1
|
Yuan Y, Liu C, Bao J, Li F. Selection and Validation of Appropriate Reference Genes for qRT-PCR Analysis of Iris germanica L. Under Various Abiotic Stresses. Food Sci Nutr 2025; 13:e4765. [PMID: 39803220 PMCID: PMC11725058 DOI: 10.1002/fsn3.4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
Choosing the appropriate reference genes for quantitative real-time PCR (qRT-PCR) is very important for accurately evaluating expression of target genes. Iris germanica L. is a widely used horticultural plant with high ornamental value, which also shows a strong ability to tolerate abiotic stresses. No comprehensive research has been carried out on optimal reference genes in Iris germanica L. under abiotic stress. In this study, nine reference genes were selected as candidates based on the transcriptome sequencing data of Iris germanica L. The assessment of expression stability under various abiotic stress was conducted using four distinct methods (GeNorm, NormFinder, BestKeeper, and RefFinder). It was found that the optimal reference genes were ACT and F3H for drought and different temperature stresses. EF1α and ACT exhibited superior performance under salt stress. The expression of the IgP5CS gene was evaluated to provide additional validation for the accuracy of the selected optimal reference genes, indicating that inappropriate may lead to significant deviations in the results. This research identified reliable reference genes in I. germanica L. across various abiotic stress conditions, thereby facilitating the investigation into the molecular mechanisms responsible for stress tolerance in I. germanica L.
Collapse
Affiliation(s)
- Yuan Yuan
- Jiangsu Lixiahe District Institute of Agricultural SciencesYangzhouJiangsuChina
| | - Chungui Liu
- Jiangsu Lixiahe District Institute of Agricultural SciencesYangzhouJiangsuChina
| | - Jianzhong Bao
- Jiangsu Lixiahe District Institute of Agricultural SciencesYangzhouJiangsuChina
| | - Fengtong Li
- Jiangsu Lixiahe District Institute of Agricultural SciencesYangzhouJiangsuChina
| |
Collapse
|
2
|
Abooshahab R, Zarkesh M, Sameni M, Akbarzadeh M, Skandari F, Hedayati M. Expression of TSPAN1 and its link to thyroid nodules: one step forward on the path to thyroid tumorigenesis biomarkers. BMC Cancer 2024; 24:1414. [PMID: 39548464 PMCID: PMC11568580 DOI: 10.1186/s12885-024-13176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Thyroid cancer is ranked as the most common malignancy within the endocrine system and the seventh most prevalent cancer in women globally. Thyroid malignancies require evaluating biomarkers capable of distinguishing between them for accurate diagnosis. We examined both mRNA and protein levels of TSPAN1 in plasma and tissue samples from individuals with thyroid nodules to aid this endeavour. METHODS In this case-control study, TSPAN1 was assessed at both protein and mRNA levels in 90 subjects, including papillary thyroid cancer (PTC; N = 60), benign (N = 30), and healthy subjects (N = 26) using enzyme-linked immunosorbent assay (ELISA) and SYBR-Green Real-Time PCR, respectively. RESULTS TSPAN1 plasma levels were decreased in PTC and benign compared to healthy subjects (P = 0.002). TSPAN1 mRNA levels were also decremented in the tumoral compared to the paired normal tissues (P = 0.012); this drop was also observed in PTC patients compared to benign patients (P = 0.001). Further, TSPAN1 had an appropriate diagnostic value for detecting PTC patients from healthy plasma samples with a sensitivity of 76.7% and specificity of 65.4% at the cutoff value < 2.7 (ng/ml). CONCLUSION TSPAN1 levels are significantly reduced in patients with benign and PTC, demonstrating its potential value as a diagnostic biomarker. Additionally, the significant reduction in TSPAN1 mRNA expression within PTC tumor tissues may suggest its involvement in tumor progression and development. Further studies, including larger-scale validation studies and mechanistic investigations, are imperative to clarify the molecular mechanisms behind TSPAN1 and, ultimately, its clinical utility for treating thyroid disorders.
Collapse
MESH Headings
- Humans
- Tetraspanins/genetics
- Tetraspanins/metabolism
- Female
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/blood
- Male
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/blood
- Thyroid Nodule/genetics
- Thyroid Nodule/metabolism
- Thyroid Nodule/pathology
- Case-Control Studies
- Middle Aged
- Adult
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/blood
- Thyroid Cancer, Papillary/diagnosis
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran
- Curtin Medical School, Curtin University, Bentley, 6102, Australia
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran.
| | - Marzieh Sameni
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Zhino-Gene Research Services Co, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran
| | - Fatemeh Skandari
- Department of Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran.
| |
Collapse
|
3
|
Souza JLN, Antunes-Porto AR, da Silva Oliveira I, Amorim CCO, Pires LO, de Brito Duval I, Amaral LVBD, Souza FR, Oliveira EA, Cassali GD, Cardoso VN, Fernandes SOA, Fujiwara RT, Russo RC, Bueno LL. Screening and validating the optimal panel of housekeeping genes for 4T1 breast carcinoma and metastasis studies in mice. Sci Rep 2024; 14:26476. [PMID: 39488625 PMCID: PMC11531515 DOI: 10.1038/s41598-024-77126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
The 4T1 model is extensively employed in murine studies to elucidate the mechanisms underlying the carcinogenesis of triple-negative breast cancer. Molecular biology serves as a cornerstone in these investigations. However, accurate gene expression analyses necessitate data normalization employing housekeeping genes (HKGs) to avert spurious results. Here, we initially delve into the characteristics of the tumor evolution induced by 4T1 in mice, underscoring the imperative for additional tools for tumor monitoring and assessment methods for tracking the animals, thereby facilitating prospective studies employing this methodology. Subsequently, leveraging various software platforms, we assessed ten distinct HKGs (GAPDH, 18 S, ACTB, HPRT1, B2M, GUSB, PGK1, CCSER2, SYMPK, ANKRD17) not hitherto evaluated in the 4T1 breast cancer model, across tumors and diverse tissues afflicted by metastasis. Our principal findings underscore GAPDH as the optimal HKG for gene expression analyses in tumors, while HPRT1 emerged as the most stable in the liver and CCSER2 in the lung. These genes demonstrated consistent expression and minimal variation among experimental groups. Furthermore, employing these HKGs for normalization, we assessed TNF-α and VEGF expression in tissues and discerned significant disparities among groups. We posit that this constitutes the inaugural delineation of an ideal HKG for experiments utilizing the 4T1 model, particularly in vivo settings.
