, Kouzunomori, Narita, Japan
| | - Hiroyuki Kunishima
- Department of Infection diseases, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
3
|
Peralta-Macotela P, Flores-Monzón B, Lira de León KI, Sánchez-Tusie AA, Rodríguez-Medina N, Alvarado-Delgado A, Aguilar-Vera E, Zumaya-Estrada F, Garza-Ramos U, García-Gutiérrez MC. Complete genome sequences of Klebsiella pneumoniae, Klebsiella quasipneumoniae, and Klebsiella variicola clinical isolates from an epidemiology study. Microbiol Resour Announc 2025; 14:e0106024. [PMID: 39936930 PMCID: PMC11895479 DOI: 10.1128/mra.01060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
An epidemiology study of Klebsiella spp. causing infections was carried out. In the study, K. pneumoniae was identified with a prevalence of 94.6%, K. quasipneumoniae with 3.8%, and K. variicola with 1.6%. Here, we report the draft genome sequence of four selected Klebsiella pneumoniae species complex (KpSC) clinical isolates obtained from different sources.
Collapse
Affiliation(s)
- Pedro Peralta-Macotela
- Laboratorio de Epidemiología Traslacional, Centro de Investigación Biomédica Avanzada, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro, México
- Facultad de Química, Universidad Autónoma de Querétaro (UAQ), Querétaro, Querétaro, México
| | - Bibiana Flores-Monzón
- Laboratorio de Epidemiología Traslacional, Centro de Investigación Biomédica Avanzada, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro, México
| | | | - Ana Alicia Sánchez-Tusie
- Laboratorio de Epidemiología Traslacional, Centro de Investigación Biomédica Avanzada, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro, México
| | - Nadia Rodríguez-Medina
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Grupo de Investigación y Docencia en Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México
| | - Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Grupo de Investigación y Docencia en Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México
| | - Edgar Aguilar-Vera
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Grupo de Investigación y Docencia en Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México
| | - Federico Zumaya-Estrada
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Grupo de Investigación y Docencia en Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Grupo de Investigación y Docencia en Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, México
| | - Maria Carlota García-Gutiérrez
- Laboratorio de Epidemiología Traslacional, Centro de Investigación Biomédica Avanzada, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro, México
| |
Collapse
|
4
|
Bonasoni MP, Ferretti A, Blasi I, Comitini G, Aguzzoli L, Bardaro M, Russello G, Carretto E. Klebsiella variicola Infection in a Second Trimester Twin Pregnancy: An Underreported Cause of Chorioamnionitis. Diagnostics (Basel) 2025; 15:480. [PMID: 40002631 PMCID: PMC11854657 DOI: 10.3390/diagnostics15040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background and Clinical Significance:Klebisella variicola belongs to the Klebsiella pneumoniae complex. It is a Gram-negative, facultative anaerobic, and nonmotile bacillus, mainly isolated in plants. However, as an emerging human pathogen, it has been isolated in immunocompromised patients with urinary tract infections, pneumonia, and bacteremia. K. variicola infection in pregnancy, responsible for acute chorioamnionitis, has never been reported. Case Presentation: We present a case of a twin pregnancy at 17 + 5 weeks in which chorioamnionitis and fetal inflammatory responses such as funisitis and chorionic vasculitis were due to an ascending infection of K. variicola. The pathogen was isolated postmortem in fetal blood and tissues and the placenta using MALDI-ToF mass spectrometry (MALDI-ToF MS). The accuracy of this microbiological diagnosis sheds further light on the epidemiology and virulence of K. variicola in the prenatal setting. Conclusions: In the case of miscarriage, microbiological investigations on the fetus should always be recommended to identify the exact microorganism in order to target the medical treatment and manage subsequent pregnancies.
Collapse
Affiliation(s)
| | - Alice Ferretti
- Unit of Obstetrics and Gynecologic Oncology, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.F.); (I.B.); (G.C.); (L.A.)
| | - Immacolata Blasi
- Unit of Obstetrics and Gynecologic Oncology, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.F.); (I.B.); (G.C.); (L.A.)
| | - Giuseppina Comitini
- Unit of Obstetrics and Gynecologic Oncology, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.F.); (I.B.); (G.C.); (L.A.)
| | - Lorenzo Aguzzoli
- Unit of Obstetrics and Gynecologic Oncology, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.F.); (I.B.); (G.C.); (L.A.)
| | - Marcellino Bardaro
- Clinical Microbiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.B.); (G.R.); (E.C.)
| | - Giuseppe Russello
- Clinical Microbiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.B.); (G.R.); (E.C.)
| | - Edoardo Carretto
- Clinical Microbiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.B.); (G.R.); (E.C.)
| |
Collapse
|
5
|
White RT, Balm M, Burton M, Hutton S, Jeram J, Kelly M, Macartney-Coxson D, Sinha T, Sushames H, Winter DJ, Bloomfield MG. The rapid detection of a neonatal unit outbreak of a wild-type Klebsiella variicola using decentralized Oxford Nanopore sequencing. Antimicrob Resist Infect Control 2025; 14:6. [PMID: 39920743 PMCID: PMC11806699 DOI: 10.1186/s13756-025-01529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Klebsiella variicola has been implicated in neonatal intensive care unit (NICU) outbreaks previously and can be misidentified as Klebsiella pneumoniae. An increased incidence of K. pneumoniae bacteremia on the NICU of our institution was notified to the infection prevention and control (IPC) team in May 2024. The four isolates involved displayed wild-type susceptibility, so had not been detected via multidrug-resistant organism surveillance. This triggered investigation with a nanopore-based decentralized whole-genome sequencing (dWGS) system in operation at our laboratory. METHODS Since early 2022, the hospital laboratory at Wellington Regional Hospital has been performing dWGS using the Oxford Nanopore MinION device. This allows for prospective genomic surveillance of certain hospital-associated organisms, but also rapid reactive investigation of possible outbreaks. Isolates are sequenced in the hospital laboratory and undergo multilocus sequence typing (MLST). If transmission events are suspected, sequence data are transferred to the reference laboratory, the Institute for Environmental Science and Research (ESR) for high-resolution bioinformatic analysis. RESULTS Within 48 h of notification isolates had been subcultured and sequenced. This showed that three of four isolates were in fact K. variicola, and two of these were sequence type (ST)6385. This sequence type had not been seen previously at our institution, so transmission was suspected. Environmental sampling revealed K. variicola ST6385 in two sink traps on the unit, and prospective sequencing of all K. pneumoniae isolates from NICU samples revealed two further infants with K. variicola ST6385. Subsequent phylogenetic analysis at ESR using original sequence data showed tight clustering of these isolates, confirming an outbreak. Sink traps were disinfected, environmental cleaning procedures were updated, and a strict focus on hand hygiene was reinforced on the ward. No further isolates were detected, and the outbreak was closed after two months. CONCLUSIONS Access to dWGS at the level of the local hospital laboratory permitted rapid identification of an outbreak of an organism displaying no unusual antimicrobial resistance features at a point where there were only two known cases. This in turn facilitated a rapid IPC response.
Collapse
Affiliation(s)
- Rhys T White
- Health Group, Institute of Environmental Science and Research, Porirua, 5022, New Zealand.
| | - Michelle Balm
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
- Infection Prevention and Control, Te Whatu Ora/Health New Zealand, Capital, Coast & Hutt Valley, Capital, Wellington, 6021, New Zealand
| | - Megan Burton
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
| | - Samantha Hutton
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
| | - Jamaal Jeram
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
| | - Matthew Kelly
- Infection Prevention and Control, Te Whatu Ora/Health New Zealand, Capital, Coast & Hutt Valley, Capital, Wellington, 6021, New Zealand
| | - Donia Macartney-Coxson
- Health Group, Institute of Environmental Science and Research, Porirua, 5022, New Zealand
| | - Tanya Sinha
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
| | - Henrietta Sushames
- Infection Prevention and Control, Te Whatu Ora/Health New Zealand, Capital, Coast & Hutt Valley, Capital, Wellington, 6021, New Zealand
| | - David J Winter
- Health Group, Institute of Environmental Science and Research, Porirua, 5022, New Zealand
| | - Maxim G Bloomfield
- Department of Microbiology and Molecular Pathology, Awanui Labs Wellington, Wellington, 6021, New Zealand
- Infection Prevention and Control, Te Whatu Ora/Health New Zealand, Capital, Coast & Hutt Valley, Capital, Wellington, 6021, New Zealand
| |
Collapse
|
6
|
Alvarado-Delgado A, Nava-Dominguez N, Rodriguez-Medina N, Sánchez-Pérez A, Ortiz-Gutierrez D, Morfin-Otero R, Rodriguez-Noriega E, Zumaya-Estrada FA, Garza-Ramos U. Complete genome sequence of multidrug-resistant and NDM-producing Klebsiella variicola clinical isolates. Microbiol Resour Announc 2025; 14:e0097724. [PMID: 39655915 PMCID: PMC11737039 DOI: 10.1128/mra.00977-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Recently, global dissemination of NDM-producing Klebsiella variicola in hospital settings and natural environments has been described. This study described the whole-genome sequencing of multidrug-resistant phenotype and NDM-producing Klebsiella variicola clinical isolates.
Collapse
Affiliation(s)
- Alejandro Alvarado-Delgado
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Neli Nava-Dominguez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Nadia Rodriguez-Medina
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Alejandro Sánchez-Pérez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Diana Ortiz-Gutierrez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara (HCG) Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Eduardo Rodriguez-Noriega
- Hospital Civil de Guadalajara (HCG) Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Federico Alonso Zumaya-Estrada
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| |
Collapse
|
7
|
Quintelas M, Silva V, Araújo S, Tejedor-Junco MT, Pereira JE, Igrejas G, Poeta P. Klebsiella in Wildlife: Clonal Dynamics and Antibiotic Resistance Profiles, a Systematic Review. Pathogens 2024; 13:945. [PMID: 39599498 PMCID: PMC11597104 DOI: 10.3390/pathogens13110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Klebsiella spp. are a genus of Gram-negative, opportunistic bacteria frequently found in the flora of the mucosal membranes of healthy animals and humans, and in the environment. Species of this group can cause serious infections (meningitis, sepsis, bacteraemia, urinary tract infections, liver damage) and possible death in immunocompromised organisms (and even in immunocompetent ones in the case of hypervirulent K. pneumoniae) that are exposed to them. K. pneumoniae is part of the ESKAPE organisms, and so it is important to understand this genus in terms of multidrug-resistant bacteria and as a carrier of antibiotic resistance mechanisms. As it is a durable bacterium, it survives well even in hostile environments, making it possible to colonize all kinds of habitats, even the mucosal flora of wildlife. This systematic review explores the prevalence of Klebsiella spp. bacteria in wild animals, and the possibility of transmission to humans according to the One Health perspective. The isolates found in this review proved to be resistant to betalactams (blaTEM, blaOXA-48…), aminoglycosides (strAB, aadA2…), fosfomycin, tetracyclines, sulphonamides, trimethoprim, phenicols (catB4), and polymyxins (mcr4).
Collapse
Affiliation(s)
- Micaela Quintelas
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sara Araújo
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
8
|
Riva F, Dechesne A, Eckert EM, Riva V, Borin S, Mapelli F, Smets BF, Crotti E. Conjugal plasmid transfer in the plant rhizosphere in the One Health context. Front Microbiol 2024; 15:1457854. [PMID: 39268528 PMCID: PMC11390587 DOI: 10.3389/fmicb.2024.1457854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) is one of the primary routes of antimicrobial resistance (AMR) dissemination. In the One Health context, tracking the spread of mobile genetic elements (MGEs) carrying ARGs in agri-food ecosystems is pivotal in understanding AMR diffusion and estimating potential risks for human health. So far, little attention has been devoted to plant niches; hence, this study aimed to evaluate the conjugal transfer of ARGs to the bacterial community associated with the plant rhizosphere, a hotspot for microbial abundance and activity in the soil. We simulated a source of AMR determinants that could enter the food chain via plants through irrigation. Methods Among the bacterial strains isolated from treated wastewater, the strain Klebsiella variicola EEF15 was selected as an ARG donor because of the relevance of Enterobacteriaceae in the AMR context and the One Health framework. The strain ability to recolonize lettuce, chosen as a model for vegetables that were consumed raw, was assessed by a rifampicin resistant mutant. K. variicola EEF15 was genetically manipulated to track the conjugal transfer of the broad host range plasmid pKJK5 containing a fluorescent marker gene to the natural rhizosphere microbiome obtained from lettuce plants. Transconjugants were sorted by fluorescent protein expression and identified through 16S rRNA gene amplicon sequencing. Results and discussion K. variicola EEF15 was able to colonize the lettuce rhizosphere and inhabit its leaf endosphere 7 days past bacterial administration. Fluorescence stereomicroscopy revealed plasmid transfer at a frequency of 10-3; cell sorting allowed the selection of the transconjugants. The conjugation rates and the strain's ability to colonize the plant rhizosphere and leaf endosphere make strain EEF15::lacIq-pLpp-mCherry-gmR with pKJK5::Plac::gfp an interesting candidate to study ARG spread in the agri-food ecosystem. Future studies taking advantage of additional environmental donor strains could provide a comprehensive snapshot of AMR spread in the One Health context.