Collapse
Affiliation(s)
- Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Rafaela Antunes-Porto
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela da Silva Oliveira
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Octávio Pires
- Laboratory of Radioisotopes, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela de Brito Duval
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luisa Vitor Braga do Amaral
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Rezende Souza
- Laboratory of Comparative Pathology, Department of Genetal Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Evelyn Ane Oliveira
- Laboratory of Comparative Pathology, Department of Genetal Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of Genetal Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Laboratory of Radioisotopes, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratory of Radioisotopes, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270- 901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Jahanbani I, Almoualem N, Al-Abdallah A. Evaluation of reference genes suitable for studying mRNAs and microRNAs expression in thyroid neoplasms. Pathol Res Pract 2024; 262:155519. [PMID: 39173468 DOI: 10.1016/j.prp.2024.155519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Analysis of gene expression is a pivotal method at the core of biomarkers studies and cancer research. Currently, RT-qPCR is the most commonly used technique to investigate the expression of certain genes. The accurate and reliable result relies on an effective normalization step using suitable reference genes. The present study was designed to evaluate the eligibility of a set of candidate mRNAs and snoRNA as reference genes in the most common human thyroid neoplasms. We tested the expression levels of eleven mRNA and small RNA housekeeping genes in thyroid samples. The stability of the candidate genes was examined in different thyroid lesions and under different experimental conditions. Results were compared to the reported data in the TCGA database. Our results suggested HPRT1 and ACTB as the best mRNA reference genes, SNORD96A, and SNORD95 as the best miRNA reference genes in thyroid tissues. These genes showed the most stable expression pattern among different thyroid lesions as well as different experimental conditions. The findings in this study highlight the effect of reference genes selection on data interpretation and emphasize the importance of testing for suitable reference genes to be used in specific types of cells and experimental conditions to ensure the validity and accuracy of results.
Collapse
Affiliation(s)
- Iman Jahanbani
- Pathology Department, Faculty of Medicine, Kuwait University, Kuwait.
| | - Nada Almoualem
- Pathology Department, Faculty of Medicine, Kuwait University, Kuwait.
| | - Abeer Al-Abdallah
- Pathology Department, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
5
|
Razavi SA, Kalari M, Haghzad T, Haddadi F, Nasiri S, Hedayati M. Exploring the potential of myo-inositol in thyroid disease management: focus on thyroid cancer diagnosis and therapy. Front Endocrinol (Lausanne) 2024; 15:1418956. [PMID: 39329107 PMCID: PMC11424451 DOI: 10.3389/fendo.2024.1418956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
Thyroid cancer (TC) is a malignancy that is increasing in prevalence on a global scale, necessitating the development of innovative approaches for both diagnosis and treatment. Myo-inositol (MI) plays a crucial role in a wide range of physiological and pathological functions within human cells. To date, studies have investigated the function of MI in thyroid physiology as well as its potential therapeutic benefits for hypothyroidism and autoimmune thyroiditis. However, research in the field of TC is very restricted. Metabolomics studies have highlighted the promising diagnostic capabilities of MI, recognizing it as a metabolic biomarker for identifying thyroid tumors. Furthermore, MI can influence therapeutic characteristics by modulating key cellular pathways involved in TC. This review evaluates the potential application of MI as a naturally occurring compound in the management of thyroid diseases, including hypothyroidism, autoimmune thyroiditis, and especially TC. The limited number of studies conducted in the field of TC emphasizes the critical need for future research to comprehend the multifaceted role of MI in TC. A significant amount of research and clinical trials is necessary to understand the role of MI in the pathology of TC, its diagnostic and therapeutic potential, and to pave the way for personalized medicine strategies in managing this intricate disease.
Collapse
Affiliation(s)
- S. Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Kalari
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Tahereh Haghzad
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Fatemeh Haddadi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Fan Q, Wen S, Zhang Y, Feng X, Zheng W, Liang X, Lin Y, Zhao S, Xie K, Jiang H, Tang H, Zeng X, Guo Y, Wang F, Yang X. Assessment of circulating proteins in thyroid cancer: Proteome-wide Mendelian randomization and colocalization analysis. iScience 2024; 27:109961. [PMID: 38947504 PMCID: PMC11214373 DOI: 10.1016/j.isci.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
The causality between circulating proteins and thyroid cancer (TC) remains unclear. We employed five large-scale circulating proteomic genome-wide association studies (GWASs) with up to 100,000 participants and a TC meta-GWAS (nCase = 3,418, nControl = 292,703) to conduct proteome-wide Mendelian randomization (MR) and Bayesian colocalization analysis. Protein and gene expressions were validated in thyroid tissue. Through MR analysis, we identified 26 circulating proteins with a putative causal relationship with TCs, among which NANS protein passed multiple corrections (P BH = 3.28e-5, 0.05/1,525). These proteins were involved in amino acids and organic acid synthesis pathways. Colocalization analysis further identified six proteins associated with TCs (VCAM1, LGMN, NPTX1, PLEKHA7, TNFAIP3, and BMP1). Tissue validation confirmed BMP1, LGMN, and PLEKHA7's differential expression between normal and TC tissues. We found limited evidence for linking circulating proteins and the risk of TCs. Our study highlighted the contribution of proteins, particularly those involved in amino acid metabolism, to TCs.
Collapse
Affiliation(s)
- Qinghua Fan
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Shifeng Wen
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Yi Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xiuming Feng
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Wanting Zheng
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Xiaolin Liang
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Yutong Lin
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Shimei Zhao
- The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Kaisheng Xie
- The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Hancheng Jiang
- Liuzhou Workers' Hospital, Liuzhou 545000, Guangxi, China
| | - Haifeng Tang
- The Second People’s Hospital of Yulin, Yulin 537000, Guangxi, China
| | - Xiangtai Zeng
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - You Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Fei Wang
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| | - Xiaobo Yang
- The School of Public Health, Guangxi Medical University, Nanning 530000, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, The Second Affiliated Hospital, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China
| |
Collapse
|
7
|
Goncu B. Identification of suitable reference genes for RT-qPCR studies in human parathyroid tissue glandular cells. Gene 2024; 912:148380. [PMID: 38490511 DOI: 10.1016/j.gene.2024.148380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Identifying a proper reference gene allows us to understand fundamental changes in many biological processes. Normalization during gene expression analyses is essential for every tissue/cell type, including parathyroid tissue glandular cells. Quantitative method of gene expression analyses via qRT-PCR method provides the accurate examination of every target gene. There are limited reports to present commonly used reference genes in human parathyroid tissues rather than for glandular cell types. This study aims to determine and compare the most stable to least stable genes for parathyroid tissue cells. 43 human parathyroid tissue obtained from primary and secondary hyperparathyroidism patients and glandular cells isolated enzymatically by the removal of extracellular matrix components. After extraction of the total RNA, cDNA synthesis was performed, then qRT-PCR evaluated 14 candidate reference genes. Stability was determined by RefFinder software (Delta ct, BestKeeper, Genorm, and NormFinder algorithms), and the outcome was evaluated for five groups. Even if assessed with different groups, the most stable genes were RPLP0 and GAPDH, while the CLTC and RNA 18S were the least stable. We have confirmed the comprehensive ranking of the most stable three genes alone with the NormFinder algorithm to understand intergroup variation and found out that RPLP0>GAPDH>PGK1. Lastly, comparisons of relative target gene (GCM2) expression revealed similar expression patterns for the most stable reference genes. The most stable reference gene is recommended for the stages where stability is evaluated using the results of four different approaches using RefFinder. We aspire for this study to assist future research to conduct thorough assessments of appropriate reference genes before engaging in gene expression analyses for parathyroid tissue.
Collapse
Affiliation(s)
- Beyza Goncu
- Bezmialem Vakif University, Vocational School of Health Services, Department of Medical Services and Techniques, Istanbul, Turkiye; Bezmialem Vakif University Hospital, Organ Transplantation Center, Parathyroid Transplantation Unit, Istanbul, Turkiye.
| |
Collapse
|
8
|
Torki S, Nezhadali M, Hedayati M, Karimi H, Razavi SA, Najd Hassan Bonab L. The role of rs2236242 at SERPINA12 gene and vaspin level on papillary thyroid carcinoma. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:542-553. [PMID: 38781583 DOI: 10.1080/15257770.2024.2354427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Several studies showed that adipokines are associated with types of cancer which are documented to be effective in cancer biology. This study aimed to determine the relationship between vaspin rs2236242 polymorphism and the vaspin level with papillary thyroid carcinoma (PTC), and multinodular goiter (MNG). In this cross-sectional study, we recruited 170 candidates. Ninety patients with newly diagnosed (PTC 60 patients and MNG 30 patients), and 80 participants as a control group referred to Shariati Hospital, Tehran, Iran, were enrolled in the study. The vaspin hormone measurements were conducted utilizing the Elisa Kit. Using Tetra amplification resistant-mutation system polymerase chain reaction (T-ARMS-PCR), the genotype of single nucleotide polymorphism (SNP) rs2236242 was determined. The statistical analysis was performed using SPSS software version 20. Our findings showed significant age and genotype frequency differences in three groups (p-value < 0.05). There was no significant difference in vaspin levels between PTC, and control groups. The level of vaspin in MNG compared to the control group had significantly different, but there were no differences after adjustment for age. Results showed the genotypes of vaspin rs2236242 polymorphism are not associated with the level of vaspin. The genotypes and allele frequencies of vaspin rs2236242 in the PTC and MNG groups were significant compared to the control group. We have found vaspin rs2236242 gene polymorphism as a potential marker of papillary thyroid cancer. The A allele of the vaspin SNP rs2236242 plays a protective role against PTC and MNG. SNP at rs2236242 was not significantly associated with vaspin levels.
Collapse
Affiliation(s)
- Sahar Torki
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Masoumeh Nezhadali
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helma Karimi
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | | | - Leila Najd Hassan Bonab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Souza JLN, Lopes CDA, Leal-Silva T, Vieira-Santos F, Amorim CCO, Padrão LDLS, Antunes Porto AR, Fujiwara RT, Russo RC, Bueno LL. Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in different tissues from mice infected by Ascaris suum. Microb Pathog 2024; 189:106567. [PMID: 38364877 DOI: 10.1016/j.micpath.2024.106567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Human ascariasis is the most prevalent helminth infection, affecting 445 million people worldwide. To better understand the impact of the immune system on the pathophysiology of individuals infected with Ascaris suum, mice have been used as experimental models. The RT-qPCR technique is a critical auxiliary tool of investigation used to quantify mRNA levels. However, proper normalization using reference genes is essential to ensure reliable outcomes to avoid analytical errors and false results. Despite the importance of reference genes for experimental A. suum infection studies, no specific reference genes have been identified yet. Therefore, we conducted a study to assess five potential reference genes (GAPDH, 18s, ACTB, B2M, and HPRT1) in different tissues (liver, lungs, small and large intestines) affected by A. suum larval migration in C57BL/6j mice. Tissue collection was carried out to analyze parasite burden and confirm the presence of larvae during the peak of migration in each tissue. Upon confirmation, we analyzed different genes in the tissues and found no common gene with stable expression. Our results highlight the importance of analyzing different genes and using different software programs to ensure reliable relative expression results. Based on our findings, B2M was ranked as the ideal reference gene for the liver, while 18S was the most stable gene in the lung and small intestine. ACTB, or a combination of ACTB with GAPDH, was deemed suitable as reference genes for the large intestine due to their stable expression and less variation between the control and infected groups. To further demonstrate the impact of using different reference genes, we normalized the expression of a chemokine gene (CXCL9) in all tissues. Significant differences in CXCL9 expression levels were observed between different groups in all tissues except for the large intestine. This underscores the importance of selecting appropriate reference genes to avoid overestimating target gene expression levels and encountering normalization-related issues that can lead to false results. In conclusion, our study highlights the significance of using reliable reference genes for accurate RT-qPCR analysis, especially in the context of A. suum infection studies in different tissues. Proper normalization is crucial to ensure the validity of gene expression data and avoid potential pitfalls in interpreting results.
Collapse
Affiliation(s)
- Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Leal-Silva
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Lima Silva Padrão
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Rafaela Antunes Porto
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
10
|
Wang F, Li P, Liu Q, Nie G, Zhu Y, Zhang X. Selection and Validation of Reference Genes in Sudan Grass ( Sorghum sudanense (Piper) Stapf) under Various Abiotic Stresses by qRT-PCR. Genes (Basel) 2024; 15:210. [PMID: 38397200 PMCID: PMC10887928 DOI: 10.3390/genes15020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Quantitative reverse transcription PCR (qRT-PCR) can screen applicable reference genes of species, and reference genes can be used to reduce experimental errors. Sudan grass (Sorghum sudanense (Piper) Stapf) is a high-yield, abiotic-tolerant annual high-quality forage with a wide range of uses. However, no studies have reported reference genes suitable for Sudan grass. Therefore, we found eight candidate reference genes, including UBQ10, HIS3, UBQ9, Isoform0012931, PP2A, ACP2, eIF4α, and Actin, under salt stress (NaCl), drought stress (DR), acid aluminum stress (AlCl3), and methyl jasmonate treatment (MeJA). By using geNorm, NormFinder, BestKeeper, and RefFinder, we ranked eight reference genes on the basis of their expression stabilities. The results indicated that the best reference gene was PP2A under all treatments. eIF4α can be used in CK, MeJA, NaCl, and DR. HIS3 can serve as the best reference gene in AlCl3. Two target genes (Isoform0007606 and Isoform0002387) belong to drought-stress-response genes, and they are highly expressed in Sudan grass according to transcriptome data. They were used to verify eight candidate reference genes under drought stress. The expression trends of the two most stable reference genes were similar, but the trend in expression for Actin showed a significant difference. The reference genes we screened provided valuable guidance for future research on Sudan grass.