Collapse
Affiliation(s)
- Francesco Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ester M Eckert
- CNR - IRSA Water Research Institute, Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biological and Chemical Engineering, Center for Water Technology, Aarhus University, Aarhus, Denmark
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
9
|
Yang F, Liu FY, Zhong YM. Comparative Genomics Revealing the Genomic Characteristics of Klebsiella variicola Clinical Isolates in China. Trop Med Infect Dis 2024; 9:180. [PMID: 39195618 PMCID: PMC11359898 DOI: 10.3390/tropicalmed9080180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Klebsiella variicola is an opportunistic pathogen often misidentified as Klebsiella pneumoniae, leading to misdiagnoses and inappropriate treatment in clinical settings. The genetic and molecular characteristics of clinically isolated K. variicola remain largely unexplored. We aim to fill this knowledge gap by examining the genomic properties of and evolutionary relationships between clinical isolates of K. variicola. The genomic data of 70 K. variicola strains were analyzed using whole-genome sequencing. A phylogenetic tree was generated based on the gene sequences from these K. variicola strains and public databases. Among the K. variicola strains, the drug resistance genes with the highest carrying rates were beta-lactamase and aminoglycoside. Locally isolated strains had a higher detection rate for virulence genes than those in public databases, with yersiniabactin genes being the most prevalent. The K locus types and MLST subtypes of the strains exhibited a dispersed distribution, with O3/O3a being the predominant subtype within the O category. In total, 28 isolates carried both IncFIB(K)_Kpn3 and IncFII_pKP91 replicons. This study underscores the importance of developing more effective diagnostic tools and therapeutic strategies for K. variicola infections. The continued surveillance and monitoring of K. variicola strains is essential for understanding the epidemiology of infections and informing public health strategies.
Collapse
Affiliation(s)
- Fang Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fei-Yi Liu
- Faculty of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yi-Ming Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
10
|
Sundaresan AK, Gangwar J, Murugavel A, Malli Mohan GB, Ramakrishnan J. Complete genome sequence, phenotypic correlation and pangenome analysis of uropathogenic Klebsiella spp. AMB Express 2024; 14:78. [PMID: 38965152 PMCID: PMC11224175 DOI: 10.1186/s13568-024-01737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Urinary tract infections (UTI) by antibiotic resistant and virulent K. pneumoniae are a growing concern. Understanding the genome and validating the genomic profile along with pangenome analysis will facilitate surveillance of high-risk clones of K. pneumoniae to underpin management strategies toward early detection. The present study aims to correlate resistome with phenotypic antimicrobial resistance and virulome with pathogenicity in Klebsiella spp. The present study aimed to perform complete genome sequences of Klebsiella spp. and to analyse the correlation of resistome with phenotypic antimicrobial resistance and virulome with pathogenicity. To understand the resistome, pangenome and virulome in the Klebsiella spp, the ResFinder, CARD, IS Finder, PlasmidFinder, PHASTER, Roary, VFDB were used. The phenotypic susceptibility profiling identified the uropathogenic kp3 to exhibit multi drug resistance. The resistome and in vitro antimicrobial profiling showed concordance with all the tested antibiotics against the study strains. Hypermucoviscosity was not observed for any of the test isolates; this phenotypic character matches perfectly with the absence of rmpA and magA genes. To the best of our knowledge, this is the first report on the presence of ste, stf, stc and sti major fimbrial operons of Salmonella enterica serotype Typhimurium in K. pneumoniae genome. The study identifies the discordance of virulome and virulence in Klebsiella spp. The complete genome analysis and phenotypic correlation identify uropathogenic K. pneumoniae kp3 as a carbapenem-resistant and virulent pathogen. The Pangenome of K. pneumoniae was open suggesting high genetic diversity. Diverse K serotypes were observed. Sequence typing reveals the prevalence of K. pneumoniae high-risk clones in UTI catheterised patients. The study also highlights the concordance of resistome and in vitro susceptibility tests. Importantly, the study identifies the necessity of virulome and phenotypic virulence markers for timely diagnosis and immediate treatment for the management of high-risk K. pneumoniae clones.
Collapse
Affiliation(s)
- Abhirami Krishnamoorthy Sundaresan
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Jaya Gangwar
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Aravind Murugavel
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Ganesh Babu Malli Mohan
- Microbial Omics Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Georgia, Athens, United States of America
| | - Jayapradha Ramakrishnan
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
11
|
Li L, Zhang Y, Wang W, Chen Y, He F, Yu Y. Global Emergence and Genomic Epidemiology of blaNDM-Carrying Klebsiella variicola. Infect Drug Resist 2024; 17:1893-1901. [PMID: 38766676 PMCID: PMC11102106 DOI: 10.2147/idr.s460569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Klebsiella variicola has emerged as a human pathogen in the past decade. Here, we present findings related to a K. variicola strain carrying the blaNDM-1 gene, which was isolated from a urinary tract infection in China. Global transmission dynamics and genomic epidemiology of blaNDM-carrying K. variicola were further investigated. Material and Methods The complete genome sequence of the strain was determined using the Illumina NovaSeq 6000 and Nanopore MinION sequencer. Genomic features and resistance mechanisms were analyzed through diverse bioinformatics approaches. Additionally, genome sequences of K. variicola strains carrying blaNDM were retrieved from the NCBI database, and a comprehensive analysis of the global dissemination trends of these strains was conducted. Results K. variicola strain 353 demonstrated resistance to multiple antimicrobials, including carbapenems. Within its genome, we identified fourteen antimicrobial resistance genes associated with β-lactam, aminoglycoside, fosfomycin, quinolone, trimethoprim, rifamycin, and sulfonamide resistance. The carbapenem-resistant gene blaNDM-1 was located on an IncU-type plasmid spanning 294,608 bp and flanked by ISCR1 and IS26. Downstream of blaNDM-1, we identified an Intl1 element housing numerous antibiotic resistance genes. A comprehensive search of the NCBI database revealed 72 K. variicola strains carrying blaNDM from twelve different countries, predominantly from clinical sources, with the highest prevalence observed in the USA and China. A total of 28 distinct sequence types (STs) were identified, with ST115 being the most prevalent, followed by ST60. Conclusion In summary, this study presents the genomic characterization of a K. variicola strain carrying blaNDM-1 on an IncU-type plasmid. The research highlights the global dissemination of blaNDM-carrying K. variicola, observed in both healthcare settings and natural environments. Our data have revealed a diverse array of antimicrobial resistance determinants in K. variicola, providing valuable insights that could aid in the development of strategies for the prevention, diagnosis, and treatment of K. variicola infections.
Collapse
Affiliation(s)
- Lirong Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yawen Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Weizhong Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanmin Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Fang He
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Yu
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
12
|
Matsuda N, Aung MS, Urushibara N, Kawaguchiya M, Ohashi N, Taniguchi K, Kudo K, Ito M, Kobayashi N. Prevalence, clonal diversity, and antimicrobial resistance of hypervirulent Klebsiella pneumoniae and Klebsiella variicola clinical isolates in northern Japan. J Glob Antimicrob Resist 2023; 35:11-18. [PMID: 37604276 DOI: 10.1016/j.jgar.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVES Hypervirulent Klebsiella pneumoniae (hvKp) and Klebsiella variicola (hvKv) cause hospital/community-acquired infections, often associated with antimicrobial resistance (AMR). This study aimed to investigate the molecular epidemiology of hvKp and hvKv in northern Japan. METHODS A total of 500 K. pneumoniae and 421 K. variicola clinical isolates collected from August to December 2021 were studied. Prevalence of virulence factor-encoding genes, wzi sequence and associated K/KL type, sequence type (ST), and beta-lactamases and their types were characterized. RESULTS Any virulence gene (rmpA, rmpA2, peg-344, iucA, iutA, and iroB) and/or magA was detected in 25% (n = 125) of K. pneumoniae and 1% (n = 5) of K. variicola. Among these hvKp/hvKv, 22 wzi types (18 and 4 types, respectively) and 24 STs (20 and 4 STs, respectively) were identified. Sequence types of hvKp were classified into some clonal groups (CGs), among which CG35, including six STs, was the most common (n = 59; 47%), followed by CG23, and CG65. ST268 (CG35) associated with wzi95-K20 or wzi720 was the dominant lineage (n = 43, 34%), while K1:ST23/ST249 and K2:ST65/ST86 accounted for 26% and 13% of hvKp, respectively. Extended-spectrum beta-lactamase (ESBL) genes (blaCTX-M-2, blaCTX-M-3, blaCTX-M-15, and blaCTX-M-27) were detected in only ST23 and CG35 (ST268 and ST412) hvKp. No isolate was resistant to carbapenems, without detection of the ESBL gene in K. variicola. Phylogenetically, wzi was differentiated into two main clusters of K. pneumoniae and K. variicola. A major clonal group CG347 was identified in K. variicola. CONCLUSION Clonal structures were revealed for hvKp and hvKv clinical isolates with their AMR status in northern Japan.
Collapse
Affiliation(s)
- Norifumi Matsuda
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Nobuhide Ohashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | | | - Kenji Kudo
- Sapporo Clinical Laboratory, Inc., Sapporo, Hokkaido, Japan
| | - Masahiko Ito
- Sapporo Clinical Laboratory, Inc., Sapporo, Hokkaido, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
13
|
Duran-Bedolla J, Rodríguez-Medina N, Dunn M, Mosqueda-García D, Barrios-Camacho H, Aguilar-Vera A, Aguilar-Vera E, Suárez-Rodríguez R, Ramírez-Trujillo JA, Garza-Ramos U. Plasmids of the incompatibility group FIB K occur in Klebsiella variicola from diverse ecological niches. Int Microbiol 2023; 26:917-927. [PMID: 36971854 DOI: 10.1007/s10123-023-00346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Plasmids play a fundamental role in the evolution of bacteria by allowing them to adapt to different environments and acquire, through horizontal transfer, genes that confer resistance to different classes of antibiotics. Using the available in vitro and in silico plasmid typing systems, we analyzed a set of isolates and public genomes of K. variicola to study its plasmid diversity. The resistome, the plasmid multilocus sequence typing (pMLST), and molecular epidemiology using the MLST system were also studied. A high frequency of IncF plasmids from human isolates but lower frequency from plant isolates were found in our strain collection. In silico detection revealed 297 incompatibility (Inc) groups, but the IncFIBK (216/297) predominated in plasmids from human and environmental samples, followed by IncFIIK (89/297) and IncFIA/FIA(HI1) (75/297). These Inc groups were associated with clinically important ESBL (CTX-M-15), carbapenemases (KPC-2 and NDM-1), and colistin-resistant genes which were associated with major sequence types (ST): ST60, ST20, and ST10. In silico MOB typing showed 76% (311/404) of the genomes contained one or more of the six relaxase families with MOBF being most abundant. We identified untypeable plasmids carrying blaKPC-2, blaIMP-1, and blaSHV-187 but for which a relaxase was found; this may suggest that novel plasmid structures could be emerging in this bacterial species. The plasmid content in K. variicola has limited diversity, predominantly composed of IncFIBK plasmids dispersed in different STs. Plasmid detection using the replicon and MOB typing scheme provide a broader context of the plasmids in K. variicola. This study showed that whole-sequence-based typing provides current insights of the prevalence of plasmid types and their association with antimicrobial resistant genes in K. variicola obtained from humans and environmental niches.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Nadia Rodríguez-Medina
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Michael Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Dalila Mosqueda-García
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Humberto Barrios-Camacho
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Alejandro Aguilar-Vera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Edgar Aguilar-Vera
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México
| | - Ramón Suárez-Rodríguez
- Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología (CEIB), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - José Augusto Ramírez-Trujillo
- Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología (CEIB), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Ulises Garza-Ramos
- Laboratorio de Resistencia Bacteriana, Centro de InvestigaciónSobreEnfermedadesInfecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad #655, Col. Sta. Ma. Ahuacatitlán., C.P. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
14
|
Nucci A, Janaszkiewicz J, Rocha EPC, Rendueles O. Emergence of novel non-aggregative variants under negative frequency-dependent selection in Klebsiella variicola. MICROLIFE 2023; 4:uqad038. [PMID: 37781688 PMCID: PMC10540941 DOI: 10.1093/femsml/uqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Klebsiella variicola is an emergent human pathogen causing diverse infections, some of which in the urinary tract. However, little is known about the evolution and maintenance of genetic diversity in this species, the molecular mechanisms and their population dynamics. Here, we characterized the emergence of a novel rdar-like (rough and dry) morphotype which is contingent both on the genetic background and the environment. We show that mutations in either the nitrogen assimilation control gene (nac) or the type III fimbriae regulator, mrkH, suffice to generate rdar-like colonies. These morphotypes are primarily selected for the reduced inter-cellular aggregation as a result of MrkH loss-of-function which reduces type 3 fimbriae expression. Additionally, these clones also display increased growth rate and reduced biofilm formation. Direct competitions between rdar and wild type clones show that mutations in mrkH provide large fitness advantages. In artificial urine, the morphotype is under strong negative frequency-dependent selection and can socially exploit wild type strains. An exhaustive search for mrkH mutants in public databases revealed that ca 8% of natural isolates analysed had a truncated mrkH gene many of which were due to insertions of IS elements, including a reported clinical isolate with rdar morphology. These strains were rarely hypermucoid and often isolated from human, mostly from urine and blood. The decreased aggregation of these mutants could have important clinical implications as we hypothesize that such clones could better disperse within the host allowing colonisation of other body sites and potentially leading to systemic infections.