Collapse
Affiliation(s)
- Fangyan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (F.W.); (P.L.); (G.N.)
| | - Peng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (F.W.); (P.L.); (G.N.)
| | - Qiuxu Liu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (F.W.); (P.L.); (G.N.)
| | - Yongqun Zhu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (F.W.); (P.L.); (G.N.)
| |
Collapse
|
11
|
Hagemann A, Altrogge PK, Kehrenberg MCA, Diehl D, Jung D, Weber L, Bachmann HS. Analyzing the postulated inhibitory effect of Manumycin A on farnesyltransferase. Front Chem 2022; 10:967947. [PMID: 36561140 PMCID: PMC9763582 DOI: 10.3389/fchem.2022.967947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Manumycin A is postulated to be a specific inhibitor against the farnesyltransferase (FTase) since this effect has been shown in 1993 for yeast FTase. Since then, plenty of studies investigated Manumycin A in human cells as well as in model organisms like Caenorhabditis elegans. Some studies pointed to additional targets and pathways involved in Manumycin A effects like apoptosis. Therefore, these studies created doubt whether the main mechanism of action of Manumycin A is FTase inhibition. For some of these alternative targets half maximal inhibitory concentrations (IC50) of Manumycin A are available, but not for human and C. elegans FTase. So, we aimed to 1) characterize missing C. elegans FTase kinetics, 2) elucidate the IC50 and Ki values of Manumycin A on purified human and C. elegans FTase 3) investigate Manumycin A dependent expression of FTase and apoptosis genes in C. elegans. C. elegans FTase has its temperature optimum at 40°C with KM of 1.3 µM (farnesylpyrophosphate) and 1.7 µM (protein derivate). Whilst other targets are inhibitable by Manumycin A at the nanomolar level, we found that Manumycin A inhibits cell-free FTase in micromolar concentrations (Ki human 4.15 μM; Ki C. elegans 3.16 μM). Furthermore, our gene expression results correlate with other studies indicating that thioredoxin reductase 1 is the main target of Manumycin A. According to our results, the ability of Manumycin A to inhibit the FTase at the micromolar level is rather neglectable for its cellular effects, so we postulate that the classification as a specific FTase inhibitor is no longer valid.
Collapse
|
12
|
Xu J, Yang M, Shao AZ, Pan HW, Fan YX, Chen KP. Identification and Validation of Common Reference Genes for Normalization of Esophageal Squamous Cell Carcinoma Gene Expression Profiles. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9125242. [PMID: 36467891 PMCID: PMC9711964 DOI: 10.1155/2022/9125242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 09/04/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the subtypes of esophageal cancer with Chinese characteristics, and its five-year survival rate is less than 20%. Early diagnosis is beneficial to improving the survival rate of ESCC significantly. Quantitative Real-Time Polymerase Chain Reaction is a high-throughput technique that can quantify tumor-related genes for early diagnosis. Its accuracy largely depends on the stability of the reference gene. There is no systematic scientific basis to demonstrate which reference gene expression is stable in ESCC and no consensus on the selection of internal reference. Therefore, this research used four software programs (The comparative delta-Ct method, GeNorm, NormFinder, and BestKeeper) to evaluate the expression stability of eight candidate reference genes commonly used in other tumor tissues and generated a comprehensive analysis by RefFinder. Randomly selected transcriptome sequencing analysis confirmed the SPP1 gene is closely related to ESCC. It was found that the expression trend of SPP1 obtained by RPS18 and PPIA as internal reference genes were the same as that of sequencing. The results show that RPS18 and PPIA are stable reference genes, and PPIA + RPS18 are a suitable reference gene combination. This is a reference gene report that combines transcriptome sequencing analysis and only focuses on ESCC, which makes the quantification more precise, systematic, and standardized, and promotes gene regulation research and the early diagnosis of ESCC in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Yang
- Department of General Surgery, Fifth People's Hospital of Huaian City, Huaian, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ai-zhong Shao
- Department of Cardiothorac Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Hui-wen Pan
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi-xuan Fan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Amelioration for an ignored pitfall in reference gene selection by considering the mean expression and standard deviation of target genes. Sci Rep 2022; 12:11129. [PMID: 35778437 PMCID: PMC9249883 DOI: 10.1038/s41598-022-15277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Routine tissue-specific reference genes are often used in expression studies, but target genes are not taken into account. Using the relative RT-qPCR approach, we evaluated the expression of three target genes. At the same time, meta-analyses were conducted in various ethnic groups, genders, and thyroid cancer subtypes. When eight common reference genes were examined, it was discovered that some of them not only lacked consistent expression but also had considerable expression variance. It is worth noting that while choosing a reference gene, the mean gene expression and its standard deviation should be carefully addressed. An equation was developed based on this, and it was used to perform statistical analysis on over 25,000 genes. According to the subtype of thyroid cancer and, of course, the target genes in this investigation, appropriate reference genes were proposed. The intuitive choice of GAPDH as a common reference gene caused a major shift in the quantitative expression data of target genes, inverting the relative expression values. As a result, choosing the appropriate reference gene(s) for quantification of transcription data, and especially for relative studies of the expression of target gene(s), is critical and should be carefully considered during the study design.
Collapse
|
14
|
Yamauchi I, Sakane Y, Yamashita T, Hakata T, Sugawa T, Fujita H, Okamoto K, Taura D, Hirota K, Ueda Y, Fujii T, Yasoda A, Inagaki N. Thyroid hormone economy in mice overexpressing iodothyronine deiodinases. FASEB J 2022; 36:e22141. [PMID: 34981562 DOI: 10.1096/fj.202101288rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022]
Abstract
In peripheral tissues, triiodothyronine (T3) production and consequent thyroid hormone actions are mainly regulated by iodothyronine deiodinases (DIOs) classified into 3 types: D1, D2, and D3. We aimed to investigate the effects of peripheral DIOs on thyroid hormone economy independent of the hypothalamus-pituitary-thyroid axis. We cloned coding sequences of human DIOs with FLAG-tag and HiBiT-tag sequences into a pcDNA3.1 vector. To obtain full-length proteins, we modified these vectors by cloning the selenocysteine insertion sequence of each DIO (SECIS vectors). Western blot analyses and HiBiT lytic assay using HEK293T cells revealed that SECIS vectors expressed full-length proteins with substantial activity. Subsequently, in vivo transfections of pLIVE-based SECIS vectors into male C57BL/6J mice were performed by hydrodynamic gene delivery to generate mice overexpressing DIOs predominantly in the liver (D1, D2, and D3 mice). After 7 days from transfections, mice were analyzed to clarify phenotypes. To summarize, serum thyroid hormone levels did not change in D1 mice but D2 mice had higher serum free T3 levels. D3 mice developed hypothyroidism with higher serum reverse T3 (rT3) levels. Transfections with levothyroxine administration suggested that thyroid hormone action was upregulated in D2 mice. Our DIO-overexpressing mice provided insights on the physiological properties of upregulated DIOs: D2 augments local thyroid hormone action and recruits T3 into the circulation: D3 decreases circulating T3 and T4 levels with elevated rT3, leading to consumptive hypothyroidism. As D3 mice are expected to be a novel hypothyroidism model, they can contribute to progress in the field of thyroid hormone economy and action.