Collapse
Affiliation(s)
- Amandine Nucci
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Juliette Janaszkiewicz
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Olaya Rendueles
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| |
Collapse
|
15
|
Nikapitiya C, Chandrarathna HPSU, Dias MKHM, Lee J, De Zoysa M. Characterization and biocontrol efficacy of lytic phage (KPP-1) that infects multidrug resistant Klebsiella variicola. Braz J Microbiol 2023; 54:2509-2520. [PMID: 37368195 PMCID: PMC10484831 DOI: 10.1007/s42770-023-01037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Klebsiella variicola strain was identified from a natural water stream. Novel phage (KPP-1) infecting K. variicola was isolated and characterized. The biocontrol efficacy of KPP-1 against K. variicola-infected adult zebrafish was also investigated. The host K. variicola strain was resistant to six of the antibiotics tested and comprised the virulence genes kfuBC, fim, ureA, and Wza-Wzb-Wzccps. Morphological analysis by transmission electron microscopy revealed that KPP-1 has icosahedron head and tail structures. The latent period and burst size of KPP-1 were 20 min and 88 PFU per infected cell, respectively, at a multiplicity of infection of 0.1. KPP-1 was stable over a broad pH range (3-11), temperature (4-50 °C), and salinity (0.1-3%). KPP-1 inhibits the growth of K. variicola in vitro and in vivo. In the zebrafish infection model, treatment with KPP-1-infected K. variicola demonstrated 56% of cumulative survival. This suggests the possibility of developing KPP-1 as a potential biocontrol agent against multidrug-resistant K. variicola that belongs to the K. pneumoniae complex.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - H P S U Chandrarathna
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | | | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
- Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
16
|
Xi Y, Zhao J, Zhang J, Jin Y, Yang H, Duan G, Chen S, Long J. Analysis of the features of 105 confirmed CRISPR loci in 487 Klebsiella variicola. Lett Appl Microbiol 2023; 76:ovad108. [PMID: 37715312 DOI: 10.1093/lambio/ovad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
Klebsiella variicola, an emerging human pathogen, poses a threat to public health. The horizontal gene transfer (HGT) of plasmids is an important driver of the emergence of multiple antibiotic-resistant K. variicola. Clustered regularly interspersed short palindromic repeats (CRISPR) coupled with CRISPR-associated genes (CRISPR/Cas) constitute an adaptive immune system in bacteria, and can provide acquired immunity against HGT. However, the information about the CRISPR/Cas system in K. variicola is still limited. In this study, 487 genomes of K. variicola obtained from the National Center for Biotechnology Information database were used to analyze the characteristics of CRISPR/Cas systems. Approximately 21.56% of genomes (105/487) harbor at least one confirmed CRISPR array. Three types of CRISPR/Cas systems, namely the type I-E, I-E*, and IV-A systems, were identified among 105 strains. Spacer origin analysis further revealed that approximately one-third of spacers significantly match plasmids or phages, which demonstrates the implication of CRISPR/Cas systems in controlling HGT. Moreover, spacers in K. variicola tend to target mobile genetic elements from K. pneumoniae. This finding provides new evidence of the interaction of K. variicola and K. pneumoniae during their evolution. Collectively, our results provide valuable insights into the role of CRISPR/Cas systems in K. variicola.
Collapse
Affiliation(s)
- Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jiangfeng Zhang
- Henan Provincial People's Hospital, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
17
|
Ota Y, Prah I, Mahazu S, Gu Y, Nukui Y, Koike R, Saito R. Novel insights into genetic characteristics of blaGES-encoding plasmids from hospital sewage. Front Microbiol 2023; 14:1209195. [PMID: 37664110 PMCID: PMC10469963 DOI: 10.3389/fmicb.2023.1209195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The prevalence of Guiana extended-spectrum (GES)-type carbapenemase producers is increasing worldwide, and hospital water environments are considered as potential reservoirs. However, the genetic features underlying this resistance are not yet fully understood. This study aimed to characterize blaGES-encoding plasmids from a single-hospital sewage sample in Japan. Methods Carbapenemase producers were screened using carbapenemase-selective agar and polymerase chain reaction. Whole-genome sequencing analyzes were performed on the carbapenemase-producing isolates. Results Eleven gram-negative bacteria (four Enterobacter spp., three Klebsiella spp., three Aeromonas spp., and one Serratia spp.) with blaGES-24 (n = 6), blaGES-6 (n = 4), and blaGES-5 (n = 1) were isolated from the sewage sample. Five blaGES-24 and a blaGES-5 were localized in IncP-6 plasmids, whereas three blaGES-6 plasmids were localized in IncC plasmids with IncF-like regions. The remaining blaGES-6 and blaGES-24 were, respectively, localized on IncFIB-containing plasmids with IncF-like regions and a plasmid with an IncW-like replication protein. The IncP-6 and IncW-like plasmids had a close genetic relationship with plasmids from Japan, whereas the IncC/IncF-like and IncFIB/IncF-like plasmids were closely related to those from the United States and Europe. All blaGES genes were located on the class 1 integron cassette of the Tn3 transposon-related region, and the IncC/IncF-like plasmid carried two copies of the integron cassette. Eight of the eleven blaGES-encoding plasmids contained toxin-antitoxin system genes. Discussion The findings on the plasmids and the novel genetic content from a single wastewater sample extend our understanding regarding the diversity of resistance and the associated spread of blaGES, suggesting their high adaptability to hospital effluents. These findings highlight the need for the continuous monitoring of environmental GES-type carbapenemase producers to control their dissemination.
Collapse
Affiliation(s)
- Yusuke Ota
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Samiratu Mahazu
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiaki Gu
- Department of Infectious Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuji Koike
- Clinical Research Center, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
18
|
Sun Y, Zheng C, Zhou J, Zhen M, Wei X, Yan X, Guo X, Zheng L, Shao M, Li C, Qin D, Zhang J, Xiong L, Xing J, Huang B, Dong Z, Cheng P, Yu G. Pathogen Profile of Klebsiella variicola, the Causative Agent of Banana Sheath Rot. PLANT DISEASE 2023; 107:2325-2334. [PMID: 37596715 DOI: 10.1094/pdis-09-22-2018-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Banana (Musa spp.) is an important fruit and food crop worldwide. In recent years, banana sheath rot has become a major problem in banana cultivation, causing plant death and substantial economic losses. Nevertheless, the pathogen profile of this disease has not been fully characterized. Klebsiella variicola is a versatile bacterium capable of colonizing different hosts, such as plants, humans, insects, and animals, and is recognized as an emerging pathogen in various hosts. In this study, we obtained 12 bacterial isolates from 12 different banana samples showing banana sheath rot in Guangdong and Guangxi Provinces, China. Phylogenetic analysis based on 16S rRNA sequences confirmed that all 12 isolates were K. variicola strains. We sequenced the genomes of these strains, performed comparative genomic analysis with other sequenced K. variicola strains, and found a lack of consistency in accessory gene content among these K. variicola strains. However, prediction based on the pan-genome of K. variicola revealed 22 unique virulence factors carried by the 12 pathogenic K. variicola isolates. Microbiome and microbial interaction network analysis of endophytes between the healthy tissues of diseased plants and healthy plants of two cultivars showed that Methanobacterium negatively interacts with Klebsiella in banana plants and that Herbaspirillum might indirectly inhibit Methanobacterium to promote Klebsiella growth. These results suggest that banana sheath rot is caused by the imbalance of plant endophytes and opportunistic pathogenic bacteria, providing an important basis for research and control of this disease.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chuanyuan Zheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Meng Zhen
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xingying Wei
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xun Yan
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaojian Guo
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Li Zheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mingwei Shao
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Di Qin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lina Xiong
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Juejun Xing
- Laboratory and Equipment Management Department, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bingzhi Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510000, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
19
|
Ge H, Qiao J, Xu H, Liu R, Zhao J, Chen R, Li C, Chen M, Guo X. Emergence of OXA-484-Producing Klebsiella variicola in China. Infect Drug Resist 2023; 16:1767-1775. [PMID: 37008750 PMCID: PMC10065429 DOI: 10.2147/idr.s404551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose The frequent and inappropriate use of antibiotics has caused a dramatic rise in the number, species, and degree of multi-drug resistant bacteria, making them more prevalent and difficult to treat. In this context, the aim of the present study was to characterize the OXA-484-producing strains isolated from a perianal swab of a patient by using whole-genome analysis. Patients and Methods In this study, carbapenemase-producing Klebsiella variicola was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), average nucleotide identity (ANI) and PCR. S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting were utilized to characterize the plasmid profiles of K. variicola 4717. In particular, WGS was performed to obtain genomic information on this clinical isolate, and assemble all the plasmids of the bla OXA-484-harboring strain. Results The antimicrobial susceptibility pattern of K. variicola 4717 revealed that it was resistant to a range of antibiotics, including aztreonam, imipenem, meropenem, ceftriaxone, cefotaxime, ceftazidime, levofloxacin, ciprofloxacin, piperacillin-tazobactam, methylene-sulfamer oxazole, amoxicillin-clavulanic acid, cefepime, and tigecycline. Its susceptibility to chloromycin was intermediate, while it was still susceptible to amikacin, gentamicin, fosfomycin, and polymyxin B. The presence of two companion plasmids, p4717_1 and p4717_2, together with a plasmid carrying the bla OXA-484 gene was observed. An in-depth investigation of p4717-OXA-484 uncovered that it is an IncX3-type plasmid and shares a similar segment encoded by IS26. Given the similar genetic background, it was conceivable that bla OXA-484 could have developed from bla OXA-181 through a series of mutations. Conclusion Herein, we described the first genome sequence of K. variicola strain harbouring the class D β-actamase bla OXA-484 in an Inc-X3-type plasmid. Our work also uncovered the genetic characterization of K. variicola 4717 and the importance of initiating antimicrobial detection promptly.
Collapse
Affiliation(s)
- Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Mantao Chen
- Department of Neurosurgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Correspondence: Xiaobing Guo, Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road, Zhengzhou, Henan Province, 450000, People’s Republic of China, Tel +86 371 6627 8237, Fax +86 371 6691 3569, Email
| |
Collapse
|
20
|
Wang L, Zhu M, Yan C, Zhang Y, He X, Wu L, Xu J, Lu J, Bao Q, Hu Y, Xu T, Liang J. Class 1 integrons and multiple mobile genetic elements in clinical isolates of the Klebsiella pneumoniae complex from a tertiary hospital in eastern China. Front Microbiol 2023; 14:985102. [PMID: 36950157 PMCID: PMC10026359 DOI: 10.3389/fmicb.2023.985102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Background The emergence of highly drug-resistant K. pneumoniae, has become a major public health challenge. In this work, we aim to investigate the diversity of species and sequence types (STs) of clinical Klebsiella isolates and to characterize the prevalence and structure of class 1 integrons. Methods Based on the whole genome sequencing, species identification was performed by 16S rRNA gene homology and average nucleotide identity (ANI) analysis. STs were determined in accordance with the international MLST schemes for K. pneumoniae and K. variicola. Integron characterization and comparative genomic analysis were performed using various bioinformatic tools. Results Species identification showed that the 167 isolates belonged to four species: K. pneumoniae, K. variicola subsp. variicola, K. quasipneumoniae and K. aerogenes. Thirty-six known and 5 novel STs were identified in K. pneumoniae, and 10 novel STs were identified in K. variicola subsp. variicola. Class 1 integrons were found in 57.49% (96/167) of the isolates, and a total of 169 resistance gene cassettes encoding 19 types of resistance genes, including carbapenem resistance gene (bla IPM-4) and class D β-lactamases gene (bla OXA-1 and bla OXA-10), were identified. Among the 17 complete genomes, 29 class 1 integrons from 12 groups were found, only 1 group was encoded on chromosomes. Interestingly, one plasmid (pKP167-261) carrying two copies of approximately 19-kb IS26-Int1 complex resistance region that contains an integron and a multidrug resistance gene fragment. Conclusion The results of this work demonstrated that the species and STs of the clinical Klebsiella isolates were more complex by the whole genome sequence analysis than by the traditional laboratory methods. Finding of the new structure of MGEs related to the resistance genes indicates the great importance of deeply exploring the molecular mechanisms of bacterial multidrug resistance.