Collapse
Affiliation(s)
- Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Sugawa Clinic, Kyoto, Japan
| | - Takafumi Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Metabolism and Endocrinology Division of Internal Medicine, Kishiwada City Hospital, Osaka, Japan
| | - Takuro Hakata
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Taku Sugawa
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kentaro Okamoto
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keisho Hirota
- Department of Pathology and Biology of Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Yasoda
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Bioengineering the ameloblastoma tumour to study its effect on bone nodule formation. Sci Rep 2021; 11:24088. [PMID: 34916549 PMCID: PMC8677805 DOI: 10.1038/s41598-021-03484-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ameloblastoma is a benign, epithelial cancer of the jawbone, which causes bone resorption and disfigurement to patients affected. The interaction of ameloblastoma with its tumour stroma drives invasion and progression. We used stiff collagen matrices to engineer active bone forming stroma, to probe the interaction of ameloblastoma with its native tumour bone microenvironment. This bone-stroma was assessed by nano-CT, transmission electron microscopy (TEM), Raman spectroscopy and gene analysis. Furthermore, we investigated gene correlation between bone forming 3D bone stroma and ameloblastoma introduced 3D bone stroma. Ameloblastoma cells increased expression of MMP-2 and -9 and RANK temporally in 3D compared to 2D. Our 3D biomimetic model formed bone nodules of an average surface area of 0.1 mm2 and average height of 92.37 [Formula: see text] 7.96 μm over 21 days. We demonstrate a woven bone phenotype with distinct mineral and matrix components and increased expression of bone formation genes in our engineered bone. Introducing ameloblastoma to the bone stroma, completely inhibited bone formation, in a spatially specific manner. Multivariate gene analysis showed that ameloblastoma cells downregulate bone formation genes such as RUNX2. Through the development of a comprehensive bone stroma, we show that an ameloblastoma tumour mass prevents osteoblasts from forming new bone nodules and severely restricted the growth of existing bone nodules. We have identified potential pathways for this inhibition. More critically, we present novel findings on the interaction of stromal osteoblasts with ameloblastoma.
Collapse
|
16
|
Ahn HR, Baek GO, Yoon MG, Son JA, You D, Yoon JH, Cho HJ, Kim SS, Cheong JY, Eun JW. HMBS is the most suitable reference gene for RT-qPCR in human HCC tissues and blood samples. Oncol Lett 2021; 22:791. [PMID: 34584568 PMCID: PMC8461756 DOI: 10.3892/ol.2021.13052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Reverse transcription-quantitative (RT-q) PCR is the most feasible and useful technique for identifying and evaluating cancer biomarkers; however, the method requires suitable reference genes for gene expression analysis. The aim of the present study was to identify the most suitable reference gene for the normalization of relative gene expression in human hepatocellular carcinoma (HCC) tissue and blood samples. First, 14 candidate reference genes were selected through a systematic literature search. The expression levels of these genes (ACTB, B2M, GAPDH, GUSB, HMBS, HPRT1, PGK1, PPIA, RPLP0, RPL13A, SDHA, TBP, TFRC and YWHAZ) were evaluated using human multistage HCC transcriptome data (dataset GSE114564), which included normal liver (n=15), chronic hepatitis (n=20), liver cirrhosis (n=10), and early (n=18) and advanced HCC (n=45). From the 14 selected genes, five genes, whose expression levels were stable in all liver disease statuses (ACTB, GAPDH, HMBS, PPIA and RPLP0), were further assessed using RT-qPCR in 40 tissues (20 paired healthy tissues and 20 tissues from patients with HCC) and 40 blood samples (20 healthy controls and 20 samples from patients with HCC). BestKeeper statistical algorithms were used to identify the most stable reference genes, of which HMBS was found to be the most stable in both HCC tissues and blood samples. Therefore, the results of the present study suggest HMBS as a promising reference gene for the normalization of relative RT-qPCR techniques in HCC-related studies.
Collapse
Affiliation(s)
- Hye Ri Ahn
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Geum Ok Baek
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Moon Gyeong Yoon
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ju A Son
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Donglim You
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae Yeon Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
17
|
Bertoni APS, Manfroi PDA, Tomedi J, Assis-Brasil BM, de Souza Meyer EL, Furlanetto TW. The gene expression of GPER1 is low in fresh samples of papillary thyroid carcinoma (PTC), and in silico analysis. Mol Cell Endocrinol 2021; 535:111397. [PMID: 34273443 DOI: 10.1016/j.mce.2021.111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
Papillary thyroid cancer (PTC), whose incidence has been increasing in the last years, occurs more frequently in women. Experimental studies suggested that estrogen could be an important risk factor for the higher female incidence. In fact, it has been demonstrated that 17β-estradiol (E2) could increase proliferation and dedifferentiation in thyroid follicular cells. Genomic estrogen responses are typically mediated through classical estrogen receptors, the α and β isoforms, which have been described in normal and abnormal human thyroid tissue. Nevertheless, effects mediated through G protein estrogen receptor 1 (GPR30/GPER/GPER1), described in some thyroid cancer cell lines, could be partially responsible for the regulation of growth in normal cells. In this study, GPER1 gene and protein expression are described in non-malignant and in papillary thyroid cancer (PTC), as well as its association with clinical features of patients with PTC. The GPER1 expression was lower in PTC as compared to paired non-malignant thyroid tissues in fresh samples of PTC and in silico analysis of GEO and TCGA databases. In PTC cases of TCGA database, low GPER1 mRNA expression was independently associated with metastatic lymph nodes, female gender, and BRAF mutation. Besides, GPER1 mRNA levels were positively correlated with mRNA levels of thyroid differentiation genes. These results support the hypothesis that GPER1 have a role in PTC tumorigenesis and might be a potential target for its therapy. Further studies are needed to determine the functionality of these receptors in normal and diseased thyroid.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde (DCBS) e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Patrícia de Araujo Manfroi
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Joelson Tomedi
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre (HCPA), UFRGS, Brazil
| | | | | | - Tania Weber Furlanetto
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.
| |
Collapse
|
18
|
Razavi SA, Salehipour P, Gholami H, Sheikholeslami S, Zarif-Yeganeh M, Yaghmaei P, Modarressi MH, Hedayati M. New evidence on tumor suppressor activity of PTEN and KLLN in papillary thyroid carcinoma. Pathol Res Pract 2021; 225:153586. [PMID: 34425332 DOI: 10.1016/j.prp.2021.153586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to address the hypothesis that the expression of PTEN and KLLN tumor suppressor genes could diminish in papillary thyroid cancer (PTC) compared to paired normal tissue (PNT) and multinodular goiter (MNG). PTEN and KLLN expressions were assessed at both mRNA and protein levels in 82 tissue samples, including 30 PTC, 30 PNT, and 26 MNG using SYBR-Green Real-Time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Bioinformatics studies were performed to evaluate the genomic location and the genes promoter region. The mRNA expression of PTEN and KLLN in PTC was significantly lower than PNT (PTEN, P = 0.0033; KLLN, P = 0.0005). A significant decrease in the mRNA level of KLLN was also observed in PTC than MNG (P = 0.0304). Decreased level of PTEN mRNA (odds ratio=0.391; P = 0.013) or KLLN mRNA (odds ratio=0.023; P = 0.025) was associated with an increased risk of PTC tumorigenesis. Areas under the ROC curve for PTEN and KLLN were 0.69 and 0.78, respectively. PTEN and KLLN protein expressions in PTC compared to PNT or MNG were not significantly different. The bioinformatics studies revealed the sequence near the promoter region is lowly conserved across species. Four GC boxes were found upstream of the PTEN transcription start site (TSS), and one TATA box and one GC box were found upstream of KLLN TSS. The results suggest PTEN and KLLN are the two tumor suppressor genes that decreasing or loss of both of them occurs in sporadic PTC tumorigenesis. It appears they could have a promising application in both diagnostic and therapeutic areas.
Collapse
Affiliation(s)
- S Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Arabi St. Yemen St. Velenjak, PO Box: 19395-4763, Tehran, Iran
| | - Pouya Salehipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Gholami
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Arabi St. Yemen St. Velenjak, PO Box: 19395-4763, Tehran, Iran
| | - Sara Sheikholeslami
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Arabi St. Yemen St. Velenjak, PO Box: 19395-4763, Tehran, Iran
| | - Marjan Zarif-Yeganeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Arabi St. Yemen St. Velenjak, PO Box: 19395-4763, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 23, Shahid Arabi St. Yemen St. Velenjak, PO Box: 19395-4763, Tehran, Iran.
| |
Collapse
|
19
|
Suteau V, Seegers V, Munier M, Ben Boubaker R, Reyes C, Gentien D, Wery M, Croué A, Illouz F, Hamy A, Rodien P, Briet C. G Protein-coupled Receptors in Radioiodine-refractory Thyroid Cancer in the Era of Precision Medicine. J Clin Endocrinol Metab 2021; 106:2221-2232. [PMID: 34000025 DOI: 10.1210/clinem/dgab343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 12/11/2022]
Abstract
CONTEXT Radioiodine-refractory thyroid cancers have poor outcomes and limited therapeutic options (tyrosine kinase inhibitors) due to transient efficacy and toxicity of treatments. Therefore, combinatorial treatments with new therapeutic approaches are needed. Many studies link G protein-coupled receptors (GPCRs) to cancer cell biology. OBJECTIVE To perform a specific atlas of GPCR expression in progressive and refractory thyroid cancer to identify potential targets among GPCRs aiming at drug repositioning. METHODS We analyzed samples from tumor and normal thyroid tissues from 17 patients with refractory thyroid cancer (12 papillary thyroid cancers [PTCs] and 5 follicular thyroid cancers [FTCs]). We assessed GPCR mRNA expression using NanoString technology with a custom panel of 371 GPCRs. The data were compared with public repositories and pharmacological databases to identify eligible drugs. The analysis of prognostic value of genes was also performed with TCGA datasets. RESULTS With our transcriptomic analysis, 4 receptors were found to be downregulated in FTC (VIPR1, ADGRL2/LPHN2, ADGRA3, and ADGRV1). In PTC, 24 receptors were deregulated, 7 of which were also identified by bioinformatics analyses of publicly available datasets on primary thyroid cancers (VIPR1, ADORA1, GPRC5B, P2RY8, GABBR2, CYSLTR2, and LPAR5). Among all the differentially expressed genes, 22 GPCRs are the target of approved drugs and some GPCRs are also associated with prognostic factors. DISCUSSION For the first time, we performed GPCR mRNA expression profiling in progressive and refractory thyroid cancers. These findings provide an opportunity to identify potential therapeutic targets for drug repositioning and precision medicine in radioiodine-refractory thyroid cancer.
Collapse
Affiliation(s)
- Valentine Suteau
- Département d'Endocrinologie-diabétologie nutrition, CHU Angers, Angers, France
- Faculty of Health, University of Angers (CHU Angers), Inserm 1083, CNRS 6015, MITOVASC, SFR ICAT, Angers, France
| | - Valérie Seegers
- Institut de Cancérologie de l'Ouest, Service de Biométrie, Angers, France
| | - Mathilde Munier
- Département d'Endocrinologie-diabétologie nutrition, CHU Angers, Angers, France
- Faculty of Health, University of Angers (CHU Angers), Inserm 1083, CNRS 6015, MITOVASC, SFR ICAT, Angers, France
- Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Endo-ERN centre for rare endocrine diseases, Angers, France
| | - Rym Ben Boubaker
- Faculty of Health, University of Angers (CHU Angers), Inserm 1083, CNRS 6015, MITOVASC, SFR ICAT, Angers, France
| | - Cécile Reyes
- Institut Curie, Plateforme Génomique, Paris, France
| | | | - Méline Wery
- Faculty of Health, University of Angers (CHU Angers), SFR ICAT, Angers, France
| | - Anne Croué
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - Frédéric Illouz
- Département d'Endocrinologie-diabétologie nutrition, CHU Angers, Angers, France
- Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Endo-ERN centre for rare endocrine diseases, Angers, France
- Centre de compétence TUTHYREF, TUTHYREF Network, Angers, France
| | - Antoine Hamy
- Service de chirurgie viscérale, CHU d'Angers, Angers, France
| | - Patrice Rodien
- Département d'Endocrinologie-diabétologie nutrition, CHU Angers, Angers, France
- Faculty of Health, University of Angers (CHU Angers), Inserm 1083, CNRS 6015, MITOVASC, SFR ICAT, Angers, France
- Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Endo-ERN centre for rare endocrine diseases, Angers, France
- Centre de compétence TUTHYREF, TUTHYREF Network, Angers, France
| | - Claire Briet
- Département d'Endocrinologie-diabétologie nutrition, CHU Angers, Angers, France
- Faculty of Health, University of Angers (CHU Angers), Inserm 1083, CNRS 6015, MITOVASC, SFR ICAT, Angers, France
- Centre de référence des maladies rares de la Thyroïde et des Récepteurs Hormonaux, Endo-ERN centre for rare endocrine diseases, Angers, France
- Centre de compétence TUTHYREF, TUTHYREF Network, Angers, France
| |
Collapse
|
20
|
Toorani T, Mackie PM, Mastromonaco GF. Validation of reference genes for use in untreated bovine fibroblasts. Sci Rep 2021; 11:10253. [PMID: 33986374 PMCID: PMC8119449 DOI: 10.1038/s41598-021-89657-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
Proper normalization of RT-qPCR data is pivotal to the interpretation of results and accuracy of scientific conclusions. Though different approaches may be taken, normalization against multiple reference genes is now standard practice. Genes traditionally used and deemed constitutively expressed have demonstrated variability in expression under different experimental conditions, necessitating the proper validation of reference genes prior to utilization. Considering the wide use of fibroblasts in research and scientific applications, it is imperative that suitable reference genes for fibroblasts of different animal origins and conditions be elucidated. Previous studies on bovine fibroblasts have tested limited genes and/or samples. Herein, we present an extensive study investigating the expression stability of 16 candidate reference genes across 7 untreated bovine fibroblast cell lines subjected to controlled conditions. Data were analysed using various statistical tools and algorithms, including geNorm, NormFinder, BestKeeper, and RefFinder. A combined use of GUSB and RPL13A was determined to be the best approach for data normalization in untreated bovine fibroblasts.