Collapse
Affiliation(s)
- Lan Wang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Mei Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Chunxia Yan
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Yanfang Zhang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Xuying He
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Lin Wu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Jiefeng Xu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Qiyu Bao
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yunliang Hu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
- *Correspondence: Teng Xu,
| | - Jialei Liang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Jialei Liang,
| |
Collapse
|
21
|
Voellmy IK, Lang C, Gasser M, Kronenberg A. Antibiotic resistance surveillance of Klebsiella pneumoniae complex is affected by refined MALDI-TOF identification, Swiss data, 2017 to 2022. Euro Surveill 2022; 27. [PMID: 36367012 PMCID: PMC9650708 DOI: 10.2807/1560-7917.es.2022.27.45.2200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Modern laboratory methods such as next generation sequencing and MALDI-TOF allow identification of novel bacterial species. This can affect surveillance of infections and antimicrobial resistance. From 2017, increasing numbers of medical microbiology laboratories in Switzerland differentiated Klebsiella variicola from Klebsiella pneumoniae complex using updated MALDI-TOF databases, whereas many laboratories still report them as K. pneumoniae or K. pneumoniae complex. Aim Our study explored whether separate reporting of K. variicola and the Klebsiella pneumoniae complex affected the ANRESIS surveillance database. Methods We analysed antibiotic susceptibility rates and specimen types of K. variicola and non-K. variicola-K. pneumoniae complex isolates reported by Swiss medical laboratories to the ANRESIS database (Swiss Centre for Antibiotic Resistance) from January 2017 to June 2022. Results Analysis of Swiss antimicrobial resistance data revealed increased susceptibility rates of K. variicola compared with species of the K. pneumoniae complex other than K. variicola in all six antibiotic classes tested. This can lead to underestimated resistance rates of K. pneumoniae complex in laboratories that do not specifically identify K. variicola. Furthermore, K. variicola strains were significantly more often reported from blood and primarily sterile specimens than isolates of the K. pneumoniae complex other than K. variicola, indicating increased invasiveness of K. variicola. Conclusion Our data suggest that refined differentiation of the K. pneumoniae complex can improve our understanding of its taxonomy, susceptibility, epidemiology and clinical significance, thus providing more precise information to clinicians and epidemiologists.
Collapse
Affiliation(s)
- Irene Katharina Voellmy
- Swiss Centre for Antibiotic Resistance ANRESIS, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Michael Gasser
- Swiss Centre for Antibiotic Resistance ANRESIS, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andreas Kronenberg
- Swiss Centre for Antibiotic Resistance ANRESIS, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | |
Collapse
|
22
|
Accurate Identification of Klebsiella variicola by MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microbiol Spectr 2022; 10:e0284422. [PMID: 36125293 PMCID: PMC9603720 DOI: 10.1128/spectrum.02844-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Klebsiella variicola is a pathogen that is increasingly recognized as being associated with human infections, but the methods available to clinical microbiology laboratories for accurate identification are limited. In this study, we assessed the accuracy of identification of K. variicola by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry using genetic identification with multiplex PCR as the reference method. Antimicrobial susceptibilities and virulence of K. variicola strains were also investigated. Fifty-five Klebsiella pneumoniae, 26 K. variicola, and 2 Klebsiella quasipneumoniae clinical strains were used for evaluation. Both MALDI Biotyper with library version 9 and Klebsiella MALDI TypeR, a web-based species identification tool using MALDI-TOF data, accurately identified all K. variicola strains. In addition, two strains of K. quasipneumoniae were accurately identified with Klebsiella MALDI TypeR. Whole-genome sequencing confirmed the accurate identification to the subspecies level by Klebsiella MALDI TypeR for four strains (two strains each of K. variicola subsp. variicola and K. quasipneumoniae subsp. similipneumoniae). While 13 strains, 3 strains, and 1 strain of K. pneumoniae showed nonsusceptibility to ampicillin-sulbactam, ceftriaxone, and meropenem, respectively, all strains of K. variicola were susceptible to all tested antimicrobial agents. Although two K. variicola strains were positive for the string test, no K. variicola strains harbored any of the genes associated with hypervirulence of K. pneumoniae. Accurate identification of the K. pneumoniae complex, including K. variicola, by MALDI-TOF in clinical microbiology laboratories is expected to clarify the clinical characteristics of each species in the future. IMPORTANCE Recent widespread use of bacterial whole-genome sequencing analysis has resulted in the proposal of novel bacterial species and reclassification of taxonomy. Accurate methods for identification of bacterial species in clinical microbiology laboratories are essential to accumulate information on the clinical characteristics of each bacterial species. Klebsiella variicola is a member of the Klebsiella pneumoniae complex, and its association with human infections has been increasingly recognized, but accurate identification methods approved for use in clinical microbiology laboratories have been limited thus far. The findings of the present study suggest that K. variicola can be accurately identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry using updated library or web-based identification tools. Accurate identification will promote exploration of clinical characteristics of K. variicola.
Collapse
|
23
|
Bioconversion of Glycerol into Lactic Acid by a New Bacterial Strain from the Brazilian Cerrado Soil. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A lactic-acid-producing strain was isolated from the Brazilian Cerrado soil (Brazilian savanna). Glycerol, a byproduct of the biodiesel industry, can be converted into various chemical intermediates of industrial value by biotechnological routes. Klebsiella pneumoniae can metabolize glycerol in environments with or without oxygen and bioconvert it into several chemicals with high value-added, such as lactic acid, 3-hydroxypropionic acid and 1,3 propanediol. The wild-type bacterial strain (2GPP) isolated from a soil sample from the Brazilian Cerrado was determined to be a K. pneumoniae complex that was capable of successfully metabolizing glycerol. Fermentations were performed with different temperatures, pH, and inoculum concentrations to evaluate the best lactic acid production. At first, 1,3-propanediol and L-(+)-lactic acid were produced in mini reactors. A lactic acid production of 3.8 g·L−1 and a decrease in 1,3-propanediol output were observed. Thus, by adjusting process variables such as pH and temperature during fermentation, it was possible to maximize the production of lactic acid and decrease the formation of 1,3-propanediol by utilizing experimental design strategies.
Collapse
|
24
|
Hernández-Salmerón JE, Moreno-Hagelsieb G. FastANI, Mash and Dashing equally differentiate between Klebsiella species. PeerJ 2022; 10:e13784. [PMID: 35891643 PMCID: PMC9308963 DOI: 10.7717/peerj.13784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
Bacteria of the genus Klebsiella are among the most important multi-drug resistant human pathogens, though they have been isolated from a variety of environments. The importance and ubiquity of these organisms call for quick and accurate methods for their classification. Average Nucleotide Identity (ANI) is becoming a standard for species delimitation based on whole genome sequence comparison. However, much faster genome comparison tools have been appearing in the literature. In this study we tested the quality of different approaches for genome-based species delineation against ANI. To this end, we compared 1,189 Klebsiella genomes using measures calculated with Mash, Dashing, and DNA compositional signatures, all of which run in a fraction of the time required to obtain ANI. Receiver Operating Characteristic (ROC) curve analyses showed equal quality in species discrimination for ANI, Mash and Dashing, with Area Under the Curve (AUC) values above 0.99, followed by DNA signatures (AUC: 0.96). Accordingly, groups obtained at optimized cutoffs largely agree with species designation, with ANI, Mash and Dashing producing 15 species-level groups. DNA signatures broke the dataset into more than 30 groups. Testing Mash to map species after adding draft genomes to the dataset also showed excellent results (AUC above 0.99), producing a total of 26 Klebsiella species-level groups. The ecological niches of Klebsiella strains were found to neither be related to species delimitation, nor to protein functional content, suggesting that a single Klebsiella species can have a wide repertoire of ecological functions.
Collapse
|
25
|
Nonogaki R, Iijima A, Kawamura K, Kayama S, Sugai M, Yagi T, Arakawa Y, Doi Y, Suzuki M. PCR-based ORF typing of Klebsiella pneumoniae for rapid identification of global clones and transmission events. J Appl Microbiol 2022; 133:2050-2062. [PMID: 35797348 DOI: 10.1111/jam.15701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
AIMS Klebsiella pneumoniae is a major cause of healthcare-associated infections. In this study, we aimed to develop a rapid and simple genotyping method that can characterize strains causing nosocomial infections. METHODS AND RESULTS The PCR-based open reading frame (ORF) typing (POT) method consists of two multiplex PCR reactions which were designed to detect 25 ORFs specific to bacterial genetic lineages, species, antimicrobial resistant genes (blaCTX-M group-1 , blaCTX-M group-9 , blaIMP and blaKPC ), a capsular K1-specific gene, and a virulence factor gene (rmpA/A2). The electrophoresis results are then digitized. A total of 192 strains (136 clinical and 8 reference strains of K. pneumoniae, 33 clinical and 1 reference strains of K. variicola, and 14 clinical strains of K. quasipneumoniae) were classified into 95, 26, and 11 POT values, respectively. The distribution patterns of ORFs among K. pneumoniae correlated well with multilocus sequence typing (MLST). Furthermore, closely related species could be distinguished and key antimicrobial resistance and hypervirulence genes were identified as part of POT. CONCLUSIONS The POT method was developed and validated for K. pneumoniae. In comparison to MLST, the POT method is a rapid and easy genotyping method for monitoring transmission events by K. pneumoniae in clinical microbiology laboratories. SIGNIFICANCE AND IMPACT OF THE STUDY The POT method supplies clear and informative molecular typing results for K. pneumoniae. The method would facilitate molecular epidemiological analysis in infection control and hospital epidemiology investigations.
Collapse
Affiliation(s)
- Rina Nonogaki
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Anna Iijima
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kumiko Kawamura
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan.,Department of Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan.,Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
26
|
Giannattasio-Ferraz S, Ene A, Johnson G, Maskeri L, Oliveira AP, Banerjee S, Barbosa-Stancioli EF, Putonti C. Multidrug-Resistant Klebsiella variicola Isolated in the Urine of Healthy Bovine Heifers, a Potential Risk as an Emerging Human Pathogen. Appl Environ Microbiol 2022; 88:e0004422. [PMID: 35416681 PMCID: PMC9088279 DOI: 10.1128/aem.00044-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/06/2022] [Indexed: 11/20/2022] Open
Abstract
Klebsiella variicola, a member of Klebsiella pneumoniae complex, is found to infect plants, insects, and animals and is considered an emerging pathogen in humans. While antibiotic resistance is often prevalent among K. variicola isolates from humans, this has not been thoroughly investigated in isolates from nonhuman sources. Prior evidence suggests that K. variicola can be transmitted between agricultural products as well as between animals, and the use of antibiotics in agriculture has increased antibiotic resistance in other emerging pathogens. Furthermore, in animals that contain K. variicola as a normal member of the rumen microbiota, the same bacteria can also cause infections, such as clinical mastitis in dairy cows. Here, we describe K. variicola UFMG-H9 and UFMG-H10, both isolated from the urine of healthy Gyr heifers. These two genomes represent the first isolates from the urine of cattle and exhibit greater similarity with strains from the human urinary tract than isolates from bovine fecal or milk samples. Unique to the UFMG-H9 genome is the presence of flagellar genes, the first such observation for K. variicola. Neither of the sampled animals had symptoms associated with K. variicola infection, even though genes associated with virulence and antibiotic resistance were identified in both strains. Both strains were resistant to amoxicillin, erythromycin, and vancomycin, and UFMG-H10 is resistant to fosfomycin. The observed resistances emphasize the concern regarding the emergence of this species as a human pathogen given its circulation in healthy livestock animals. IMPORTANCE Klebsiella variicola is an opportunistic pathogen in humans. It also has been associated with bovine mastitis, which can have significant economic effects. While numerous isolates have been sequenced from human infections, only 12 have been sequenced from cattle (fecal and milk samples) to date. Recently, we discovered the presence of K. variicola in the urine of two healthy heifers, the first identification of K. variicola in the bovine urinary tract and the first confirmed K. variicola isolate encoding for flagella-mediated motility. Here, we present the genome sequences and analysis of these isolates. The bovine urinary genomes are more similar to isolates from the human urinary tract than they are to other isolates from cattle, suggesting niche specialization. The presence of antibiotic resistance genes is concerning, as prior studies have found transmission between animals. These findings are important to understand the circulation of K. variicola in healthy livestock animals.
Collapse
Affiliation(s)
- Silvia Giannattasio-Ferraz
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Genevieve Johnson
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Laura Maskeri
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - André Penido Oliveira
- Empresa de Pesquisa Agropecuária de Minas Gerais – EPAMIG, Uberaba, Minas Gerais, Brazil
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, USA
| | - Edel F. Barbosa-Stancioli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
27
|
blaKPC-2-Encoding IncP-6 Plasmids in Citrobacter freundii and Klebsiella variicola Strains from Hospital Sewage in Japan. Appl Environ Microbiol 2022; 88:e0001922. [PMID: 35380451 DOI: 10.1128/aem.00019-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) producers are an emerging threat to global health, and the hospital water environment is considered an important reservoir of these life-threatening bacteria. We characterized plasmids of KPC-2-producing Citrobacter freundii and Klebsiella variicola isolates recovered from hospital sewage in Japan. Antimicrobial susceptibility testing, whole-genome sequencing analysis, bacterial conjugation, and transformation experiments were performed for both KPC-2 producers. The blaKPC-2 gene was located on the Tn3 transposon-related region from an IncP-6 replicon plasmid that could not be transferred via conjugation. Compared to the blaKPC-2-encoding plasmid of the C. freundii isolate, alignment analysis of plasmids with blaKPC-2 showed that the blaKPC-2-encoding plasmid of the K. variicola isolate was a novel IncP-6/IncF-like hybrid plasmid containing a 75,218-bp insertion sequence composed of IncF-like plasmid conjugative transfer proteins. Carbapenem-resistant transformants harboring blaKPC-2 were obtained for both isolates. However, no IncF-like insertion region was found in the K. variicola donor plasmid of the transformant, suggesting that this IncF-like region is not readily functional for plasmid conjugative transfer and is maintained depending on the host cells. The findings on the KPC-2 producers and novel genetic content emphasize the key role of hospital sewage as a potential reservoir of pathogens and its linked dissemination of blaKPC-2 through the hospital water environment. Our results indicate that continuous monitoring for environmental emergence of antimicrobial-resistant bacteria might be needed to control the spread of these infectious bacteria. Moreover, it will help elucidate both the evolution and transmission pathways of these bacteria harboring antimicrobial resistance. IMPORTANCE Antimicrobial resistance is a significant problem for global health, and the hospital environment has been recognized as a reservoir of antimicrobial resistance. Here, we provide insight into the genomic features of blaKPC-2-harboring isolates of Citrobacter freundii and Klebsiella variicola obtained from hospital sewage in Japan. The findings of carbapenem-resistant bacteria containing this novel genetic context emphasize that hospital sewage could act as a potential reservoir of pathogens and cause the subsequent spread of blaKPC-2 via horizontal gene transfer in the hospital water environment. This indicates that serial monitoring for environmental bacteria possessing antimicrobial resistance may help us control the spread of infection and also lead to elucidating the evolution and transmission pathways of these bacteria.