Collapse
Affiliation(s)
- T Toorani
- Reproductive Sciences, Toronto Zoo, Scarborough, ON, M1B 5K7, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - P M Mackie
- Reproductive Sciences, Toronto Zoo, Scarborough, ON, M1B 5K7, Canada
| | - G F Mastromonaco
- Reproductive Sciences, Toronto Zoo, Scarborough, ON, M1B 5K7, Canada.
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
21
|
Vermani L, Kumar R, Senthil Kumar N. GAPDH and PUM1: Optimal Housekeeping Genes for Quantitative Polymerase Chain Reaction-Based Analysis of Cancer Stem Cells and Epithelial-Mesenchymal Transition Gene Expression in Rectal Tumors. Cureus 2020; 12:e12020. [PMID: 33457124 PMCID: PMC7797410 DOI: 10.7759/cureus.12020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The overwhelming majority of published articles have taken colon and rectal cancer as a single group, i.e., colorectal cancer, when normalizing gene expression data with housekeeping genes (HKG) in quantitative polymerase chain reaction (qPCR) experiments though there are published reports that suggest the differential expression pattern of genes between the colon and rectal cancer groups and hence the current experiment was attempted to find out the optimal set of housekeeping genes from the list of common HKG for rectal tumor gene expression analysis. Methods The expression of five potential housekeeping genes GAPDH, RPNI, PUM1, B2M, and PMM1 was analyzed through qPCR and Bestkeeper software (http://www.wzw.tum.de/gene-quantification/bestkeeper.html) in 20 stage II-IV rectal cancer samples to check for uniformity in their expression pattern. Cancer stem cell (CSC) marker ALDH1 and epithelial-mesenchymal transition marker (EMT) markers E cadherin, vimentin, Twist, and SNAI2 expression were evaluated in conjunction with the two optimal reference genes in 10 rectal cancers as part of validation. Results The standard deviation of the cycle threshold value of GAPDH was found the lowest at 0.65 followed by RPN1 at 0.88, PUM1 at 0.94, PMM1 at 0.94, and B2M at 1.21 when analyzed with BestKeeper software. Using GAPDH and PUM1 as the reference gene for the validation phase, rectal cancer patients with stage III/IV showed a 4.79-fold change (P=0.006) in ALDH1 expression, and an 11.76-fold change in Twist expression (P=0.003) with respect to stage II rectal tumor when normalized with GAPDH and PUM1. Conclusion GAPDH and PUM1 can be used as an optimal set of housekeeping genes for gene expression-related experiments in rectal tumors. ALDH1 and Twist were found significantly overexpressed in stage III/IV rectal tumors in comparison to stage II rectal cancer. Genes associated with cancer stem cells and EMT markers could be optimally analyzed by normalizing them with GAPDH and PUM1 as housekeeping genes.
Collapse
Affiliation(s)
| | - Rajeev Kumar
- Research, Cachar Cancer Hospital and Research Centre, Silchar, IND
| | | |
Collapse
|
22
|
The pseudogene problem and RT-qPCR data normalization; SYMPK: a suitable reference gene for papillary thyroid carcinoma. Sci Rep 2020; 10:18408. [PMID: 33110161 PMCID: PMC7592052 DOI: 10.1038/s41598-020-75495-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/14/2020] [Indexed: 01/23/2023] Open
Abstract
In RT-qPCR, accuracy requires multiple levels of standardization, but results could be obfuscated by human errors and technical limitations. Data normalization against suitable reference genes is critical, yet their observed expression can be confounded by pseudogenes. Eight reference genes were selected based on literature review and analysis of papillary thyroid carcinoma (PTC) microarray data. RNA extraction and cDNA synthesis were followed by RT-qPCR amplification in triplicate with exon-junction or intron-spanning primers. Several statistical analyses were applied using Microsoft Excel, NormFinder, and BestKeeper. In normal tissues, the least correlation of variation (CqCV%) and the lowest maximum fold change (MFC) were respectively recorded for PYCR1 and SYMPK. In PTC tissues, SYMPK had the lowest CqCV% (5.16%) and MFC (1.17). According to NormFinder, the best reference combination was SYMPK and ACTB (stability value = 0.209). BestKeeper suggested SYMPK as the best reference in both normal (r = 0.969) and PTC tissues (r = 0.958). SYMPK is suggested as the best reference gene for overcoming the pseudogene problem in RT-qPCR data normalization, with a stability value of 0.319.
Collapse
|
23
|
Smith TAD, AbdelKarem OA, Irlam-Jones JJ, Lane B, Valentine H, Bibby BAS, Denley H, Choudhury A, West CML. Selection of endogenous control genes for normalising gene expression data derived from formalin-fixed paraffin-embedded tumour tissue. Sci Rep 2020; 10:17258. [PMID: 33057113 PMCID: PMC7560892 DOI: 10.1038/s41598-020-74380-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Quantitative real time polymerase chain reaction (qPCR) data are normalised using endogenous control genes. We aimed to: (1) demonstrate a pathway to identify endogenous control genes for qPCR analysis of formalin-fixed paraffin-embedded (FFPE) tissue using bladder cancer as an exemplar; and (2) examine the influence of probe length and sample age on PCR amplification and co-expression of candidate genes on apparent expression stability. RNA was extracted from prospective and retrospective samples and subject to qPCR using TaqMan human endogenous control arrays or single tube assays. Gene stability ranking was assessed using coefficient of variation (CoV), GeNorm and NormFinder. Co-expressed genes were identified from The Cancer Genome Atlas (TCGA) using the on-line gene regression analysis tool GRACE. Cycle threshold (Ct) values were lower for prospective (19.49 ± 2.53) vs retrospective (23.8 ± 3.32) tissues (p < 0.001) and shorter vs longer probes. Co-expressed genes ranked as the most stable genes in the TCGA cohort by GeNorm when analysed together but ranked lower when analysed individually omitting co-expressed genes indicating bias. Stability values were < 1.5 for the 20 candidate genes in the prospective cohort. As they consistently ranked in the top ten by CoV, GeNorm and Normfinder, UBC, RPLP0, HMBS, GUSB, and TBP are the most suitable endogenous control genes for bladder cancer qPCR.