Collapse
|
28
|
Dominic D, Baidurah S. Recent Developments in Biological Processing Technology for Palm Oil Mill Effluent Treatment-A Review. BIOLOGY 2022; 11:525. [PMID: 35453724 PMCID: PMC9031994 DOI: 10.3390/biology11040525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
POME is the most voluminous waste generated from palm oil milling activities. The discharge of POME into the environment without any treatment processing could inflict an undesirable hazard to humans and the environment due to its high amount of toxins, organic, and inorganic materials. The treatment of POME prior to discharge into the environment is utmost required to protect the liability for human health and the environment. Biological treatments are preferable due to eco-friendly attributes that are technically and economically feasible. The goal of this review article is to highlight the current state of development in the biological processing technologies for POME treatment. These biological processing technologies are conducted in the presence of fungi, bacteria, microalgae, and a consortium of microorganisms. Numerous microbes are listed to identify the most efficient strain by monitoring the BOD, COD, working volume of the reactor, and treatment time. The most effective processing technology for POME treatment uses an upflow anaerobic sludge blanket reactor with the COD value of 99%, hydraulic retention time of 7.2 days, and a working volume of 4.7 litres. Biological processing technologies are mooted as an efficient and sustainable management practice of POME waste.
Collapse
Affiliation(s)
| | - Siti Baidurah
- School of Industrial Technology, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia;
| |
Collapse
|
29
|
Zhang Z, Zhang L, Dai H, Zhang H, Song Y, An Q, Wang J, Xia Z. Multidrug-Resistant Klebsiella pneumoniae Complex From Clinical Dogs and Cats in China: Molecular Characteristics, Phylogroups, and Hypervirulence-Associated Determinants. Front Vet Sci 2022; 9:816415. [PMID: 35359688 PMCID: PMC8960377 DOI: 10.3389/fvets.2022.816415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae complex is an increasingly important bacterial pathogen that is capable of causing severe organs and life-threatening disease. This study aimed to investigate the multidrug resistance, phylogroups, molecular characterization, and hypervirulence-associated determinants of the complex, which were isolated from clinical diseased dogs and cats. A total of 35 K. pneumoniae complex (2.3%; 95% confidence interval, 1.6–3.2) isolates were identified from 1,500 samples, all of which were collected randomly from veterinary hospitals in the 12 regions across China. Antimicrobial susceptibility testing showed that isolates were extremely resistant to amoxicillin–clavulanate (82.9%) and trimethoprim–sulfamethoxazole (77.1%). The rate of multidrug-resistant reached an astonishing 82.9% and found a carbapenemase-producing strain carrying IncX3-blaNDM−5 derived a cat from Zhejiang. The prevalence rates of extended-spectrum β-lactamase gene blaCTX−M and plasmid-mediated quinolone resistance gene aac(6')Ib-cr were 51.4% and 45.7%, respectively. The resistance gene aph(3')-Ia of isolates from cats was more significantly (p < 0.05) prevalent than that from dogs. Likewise, K. pneumoniae complex harbored hypervirulence-associated genes ybt (11.4%), iuc (5.7%), and iroB (2.9%). Three (8.6%) of the 35 isolates were determined as hypermucoviscous by the string test. Lipopolysaccharide serotype O1v2 had the highest percentage of 25.7%, but capsular serotypes presented diversity distribution among the isolates. The core–genome phylogenetic tree demonstrated most of the isolates belonged to the KpI phylogroup (91.4%). Multilocus sequence typing analysis identified 25 different STs; ST15 and ST37 were the most abundant accounting for isolates, followed by ST307, ST656, ST1408, and ST4566. In addition, the prevalence of IncFIB-type plasmid for cat isolates was significantly higher (p < 0.05) than that for dogs. Sequences of IncX3 in blaNDM−5-positive strain contained regions showing >99% nucleotide sequence identity to the reference plasmid pNDM-MGR194 from the human.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Liu Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Hegen Dai
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haixia Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Song
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi An
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- *Correspondence: Jianzhong Wang ;
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Zhaofei Xia
| |
Collapse
|
30
|
Jesumirhewe C, Springer B, Allerberger F, Ruppitsch W. Genetic Characterization of Antibiotic Resistant Enterobacteriaceae Isolates From Bovine Animals and the Environment in Nigeria. Front Microbiol 2022; 13:793541. [PMID: 35283848 PMCID: PMC8916115 DOI: 10.3389/fmicb.2022.793541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
There is a link between antibiotic resistance in humans, livestock and the environment. This study was carried out to characterize antibiotic resistant bovine and environmental Enterobacteriaceae isolates from Edo state, Nigeria. A total of 109 consecutive isolates of Enterobacteriaceae were isolated from March–May 2015 from 150 fecal samples of healthy bovine animals from three farms at slaughter in Edo state Nigeria. Similarly, 43 Enterobacteriaceae isolates were also obtained from a total of 100 environmental samples from different sources. Isolates were recovered and identified from samples using standard microbiological techniques. Recovered isolates were pre-identified by the Microbact Gram-Negative identification system and confirmed with Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and ribosomal multilocus sequence typing (rMLST). Antibiotic susceptibility testing was carried out by Kirby-Bauer method for 14 antibiotics. Whole genome sequencing (WGS) was carried out for isolate characterization and identification of resistance determinants. Out of 109 animal and 43 environmental Enterobacteriaceae isolates, 18 (17%) and 8 (19%) isolates based on selection criteria showed antibiotic resistance and were further investigated by whole genome sequencing (WGS). Resistance genes were detected in all (100%) of the resistant bovine and environmental Enterobacteriaceae isolates. The resistance determinants included β-lactamase genes, aminoglycoside modifying enzymes, qnr genes, sulfonamide, tetracycline and trimethoprim resistance genes, respectively. Out of the 18 and 8 resistant animal and environmental isolates 3 (17%) and 2 (25%) were multidrug resistant (MDR) and had resistance determinants which included efflux genes, regulatory systems modulating antibiotic efflux and antibiotic target alteration genes. Our study shows the dissemination of antibiotic resistance especially MDR strains among Nigerian bovine and environmental Enterobacteriaceae isolates. The presence of these resistant strains in animals and the environment constitute a serious health concern indicated by the difficult treatment options of the infections caused by these organisms. To the best of our knowledge we report the first detailed genomic characterization of antibiotic resistance in bovine and environmental Enterobacteriaceae isolates for Nigeria.
Collapse
Affiliation(s)
- Christiana Jesumirhewe
- Department of Pharmaceutical Microbiology, Prof Dora Akunyili College of Pharmacy, Igbinedion University, Okada, Nigeria
- *Correspondence: Christiana Jesumirhewe,
| | - Burkhard Springer
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Franz Allerberger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
31
|
Jekl V, Piskovska A, Drnkova I, Skoric M, Hauptman K, Chloupek J. Case Report: Spontaneous Appendicitis With Suspected Involvement of Klebsiella variicola in Two Pet Rabbits. Front Vet Sci 2021; 8:779517. [PMID: 34957283 PMCID: PMC8692788 DOI: 10.3389/fvets.2021.779517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Although laboratory rabbits are commonly used as models of appendicitis in man, spontaneous appendicitis was only described ante-mortem in one pet rabbit with an acute abdomen. The aim of this article is to describe two spontaneous cases of appendicitis in pet rabbits, to describe therapeutic appendectomy, and to discuss the microbial flora of the inflamed appendix. A 5-month-old intact female and a 16-month-old, neutered male were presented to the veterinary clinic with restlessness, anorexia, and reduced faecal output. The main clinical findings were restlessness, severe discomfort on abdominal palpation, a mid-abdominal palpable tubulous mass and an elevated rectal temperature. Blood analyses showed lymphocytosis, monocytosis, and hyperglycaemia. Radiography was inconclusive. Abdominal ultrasound revealed a presence of a tubular structure with wall thicknesses of 4.2 and 3.7 mm in the two rabbits, respectively. The tubular structure had a rounded, closed end, and a multilayered wall, suggestive of appendicitis. Due to metabolic acidosis and poor prognosis, the first rabbit was euthanized. In the 16-month-old rabbit, appendectomy was performed. Recovery was uneventful, and 4 h after surgery, the rabbit started to become normally active. Postoperative care consisted of fluid therapy, multimodal analgesia, supportive care and prokinetics. Follow-up examinations at 10 days, 1 month, and at 11 months after the surgery did not show any abnormal clinical or laboratory findings. Histopathological examination of appendices from both rabbits showed gangrenous appendicitis. Aerobic cultivation showed the presence of pure culture of Klebsiella variicola sensitive to enrofloxacin, marbofloxacin, tetracycline, cefuroxime, trimethoprim sulphonamide, neomycin, and gentamicin. Restlessness associated with anorexia, abdominal pain, palpable abdominal mass, hyperglycaemia, lymphocytosis, and elevated rectal temperature may be indicative of inflammation within the gastrointestinal tract. Abdominal ultrasound is recommended in rabbits with showing these clinical signs because radiography can be inconclusive. Appendicitis is a life-threatening condition, which should be included into the list of differential diagnoses; for the rabbit, an acute abdomen and gastrointestinal stasis syndrome and must be treated immediately. K. variicola may be associated with appendicitis in rabbits as a causative agent or in association with appendix intraluminal dysmicrobia.
Collapse
Affiliation(s)
- Vladimir Jekl
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia.,Jekl & Hauptman Veterinary Clinic, Brno, Czechia
| | | | | | - Misa Skoric
- Department of Pathological Morphology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czechia
| | | | - Jan Chloupek
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| |
Collapse
|
32
|
Barrios-Camacho H, Silva-Sánchez J, Cercas-Ayala E, Lozano-Aguirre L, Duran-Bedolla J, Aguilar-Vera A, Garza-González E, Bocanegra-Ibarias P, Morfín-Otero R, Hernández-Castro R, Garza-Ramos U. PCR system for the correct differentiation of the main bacterial species of the Klebsiella pneumoniae complex. Arch Microbiol 2021; 204:73. [PMID: 34951665 DOI: 10.1007/s00203-021-02668-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/27/2022]
Abstract
Accurate recognition of the closely related species Klebsiella pneumoniae, Klebsiella quasipneumoniae and Klebsiella variicola by phenotypic, biochemical and automated tests is notoriously unreliable in hospitals' diagnostic laboratories. A comparative genomics approach was conducted for the correct differentiation of the main bacterial species in the K. pneumoniae complex. Analysis of the deduced proteomes of 87 unique genomes of the Klebsiella in public databases, was used for the identification of unique protein family members. This allowed the design of a multiplex-PCR assay for the correct differentiation of these three species from different origins. This system allowed us to determine the prevalence of K. pneumoniae, K. quasipneumoniae and K. variicola among a collection of 552 clinical isolates. Of these, 87.3% (482/552) isolates corresponded to K. pneumoniae, 6.7% (33/552) to K. quasipneumoniae and 5.9% (33/552) to K. variicola. The multiplex-PCR results showed a 100% accuracy for the correct identification of the three species evaluated, which was validated with rpoB phylogenetic sequence analysis.
Collapse
Affiliation(s)
- Humberto Barrios-Camacho
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Jesús Silva-Sánchez
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Elena Cercas-Ayala
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Luis Lozano-Aguirre
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Josefina Duran-Bedolla
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Aguilar-Vera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Elvira Garza-González
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Paola Bocanegra-Ibarias
- Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
33
|
Wen A, Havens KL, Bloch SE, Shah N, Higgins DA, Davis-Richardson AG, Sharon J, Rezaei F, Mohiti-Asli M, Johnson A, Abud G, Ane JM, Maeda J, Infante V, Gottlieb SS, Lorigan JG, Williams L, Horton A, McKellar M, Soriano D, Caron Z, Elzinga H, Graham A, Clark R, Mak SM, Stupin L, Robinson A, Hubbard N, Broglie R, Tamsir A, Temme K. Enabling Biological Nitrogen Fixation for Cereal Crops in Fertilized Fields. ACS Synth Biol 2021; 10:3264-3277. [PMID: 34851109 DOI: 10.1021/acssynbio.1c00049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Agricultural productivity relies on synthetic nitrogen fertilizers, yet half of that reactive nitrogen is lost to the environment. There is an urgent need for alternative nitrogen solutions to reduce the water pollution, ozone depletion, atmospheric particulate formation, and global greenhouse gas emissions associated with synthetic nitrogen fertilizer use. One such solution is biological nitrogen fixation (BNF), a component of the complex natural nitrogen cycle. BNF application to commercial agriculture is currently limited by fertilizer use and plant type. This paper describes the identification, development, and deployment of the first microbial product optimized using synthetic biology tools to enable BNF for corn (Zea mays) in fertilized fields, demonstrating the successful, safe commercialization of root-associated diazotrophs and realizing the potential of BNF to replace and reduce synthetic nitrogen fertilizer use in production agriculture. Derived from a wild nitrogen-fixing microbe isolated from agricultural soils, Klebsiella variicola 137-1036 ("Kv137-1036") retains the capacity of the parent strain to colonize corn roots while increasing nitrogen fixation activity 122-fold in nitrogen-rich environments. This technical milestone was then commercialized in less than half of the time of a traditional biological product, with robust biosafety evaluations and product formulations contributing to consumer confidence and ease of use. Tested in multi-year, multi-site field trial experiments throughout the U.S. Corn Belt, fields grown with Kv137-1036 exhibited both higher yields (0.35 ± 0.092 t/ha ± SE or 5.2 ± 1.4 bushels/acre ± SE) and reduced within-field yield variance by 25% in 2018 and 8% in 2019 compared to fields fertilized with synthetic nitrogen fertilizers alone. These results demonstrate the capacity of a broad-acre BNF product to fix nitrogen for corn in field conditions with reliable agronomic benefits.
Collapse
Affiliation(s)
- Amy Wen
- Pivot Bio, Berkeley, California 94710, United States
| | | | - Sarah E. Bloch
- Morrison & Foerster LLP, San Francisco, California 94105, United States
| | - Neal Shah
- Pivot Bio, Berkeley, California 94710, United States
| | | | | | - Judee Sharon
- University of Minnesota─Twin Cities, Minneapolis, Minnesota 55401, United States
| | | | | | | | - Gabriel Abud
- Tempo Automation, San Francisco, California 94103, United States
| | - Jean-Michel Ane
- University of Minnesota─Twin Cities, Minneapolis, Minnesota 55401, United States
| | - Junko Maeda
- University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Valentina Infante
- University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | | | | | | | - Alana Horton
- Pivot Bio, Berkeley, California 94710, United States
| | | | | | - Zoe Caron
- Pivot Bio, Berkeley, California 94710, United States
| | | | - Ashley Graham
- Olema Oncology, San Francisco, California 94107, United States
| | | | - San-Ming Mak
- Pivot Bio, Berkeley, California 94710, United States
| | - Laura Stupin
- Pivot Bio, Berkeley, California 94710, United States
| | | | | | | | - Alvin Tamsir
- Pivot Bio, Berkeley, California 94710, United States
| | - Karsten Temme
- Pivot Bio, Berkeley, California 94710, United States
| |
Collapse
|
34
|
Within patient genetic diversity of bla KPC harboring Klebsiella pneumoniae in a Colombian hospital and identification of a new NTE KPC platform. Sci Rep 2021; 11:21409. [PMID: 34725422 PMCID: PMC8560879 DOI: 10.1038/s41598-021-00887-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Resistance to carbapenems in Klebsiellapneumoniae has been mostly related with the worldwide dissemination of KPC, largely due to the pandemic clones belonging to the complex clonal (CC) 258. To unravel blaKPC post-endemic clinical impact, here we describe clinical characteristics of 68 patients from a high complexity hospital, and the molecular and genetic characteristics of their 139 blaKPC—K.pneumoniae (KPC-Kp) isolates. Of the 26 patients that presented relapses or reinfections, 16 had changes in the resistance profiles of the isolates recovered from the recurrent episodes. In respect to the genetic diversity of KPC-Kp isolates, PFGE revealed 45 different clonal complexes (CC). MLST for 12 representative clones showed ST258 was present in the most frequent CC (23.0%), however, remaining 11 representative clones belonged to non-CC258 STs (77.0%). Interestingly, 16 patients presented within-patient genetic diversity of KPC-Kp clones. In one of these, three unrelated KPC-Kp clones (ST258, ST504, and ST846) and a blaKPC—K.variicola isolate (ST182) were identified. For this patient, complete genome sequence of one representative isolate of each clone was determined. In K.pneumoniae isolates blaKPC was mobilized by two Tn3-like unrelated platforms: Tn4401b (ST258) and Tn6454 (ST504 and ST846), a new NTEKPC-IIe transposon for first time characterized also determined in the K.variicola isolate of this study. Genome analysis showed these transposons were harbored in different unrelated but previously reported plasmids and in the chromosome of a K.pneumoniae (for Tn4401b). In conclusion, in the blaKPC post-endemic dissemination in Colombia, different KPC-Kp clones (mostly non-CC258) have emerged due to integration of the single blaKPC gene in new genetic platforms. This work also shows the intra-patient resistant and genetic diversity of KPC-Kp isolates. This circulation dynamic could impact the effectiveness of long-term treatments.
Collapse
|
35
|
Duran-Bedolla J, Garza-Ramos U, Rodríguez-Medina N, Aguilar Vera A, Barrios-Camacho H. Exploring the environmental traits and applications of Klebsiella variicola. Braz J Microbiol 2021; 52:2233-2245. [PMID: 34626346 DOI: 10.1007/s42770-021-00630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/04/2021] [Indexed: 10/20/2022] Open
Abstract
Klebsiella variicola has been found in various natural niches, alone or in association with other bacteria, and causes diseases in animals and plants with important economic and environmental impacts. K. variicola has the capacity to fix nitrogen in the rhizosphere and soil; produces indole acetic acid, acetoin, and ammonia; and dissolves phosphorus and potassium, which play an important role in plant growth promotion and nutrition. Some members of K. variicola have properties such as halotolerance and alkalotolerance, conferring an evolutionary advantage. In the environmental protection, K. variicola can be used in the wastewater treatment, biodegradation, and bioremediation of polluted soil, either alone or in association with other organisms. In addition, it has the potential to carry out industrial processes in the food and pharmaceutical industries, like the production of maltose and glucose by the catalysis of debranching unmodified oligosaccharides by the pullulanase enzyme. Finally, this bacterium has the ability to transform chemical energy into electrical energy, such as a biocatalyst, which could be useful in the near future. These properties show that K. variicola should be considered an eco-friendly bacterium with hopeful technological promise. In this review, we explore the most significant aspects of K. variicola and highlight its potential applications in environmental and biotechnological processes.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Nadia Rodríguez-Medina
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Aguilar Vera
- Centro de Ciencias Genómicas, Programa de Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Humberto Barrios-Camacho
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
36
|
Rios-Galicia B, Villagómez-Garfias C, De la Vega-Camarillo E, Guerra-Camacho JE, Medina-Jaritz N, Arteaga-Garibay RI, Villa-Tanaca L, Hernández-Rodríguez C. The Mexican giant maize of Jala landrace harbour plant-growth-promoting rhizospheric and endophytic bacteria. 3 Biotech 2021; 11:447. [PMID: 34631348 DOI: 10.1007/s13205-021-02983-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/04/2021] [Indexed: 01/02/2023] Open
Abstract
The giant landrace of maize Jala is a native crop cultured in Nayarit and Jalisco States in the occident of México. In this study, after screening 374 rhizospheric and endophytic bacteria isolated from rhizospheric soil, root, and seed tissues of maize Jala, a total of 16 bacterial strains were selected for their plant-growth-promoting potential and identified by 16S rRNA phylogenetic analysis. The isolates exhibited different combinations of phenotypic traits, including solubilisation of phosphate from hydroxyapatite, production of a broad spectrum of siderophores such as cobalt, iron, molybdenum, vanadium, or zinc (Co2+, Fe3+, Mo2 +, V5+, Zn2+), and nitrogen fixation capabilities, which were detected in both rhizospheric and endophytic strains. Additional traits such as production of 1-aminocyclopropane-1-carboxylate deaminase and a high-rate production of Indoleacetic Acid were exclusively detected on endophytic isolates. Among the selected strains, the rhizospheric Burkholderia sp., and Klebsiella variicola, and the endophytic Pseudomonas protegens significantly improved the growth of maize plants in greenhouse assays and controlled the infection against Fusarium sp. 50 on fresh maize cobs. These results present the first deep approach on handling autochthonous microorganisms from native maize with a potential biotechnological application in sustainable agriculture as biofertilizers or biopesticides.
Collapse
Affiliation(s)
- Bibiana Rios-Galicia
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Catalina Villagómez-Garfias
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Esaú De la Vega-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Jairo Eder Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Nora Medina-Jaritz
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Boulevard de la Biodiversidad No. 400, Rancho Las Cruces, 47600 Tepatitlán de Morelos, Jalisco Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| |
Collapse
|
37
|
A new mutation in mgrb mediating polymyxin resistance in Klebsiella variicola. Int J Antimicrob Agents 2021; 58:106424. [PMID: 34419577 DOI: 10.1016/j.ijantimicag.2021.106424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022]
Abstract
Polymyxin resistance is a public health concern - present in humans, animals and the environment - caused by chromosomal-encoding or plasmid-encoding mechanisms. Chromosomal alterations in MgrB are frequently detected in Klebsiella spp., but not yet reported and characterised in Klebsiella variicola (K. variicola). This study performed microbiological and genomic characterisation of three polymyxin-resistant K. variicola isolates (M14, M15 and M50) recovered from the microbiota of migratory birds in Brazil. The isolates were submitted to SpeI-PFGE, broth microdilution and whole genome sequencing using Illumina MiSeq for analysis of genetic relatedness, sequence typing and detection of antimicrobial-resistance genes. K. variicola isolates belonged to two clones, and susceptibility tests showed resistance only for polymyxins. Sequences of chromosomal two-component systems (PmrAB, PhoPQ, RstAB, CrrAB) and MgrB were evaluated by blastN and blastP against a polymyxin-susceptible K. variicola (A58243), and mutations with biological effect were checked by the PROVEAN tool. K. variicola isolates belonged to two clones, and susceptibility tests showed resistance for polymyxins. In M14 and M15, phoQ deleterious mutations (D90N, I122S and G385S) were identified, while an mgrB variant containing a single deletion (C deletion on position 93) leading to the production of a non-functional protein was detected in M50. mgrB complementation studies showed restoration of polymyxin susceptibility (64 to ≤ 0.25 mg/L) as a wild-type mgrB was inserted into the mgrB-deficient M50. This study confirmed the role of a non-functional mgrB variant in conferring polymyxin resistance, stressing the role of this regulator in K. variicola and drawing attention to novel polymyxin resistance mechanisms emerging in wildlife.
Collapse
|
38
|
Kiley JL, Mende K, Beckius ML, Kaiser SJ, Carson ML, Lu D, Whitman TJ, Petfield JL, Tribble DR, Blyth DM. Resistance patterns and clinical outcomes of Klebsiella pneumoniae and invasive Klebsiella variicola in trauma patients. PLoS One 2021; 16:e0255636. [PMID: 34339473 PMCID: PMC8328492 DOI: 10.1371/journal.pone.0255636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Recent reclassification of the Klebsiella genus to include Klebsiella variicola, and its association with bacteremia and mortality, has raised concerns. We examined Klebsiella spp. infections among battlefield trauma patients, including occurrence of invasive K. variicola disease. Klebsiella isolates collected from 51 wounded military personnel (2009-2014) through the Trauma Infectious Disease Outcomes Study were examined using polymerase chain reaction (PCR) and pulsed-field gel electrophoresis. K. variicola isolates were evaluated for hypermucoviscosity phenotype by the string test. Patients were severely injured, largely from blast injuries, and all received antibiotics prior to Klebsiella isolation. Multidrug-resistant Klebsiella isolates were identified in 23 (45%) patients; however, there were no significant differences when patients with and without multidrug-resistant Klebsiella were compared. A total of 237 isolates initially identified as K. pneumoniae were analyzed, with 141 clinical isolates associated with infections (remaining were colonizing isolates collected through surveillance groin swabs). Using PCR sequencing, 221 (93%) isolates were confirmed as K. pneumoniae, 10 (4%) were K. variicola, and 6 (3%) were K. quasipneumoniae. Five K. variicola isolates were associated with infections. Compared to K. pneumoniae, infecting K. variicola isolates were more likely to be from blood (4/5 versus 24/134, p = 0.04), and less likely to be multidrug-resistant (0/5 versus 99/134, p<0.01). No K. variicola isolates demonstrated the hypermucoviscosity phenotype. Although K. variicola isolates were frequently isolated from bloodstream infections, they were less likely to be multidrug-resistant. Further work is needed to facilitate diagnosis of K. variicola and clarify its clinical significance in larger prospective studies.