Collapse
Affiliation(s)
- Tim A D Smith
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK.
| | - Omneya A AbdelKarem
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
- Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, El-Hadra, Alexandria, Egypt
| | - Joely J Irlam-Jones
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| | - Brian Lane
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| | - Helen Valentine
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| | - Becky A S Bibby
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| | - Helen Denley
- Pathology Centre, Shrewsbury and Telford NHS Trust, Royal Shrewsbury Hospital, Shrewsbury, SY3 8XQ, UK
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| |
Collapse
|
24
|
Song H, Mao W, Duan Z, Que Q, Zhou W, Chen X, Li P. Selection and validation of reference genes for measuring gene expression in Toona ciliata under different experimental conditions by quantitative real-time PCR analysis. BMC PLANT BIOLOGY 2020; 20:450. [PMID: 33003996 PMCID: PMC7528382 DOI: 10.1186/s12870-020-02670-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Before studying gene expression of different organisms, it is important to determine the best reference gene. At present, the most accurate method of detecting gene expression is quantitative real-time PCR (RT-qPCR). With this method, reference genes that are stable in different biological systems and under different conditions can be obtained. Toona ciliata Roem (T. ciliata). is a valuable and fast-growing timber specie. In this study, 20 reference genes were identified using RT-qPCR, as a primary prerequisite for future gene expression analysis. Four different methods, geNorm, NormFinder, BestKeeper, and RankAggreg were used to evaluate the expression stability of the 20 candidate reference genes in various tissues under different conditions. RESULTS The experimental results showed that TUB-α was the most stably expressed reference gene across all samples and UBC17 was the most stable in leaves and young stems under Hypsipyla robusta (H. robusta) and methyl jasmonate (MeJA) treatments. In addition, PP2C59 and UBC5B were the best-performing genes in leaves under H. robusta treatment, while HIS1 and ACT7 were the best reference genes in young stems. The two best reference genes were 60S-18 and TUB-α after treatment at 4 °C. The expression of HIS6 and MUB1 was the most stable under PEG6000 treatment. The accuracy of the selected reference genes was verified using the transcription factor MYB3 (TcMYB3) gene. CONCLUSIONS This is the first report to verify the best reference genes for normalizing gene expression in T. ciliata under different conditions, which will facilitate future elucidation of gene regulations in this species.
Collapse
Affiliation(s)
- Huiyun Song
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Wenmai Mao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Zhihao Duan
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Qingmin Que
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Wei Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Xiaoyang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China
| | - Pei Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China.
- South China Agricultural University, College of Forestry and Landscape Architecture, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Abooshahab R, Hooshmand K, Razavi SA, Gholami M, Sanoie M, Hedayati M. Plasma Metabolic Profiling of Human Thyroid Nodules by Gas Chromatography-Mass Spectrometry (GC-MS)-Based Untargeted Metabolomics. Front Cell Dev Biol 2020; 8:385. [PMID: 32612989 PMCID: PMC7308550 DOI: 10.3389/fcell.2020.00385] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
One of the challenges in the area of diagnostics of human thyroid cancer is a preoperative diagnosis of thyroid nodules with indeterminate cytology. Herein, we report an untargeted metabolomics analysis to identify circulating thyroid nodule metabolic signatures, to find new novel metabolic biomarkers. Untargeted gas chromatography-quadrupole-mass spectrometry was used to ascertain the specific plasma metabolic changes of thyroid nodule patients, which consisted of papillary thyroid carcinoma (PTC; n = 19), and multinodular goiter (MNG; n = 16), as compared to healthy subjects (n = 20). Diagnostic models were constructed using multivariate analyses such as principal component analysis, orthogonal partial least squares-discriminant analysis, and univariate analysis including One-way ANOVA and volcano plot by MetaboAnalyst and SIMCA software. Because of the multiple-testing issue, false discovery rate p-values were also computed for these functions. A total of 60 structurally annotated metabolites were subjected to statistical analysis. A combination of univariate and multivariate statistical analyses revealed a panel of metabolites responsible for the discrimination between thyroid nodules and healthy subjects, with variable importance in the projection (VIP) value greater than 0.8 and p-value less than 0.05. Significantly altered metabolites between thyroid nodules versus healthy persons are those associated with amino acids metabolism, the tricarboxylic acid cycle, fatty acids, and purine and pyrimidine metabolism, including cysteine, cystine, glutamic acid, α-ketoglutarate, 3-hydroxybutyric acid, adenosine-5-monophosphate, and uracil, respectively. Further, sucrose metabolism differed profoundly between thyroid nodule patients and healthy subjects. Moreover, according to the receiver operating characteristic (ROC) curve analysis, sucrose could discriminate PTC from MNG (area under ROC curve value = 0.92). This study enhanced our understanding of the distinct metabolic pathways associated with thyroid nodules, which enabled us to distinguish between patients and healthy subjects. In addition, our study showed extensive sucrose metabolism in the plasma of thyroid nodule patients, which provides a new metabolic signature of the thyroid nodule’s tumorigenesis. Accordingly, it suggests that sucrose can be considered as a circulating biomarker for differential diagnosis between malignancy and benignity in indeterminate thyroid nodules.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - S Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Research and Development (R&D), Saeed Pathobiology & Genetics Laboratory, Tehran, Iran
| | - Morteza Gholami
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
| | - Maryam Sanoie
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasit Vectors 2020; 13:311. [PMID: 32546252 PMCID: PMC7296661 DOI: 10.1186/s13071-020-04173-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background The castor bean tick Ixodes ricinus is an important vector of several clinically important diseases, whose prevalence increases with accelerating global climate changes. Characterization of a tick life-cycle is thus of great importance. However, researchers mainly focus on specific organs of fed life stages, while early development of this tick species is largely neglected. Methods In an attempt to better understand the life-cycle of this widespread arthropod parasite, we sequenced the transcriptomes of four life stages (egg, larva, nymph and adult female), including unfed and partially blood-fed individuals. To enable a more reliable identification of transcripts and their comparison in all five transcriptome libraries, we validated an improved-fit set of five I. ricinus-specific reference genes for internal standard normalization of our transcriptomes. Then, we mapped biological functions to transcripts identified in different life stages (clusters) to elucidate life stage-specific processes. Finally, we drew conclusions from the functional enrichment of these clusters specifically assigned to each transcriptome, also in the context of recently published transcriptomic studies in ticks. Results We found that reproduction-related transcripts are present in both fed nymphs and fed females, underlining the poorly documented importance of ovaries as moulting regulators in ticks. Additionally, we identified transposase transcripts in tick eggs suggesting elevated transposition during embryogenesis, co-activated with factors driving developmental regulation of gene expression. Our findings also highlight the importance of the regulation of energetic metabolism in tick eggs during embryonic development and glutamate metabolism in nymphs. Conclusions Our study presents novel insights into stage-specific transcriptomes of I. ricinus and extends the current knowledge of this medically important pathogen, especially in the early phases of its development.![]()
Collapse
|