Collapse
Affiliation(s)
- John L. Kiley
- Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, Texas, United States of America
| | - Katrin Mende
- Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, Texas, United States of America
- Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Miriam L. Beckius
- Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, Texas, United States of America
| | - Susan J. Kaiser
- Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, Texas, United States of America
- Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - M. Leigh Carson
- Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Dan Lu
- Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Timothy J. Whitman
- Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | | | - David R. Tribble
- Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Dana M. Blyth
- Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, Texas, United States of America
| |
Collapse
|
39
|
Klebsiella variicola Reference Strain F2R9 (ATCC BAA-830) Genome Sequence. Microbiol Resour Announc 2021; 10:e0032921. [PMID: 34197204 PMCID: PMC8248881 DOI: 10.1128/mra.00329-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Klebsiella variicola F2R9 was isolated from banana root, and its sequence has been deposited as ATCC BAA-830. It corresponds to sequence type 11 (ST11) and KL16 and contains no identifiable plasmids. The genome showed few antimicrobial resistance and virulence genes and several plant association genes. The strain showed susceptibility to most antimicrobials and avirulent behavior.
Collapse
|
40
|
Auto-Disinfectant Acrylic Paints Functionalised with Triclosan and Isoborneol-Antibacterial Assessment. Polymers (Basel) 2021; 13:polym13132197. [PMID: 34279341 PMCID: PMC8272206 DOI: 10.3390/polym13132197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental surface contamination with microorganisms is a serious concern worldwide. Triclosan and isoborneol present good antimicrobial activity. Their immobilisation to paint substrates allows for development of a material that stays effective over a longer time. In this work, we disclosed the preliminary studies to evaluate the antimicrobial activity of the active molecule after being functionalised with isocyanates for further immobilisation on the paint substrate. Overall, the newly developed non-release antimicrobial coating provides an effective way of preventing the spread of diseases and has been proven to inhibit bacterial growth and with a considerable antimicrobial activity towards S. aureus, E. coli, and K. variicola at the tested concentrations.
Collapse
|
41
|
Malinga NZZ, Shobo CO, Molechan C, Amoako DG, Zishiri OT, Bester LA. Molecular Surveillance and Dissemination of Klebsiella pneumoniae on Frequently Encountered Surfaces in South African Public Hospitals. Microb Drug Resist 2021; 28:306-316. [PMID: 34170205 DOI: 10.1089/mdr.2020.0546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacteria that cause life-threatening illnesses in humans are also capable of contaminating hospital surfaces, thus pose as a potential source of infection. This study aimed to investigate the prevalence, genetic diversity, virulence, and antibiotic resistance profile of Klebsiella pneumoniae in South Africa. In a nonoutbreak setting involving four public hospitals, 777 samples were collected in three different wards from 11 different sites. Phenotypic and genotypic methods were used for isolation and identification. The Kirby-Bauer disk-diffusion method was used to examine antibiotic resistance followed by the combination disk method to characterize extended-spectrum β-lactamases (ESBLs). Antibiotic resistance and virulence genes were screened using PCR and clonality was investigated using enterobacterial repetitive intergenic consensus (ERIC)-PCR. Seventy-five (10%) K. pneumoniae isolates were recovered. These isolates were obtained from all four hospitals and all three wards involved. However, only six frequently touched surfaces were contaminated. Thirty (40%) isolates were characterized as ESBLs showing high resistance to antibiotics and mostly harboring the blaCTX-M group one gene. Virulence genes were highly prevalent among all the isolates. ERIC-PCR showed that the isolates recovered from different sites within the same hospital were genetically similar. The study highlighted that K. pneumoniae can contaminate various surfaces and this persistence allows for the dissemination of bacteria within the hospital environment. The information from this study can assist hospitals to evaluate and improve current infection prevention and control interventions in place.
Collapse
Affiliation(s)
- Nongcebo Z Z Malinga
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Christiana O Shobo
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chantal Molechan
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G Amoako
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Oliver T Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
42
|
Saxenborn P, Baxter J, Tilevik A, Fagerlind M, Dyrkell F, Pernestig AK, Enroth H, Tilevik D. Genotypic Characterization of Clinical Klebsiella spp. Isolates Collected From Patients With Suspected Community-Onset Sepsis, Sweden. Front Microbiol 2021; 12:640408. [PMID: 33995300 PMCID: PMC8120268 DOI: 10.3389/fmicb.2021.640408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
Klebsiella is a genus of Gram-negative bacteria known to be opportunistic pathogens that may cause a variety of infections in humans. Highly drug-resistant Klebsiella species, especially K. pneumoniae, have emerged rapidly and are becoming a major concern in clinical management. Although K. pneumoniae is considered the most important pathogen within the genus, the true clinical significance of the other species is likely underrecognized due to the inability of conventional microbiological methods to distinguish between the species leading to high rates of misidentification. Bacterial whole-genome sequencing (WGS) enables precise species identification and characterization that other technologies do not allow. Herein, we have characterized the diversity and traits of Klebsiella spp. in community-onset infections by WGS of clinical isolates (n = 105) collected during a prospective sepsis study in Sweden. The sequencing revealed that 32 of the 82 isolates (39.0%) initially identified as K. pneumoniae with routine microbiological methods based on cultures followed by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) had been misidentified. Of these, 23 were identified as Klebsiella variicola and nine as other members of the K. pneumoniae complex. Comparisons of the number of resistance genes showed that significantly fewer resistance genes were detected in Klebsiella oxytoca compared to K. pneumoniae and K. variicola (both values of p < 0.001). Moreover, a high proportion of the isolates within the K. pneumoniae complex were predicted to be genotypically multidrug-resistant (MDR; 79/84, 94.0%) in contrast to K. oxytoca (3/16, 18.8%) and Klebsiella michiganensis (0/4, 0.0%). All isolates predicted as genotypically MDR were found to harbor the combination of β-lactam, fosfomycin, and quinolone resistance markers. Multi-locus sequence typing (MLST) revealed a high diversity of sequence types among the Klebsiella spp. with ST14 (10.0%) and ST5429 (10.0%) as the most prevalent ones for K. pneumoniae, ST146 for K. variicola (12.0%), and ST176 for K. oxytoca (25.0%). In conclusion, the results from this study highlight the importance of using high-resolution genotypic methods for identification and characterization of clinical Klebsiella spp. isolates. Our findings indicate that infections caused by other members of the K. pneumoniae complex than K. pneumoniae are a more common clinical problem than previously described, mainly due to high rates of misidentifications.
Collapse
Affiliation(s)
- Patricia Saxenborn
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - John Baxter
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Andreas Tilevik
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Magnus Fagerlind
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | | | - Anna-Karin Pernestig
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Helena Enroth
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden.,Molecular Microbiology, Laboratory Medicine, Unilabs AB, Skövde, Sweden
| | - Diana Tilevik
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| |
Collapse
|
43
|
de Campos TA, de Almeida FM, de Almeida APC, Nakamura-Silva R, Oliveira-Silva M, de Sousa IFA, Cerdeira L, Lincopan N, Pappas GJ, Pitondo-Silva A. Multidrug-Resistant (MDR) Klebsiella variicola Strains Isolated in a Brazilian Hospital Belong to New Clones. Front Microbiol 2021; 12:604031. [PMID: 33935984 PMCID: PMC8085564 DOI: 10.3389/fmicb.2021.604031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/25/2021] [Indexed: 01/18/2023] Open
Abstract
Klebsiella variicola is mainly associated with opportunistic infections and frequently identified as Klebsiella pneumoniae. This misidentification implies a wrong epidemiology result as well as incorrect attribution to K. pneumoniae as the etiology of some severe infections. Recently, huge efforts have been made to study K. variicola, however, the biological aspects of this species are still unclear. Here we characterized five K. variicola strains initially identified as K. pneumoniae, with a Vitek-2 System and 16S rRNA sequencing. One-step multiplex polymerase chain reaction and Whole Genome Sequencing (WGS) identified them as K. variicola. Additionally, WGS analysis showed that all the strains are closely related with K. variicola genomes, forming a clustered group, apart from K. pneumoniae and K. quasipneumoniae. Multilocus sequence typing analysis showed four different sequence types (STs) among the strains and for two of them (Kv97 and Kv104) the same ST was assigned. All strains were multidrug-resistant (MDR) and three showed virulence phenotypes including invasion capacity to epithelial cells, and survival in human blood and serum. These results showed the emergence of new K. variicola clones with pathogenic potential to colonize and cause infection in different tissues. These characteristics associated with MDR strains raise great concern for human health.
Collapse
Affiliation(s)
- Tatiana Amabile de Campos
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Biologia Microbiana, Universidade de Brasília, Brasília, Brazil
| | | | | | - Rafael Nakamura-Silva
- Programa de Pós-graduação em Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Mariana Oliveira-Silva
- Programa de Pós-graduação em Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | | | - Louise Cerdeira
- Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Nilton Lincopan
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Georgios Joannis Pappas
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Biologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - André Pitondo-Silva
- Programa de Pós-graduação em Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil.,Programa de Pós-graduação em Odontologia, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
44
|
Guerrieri MC, Fiorini A, Fanfoni E, Tabaglio V, Cocconcelli PS, Trevisan M, Puglisi E. Integrated Genomic and Greenhouse Assessment of a Novel Plant Growth-Promoting Rhizobacterium for Tomato Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:660620. [PMID: 33859664 PMCID: PMC8042378 DOI: 10.3389/fpls.2021.660620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 06/07/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) can display several plant-beneficial properties, including support to plant nutrition, regulation of plant growth, and biocontrol of pests. Mechanisms behind these effects are directly related to the presence and expression of specific genes, and different PGPR strains can be differentiated by the presence of different genes. In this study we reported a comprehensive evaluation of a novel PGPR Klebsiella variicola UC4115 from the field to the lab, and from the lab to the plant. The isolate from tomato field was screened in-vitro for different activities related to plant nutrition and growth regulation as well as for antifungal traits. We performed a functional annotation of genes contributing to plant-beneficial functions previously tested in-vitro. Furthermore, the in-vitro characterization, the whole genome sequencing and annotation of K. variicola UC4115, were compared with the well-known PGPR Azospirillum brasilense strain Sp7. This novel comparative analysis revealed different accumulation of plant-beneficial functions contributing genes, and the presence of different genes that accomplished the same functions. Greenhouse assays on tomato seedlings from BBCH 11-12 to BBCH > 14 were performed under either organic or conventional management. In each of them, three PGPR inoculations (control, K. variicola UC4115, A. brasilense Sp7) were applied at either seed-, root-, and seed plus root level. Results confirmed the PGP potential of K. variicola UC4115; in particular, its high value potential as indole-3-acetic acid producer was observed in increasing of root length density and diameter class length parameters. While, in general, A. brasilense Sp7 had a greater effect on biomass, probably due to its high ability as nitrogen-fixing bacteria. For K. variicola UC4115, the most consistent data were noticed under organic management, with application at seed level. While, A. brasilense Sp7 showed the greatest performance under conventional management. Our data highlight the necessity to tailor the selected PGPR, with the mode of inoculation and the crop-soil combination.
Collapse
Affiliation(s)
- Maria Chiara Guerrieri
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
45
|
Kusale SP, Attar YC, Sayyed RZ, Malek RA, Ilyas N, Suriani NL, Khan N, El Enshasy HA. Production of Plant Beneficial and Antioxidants Metabolites by Klebsiellavariicola under Salinity Stress. Molecules 2021; 26:1894. [PMID: 33810565 PMCID: PMC8037558 DOI: 10.3390/molecules26071894] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/25/2023] Open
Abstract
Bacteria that surround plant roots and exert beneficial effects on plant growth are known as plant growth-promoting rhizobacteria (PGPR). In addition to the plant growth-promotion, PGPR also imparts resistance against salinity and oxidative stress and needs to be studied. Such PGPR can function as dynamic bioinoculants under salinity conditions. The present study reports the isolation of phytase positive multifarious Klebsiella variicola SURYA6 isolated from wheat rhizosphere in Kolhapur, India. The isolate produced various plant growth-promoting (PGP), salinity ameliorating, and antioxidant traits. It produced organic acid, yielded a higher phosphorous solubilization index (9.3), maximum phytase activity (376.67 ± 2.77 U/mL), and copious amounts of siderophore (79.0%). The isolate also produced salt ameliorating traits such as indole acetic acid (78.45 ± 1.9 µg/mL), 1 aminocyclopropane-1-carboxylate deaminase (0.991 M/mg/h), and exopolysaccharides (32.2 ± 1.2 g/L). In addition to these, the isolate also produced higher activities of antioxidant enzymes like superoxide dismutase (13.86 IU/mg protein), catalase (0.053 IU/mg protein), and glutathione oxidase (22.12 µg/mg protein) at various salt levels. The isolate exhibited optimum growth and maximum secretion of these metabolites during the log-phase growth. It exhibited sensitivity to a wide range of antibiotics and did not produce hemolysis on blood agar, indicative of its non-pathogenic nature. The potential of K. variicola to produce copious amounts of various PGP, salt ameliorating, and antioxidant metabolites make it a potential bioinoculant for salinity stress management.
Collapse
Affiliation(s)
- Supriya P. Kusale
- Department of Microbiology, Rajaram College, Kolhapur 416004, India;
| | - Yasmin C. Attar
- Department of Microbiology, Rajaram College, Kolhapur 416004, India;
| | - R. Z. Sayyed
- Department of Microbiology, P.S.G.V.P. Mandal’s, Arts, Science, and Commerce College, Shahada 425409, India;
| | - Roslinda A. Malek
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia;
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Ni Luh Suriani
- Biology Department, Faculty of Mathematics and Natural Science, Udayana University, Bali 80361, Indonesia;
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia;
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria 21934, Egypt
| |
Collapse
|
46
|
Shen X, Yin L, Ma H, Pan X, Zhang D, Zhao R, Dai Y, Hou H, Hu X. Comprehensive genomic analysis and characterization of a new ST 174 type Klebsiella variicola strain isolated from chicken embryos. INFECTION GENETICS AND EVOLUTION 2021; 90:104768. [PMID: 33588064 DOI: 10.1016/j.meegid.2021.104768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/31/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Klebsiella variicola is a widespread opportunistic pathogen that causes infections in humans and animals. Herein a novel Klebsiella strain, AHKv-S01, was isolated and identified from dead chicken embryos in Anhui, China. Its genome contained a circular chromosome of 5,505,304 bp, with 5244 protein-coding genes, and an integrative conjugative element region containing 79 ORF sequences. AHKv-S01 was given a new sequence type number-174. Phylogenetic analyses showed that rpoB partial nucleotide sequences were highly reliable for identifying Klebsiella spp. Most of the 340 unique genes of AHKv-S01 were involved in cell envelop biogenesis, transcription, transport, and metabolic processes. Moreover, AHKv-S01 was sensitive to several antibiotics, but it showed strong resistance to penicillins, macrolides, and lincosamide. The genome contained three drug efflux pump superfamilies, β-lactamase genes, and fosfomycin resistance-related genes. Most drug resistance genes showed amino acid mutations. Multiple virulence and pathogenic factors were also identified, and they were mainly related to adhesion, secretion, iron acquisition, and immune evasion. Chicken embryo lethality assay results revealed that the 7-day chicken embryo lethality rate was 80%, 40%, and 50% for AHKv-S01, K. pneumoniae ATCC10031, and K. pneumoniae CICC24714, respectively. The median lethal dose of AHKv-S01 was 39.9 CFU/embryo. Even low infection levels of AHKv-S01 caused a significant reduction in chicken embryo hatchability. Severe pathological changes to the liver, heart, and brain tissues of embryos infected with AHKv-S01 were observed, and these changes appeared earlier in the heart and brain than in the liver. To conclude, our results provide a foundation for further studies aiming to assess the potential risk of K. variicola to poultry populations and production yields.
Collapse
Affiliation(s)
- Xuehuai Shen
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| | - Lei Yin
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaocheng Pan
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China.
| | - Danjun Zhang
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China.
| | - Ruihong Zhao
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| | - Yin Dai
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| | - Hongyan Hou
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| | - Xiaomiao Hu
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| |
Collapse
|
47
|
Alvarado WA, Agudelo SO, Velez ID, Vivero RJ. Description of the ovarian microbiota of Aedes aegypti (L) Rockefeller strain. Acta Trop 2021; 214:105765. [PMID: 33245909 DOI: 10.1016/j.actatropica.2020.105765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 01/26/2023]
Abstract
Aedes aegypti is one of the vectors responsible for transmitting the viruses that cause dengue, Zika and chikungunya in the human population. Mosquitoes have bacterial communities in different organs, mainly in the midgut, but to a lesser extent in their reproductive organs, such as the ovaries, where replication and vertical transmission is decisive for dengue virus. These bacteria also influence metabolic and physiological processes such as ingestion and digestion of blood. In this study, aerobic bacterial communities associated with ovaries of A. aegypti Rockefeller strain were determined, describing their potential function during ovocitary development. The groups of mosquitoes were separated into three treatments: diet with 10% sugar solution, diet with blood supply, and blood feeding combined with tetracycline. The ovaries were extracted from the mosquitoes, and then put in enriched culture media (blood and nutritive agar) by direct inoculation, for subsequent isolation and macroscopic and microscopic characterization of the colonies. The taxonomic determination of bacterial isolates was achieved by sequence analysis of the 16S rRNA gene. A higher bacterial load was observed in the sugar feeding group (6 × 10³ CFU/ml) in contrast to the group fed only with blood, with and without an antibiotic (4.03-4.04 × 10³CFU/ml; 4.85-5.04 × 10³CFU/ml). As a result, a total of 35 colonies were isolated, of which 80% were gram-negative and 20% gram-positive; 72% were lactose negative and 8% lactose positive. Of the total bacteria, 83% had gamma hemolysis, 17% alpha hemolysis, and none presented beta hemolysis. After phenotypic and biochemical characterization, 17 isolates were selected for molecular identification. Only phyla Actinobacteria and Proteobacteria were found. Bacteria associated with ovaries of A. aegypti were mainly identified as belonging to the Serratia and Klebsiella genera. Some bacteria (Serratia marcescens, Pantoea dispersa and Klebsiella oxytoca) have wide biotechnological potential due to their entomopathogenic power and their bioactivity against different pathogens.
Collapse
Affiliation(s)
- Wilber A Alvarado
- Programa de Estudio y Control de Enfermedades Tropicales, Sede de Investigación Universitaria, Universidad de Antioquia. Laboratory 632, Medellín Postal Code 050003, Colombia.
| | - Susana Ochoa Agudelo
- Research Group BIOCIENCIAS, Institución Universitaria Colegio Mayor. Tv. 78 #65 - 46, Medellín, Antioquia, Colombia.
| | - Iván Darío Velez
- Programa de Estudio y Control de Enfermedades Tropicales, Sede de Investigación Universitaria, Universidad de Antioquia. Laboratory 632, Medellín Postal Code 050003, Colombia.
| | - Rafael José Vivero
- Programa de Estudio y Control de Enfermedades Tropicales, Sede de Investigación Universitaria, Universidad de Antioquia. Laboratory 632, Medellín Postal Code 050003, Colombia; Microbiodiversity and Bioprospecting Group, Universidad Nacional de Colombia, Medellín. Street 59 A # 63-20, Medellín Postal Code 050003, Colombia.
| |
Collapse
|
48
|
Zhao Y, Liu L, Wang S, Tian M, Qi J, Li T, Yu S. Draft genome sequence analysis of a novel MLST (ST5028) and multidrug-resistant Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1 isolated from a pig farm in China. J Glob Antimicrob Resist 2021; 24:275-277. [PMID: 33516893 DOI: 10.1016/j.jgar.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES The avian breeding industry is an important element in exposing bacteria to antibiotics. As one of the major animal welfare and economic problems for the poultry industry, multidrug-resistant Klebsiella spp. have become a substantial source of antibiotic resistance genes. In the present work, we reported the draft genome sequence of a novel multilocus sequence type (MLST) (ST5028) Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1, which was isolated from a pig farm in China with broad-spectrum antimicrobial activities. METHODS Classical microbiological methods were applied to isolate and identify the strain, genomic DNA was sequenced using an Illumina HiSeq platform, and the reads were de novo assembled into contigs using CLC Genomics Workbench. The assembled contigs were annotated, and whole-genome sequencing (WGS) analysis was performed. RESULTS WGS analysis revealed that the genome of strain 456S1 comprised a circular chromosome of 5,419,059 bp (GC content, 57.8%), harbouring 12 important antibiotic resistance genes: aac(6')-ib-cr, aadA16, floR, dfrA27, fosA, tet(D), blaOKP-B-3, oqxA, oqxB, qnrB6, sul1 and arr-3. The Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) 456S1 was also found to belong to a novel sequence type (ST5028) determined by MLST. CONCLUSION The genome sequence reported herein will provide useful information for antibiotic resistance and pathogenic mechanisms in Klebsiella quasipneumoniae and will be a reference for comparative analysis with genomic features among different sources of clinically important multidrug-resistant strains, especially among bacteria of animal and human origin.
Collapse
Affiliation(s)
- Yanan Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Lingli Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| |
Collapse
|
49
|
Rodríguez-Medina N, Martínez-Romero E, De la Cruz MA, Ares MA, Valdovinos-Torres H, Silva-Sánchez J, Lozano-Aguirre L, Martínez-Barnetche J, Andrade V, Garza-Ramos U. A Klebsiella variicola Plasmid Confers Hypermucoviscosity-Like Phenotype and Alters Capsule Production and Virulence. Front Microbiol 2021; 11:579612. [PMID: 33391198 PMCID: PMC7772424 DOI: 10.3389/fmicb.2020.579612] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Hypermucoviscosity (hmv) is a capsule-associated phenotype usually linked with hypervirulent Klebsiella pneumoniae strains. The key components of this phenotype are the RmpADC proteins contained in non-transmissible plasmids identified and studied in K. pneumoniae. Klebsiella variicola is closely related to K. pneumoniae and recently has been identified as an emergent human pathogen. K. variicola normally contains plasmids, some of them carrying antibiotic resistance and virulence genes. Previously, we described a K. variicola clinical isolate showing an hmv-like phenotype that harbors a 343-kb pKV8917 plasmid. Here, we investigated whether pKV8917 plasmid carried by K. variicola 8917 is linked with the hmv-like phenotype and its contribution to virulence. We found that curing the 343-kb pKV8917 plasmid caused the loss of hmv, a reduction in capsular polysaccharide (P < 0.001) and virulence. In addition, pKV8917 was successfully transferred to Escherichia coli and K. variicola strains via conjugation. Notably, when pKV8917 was transferred to K. variicola, the transconjugants displayed an hmv-like phenotype, and capsule production and virulence increased; these phenotypes were not observed in the E. coli transconjugants. These data suggest that the pKV8917 plasmid carries novel hmv and capsule determinants. Whole-plasmid sequencing and analysis revealed that pKV8917 does not contain rmpADC/rmpA2 genes; thus, an alternative mechanism was searched. The 343-kb plasmid contains an IncFIB backbone and shares a region of ∼150 kb with a 99% identity and 49% coverage with a virulence plasmid from hypervirulent K. variicola and multidrug-resistant K. pneumoniae. The pKV8917-unique region harbors a cellulose biosynthesis cluster (bcs), fructose- and sucrose-specific (fru/scr) phosphotransferase systems, and the transcriptional regulators araC and iclR, respectively, involved in membrane permeability. The hmv-like phenotype has been identified more frequently, and recent evidence supports the existence of rmpADC/rmpA2-independent hmv-like pathways in this bacterial genus.
Collapse
Affiliation(s)
- Nadia Rodríguez-Medina
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | | | - Miguel Angel De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Miguel Angel Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico
| | | | - Jesús Silva-Sánchez
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Luis Lozano-Aguirre
- Centro de Ciencias Genómicas, Laboratorio de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Veronica Andrade
- Hospital Regional Centenario de la Revolución Mexicana, ISSSTE, Emiliano Zapata, Mexico
| | - Ulises Garza-Ramos
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
50
|
Morales-León F, Opazo-Capurro A, Caro C, Lincopan N, Cardenas-Arias A, Esposito F, Illesca V, Rioseco ML, Domínguez-Yévenes M, Lima CA, Bello-Toledo H, González-Rocha G. Hypervirulent and hypermucoviscous extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Klebsiella variicola in Chile. Virulence 2020; 12:35-44. [PMID: 33372844 PMCID: PMC7781644 DOI: 10.1080/21505594.2020.1859274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Convergence of virulence and antibiotic-resistance has been reported in Klebsiella pneumoniae, but not in Klebsiella variicola. We, hereby, report the detection and genomic characterization of hypervirulent and hypermucoviscous K. pneumoniae and K.variicola recovered in Chile from health-care associated infections, which displayed resistance to broad-spectrum cephalosporins. One hundred forty-six K. pneumoniae complex isolates were screened by hypermucoviscosity by the “string test.” Two hypermucoid isolates, one hypermucoviscous K. pneumoniae (hmKp) and one K. variicola (hmKv), were further investigated by whole-genome sequencing. In vivo virulence was analyzed by the Galleria mellonella killing assay. In silico analysis of hmKp UCO-494 and hmKv UCO-495 revealed the presence of multiple antibiotic-resistance genes, such as blaCTX-M-1, blaDHA-1 and blaLEN-25 among others clinically relevant resistance determinants, including mutations in a two-component regulatory system related to colistin resistance. These genetic features confer a multidrug-resistant (MDR) phenotype in both strains. Moreover, virulome in silico analysis confirmed the presence of the aerobactin gene iutA, in addition to yersiniabactin and/or colicin V encoding genes, which are normally associated to high virulence in humans. Furthermore, both isolates were able to kill G. mellonella and displayed higher virulence in comparison with the control strain. In summary, the convergence of virulence and the MDR-phenotype in K. pneumoniae complex members is reported for the first time in Chile, denoting a clinical problem that deserves special attention and continuous surveillance in South America.
Collapse
Affiliation(s)
- F Morales-León
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance , Chile.,Departamento de Farmacia, Universidad de Concepción, Concepción , Chile
| | - A Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance , Chile
| | - C Caro
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Departamento de Farmacia, Universidad de Concepción, Concepción , Chile
| | - N Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo , São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo , São Paulo, Brazil
| | - A Cardenas-Arias
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo , São Paulo, Brazil
| | - F Esposito
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo , São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo , São Paulo, Brazil
| | - V Illesca
- Unidad de Microbiología, Hospital Dr. Hernan Henriquez Aravena , Temuco, Chile
| | - M L Rioseco
- Laboratorio de Microbiologia, Hospital de Puerto Montt , Puerto Montt, Chile
| | - M Domínguez-Yévenes
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile
| | - C A Lima
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance , Chile
| | - H Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance , Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance , Chile
| |
Collapse
|