1
|
Lu Y, Li J, Cheng K, Zhu G, Zhu B, Fu D, Qu G, Luo Y, Ma L, Lin T, Zhang B, Zhu H. SlMES1 modulates methyl salicylate to influence fruit volatile profiles in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109561. [PMID: 39933427 DOI: 10.1016/j.plaphy.2025.109561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Methyl salicylate (MeSA), known as phloem-based mobile signal, has been identified as undesirable volatile compounds for tomato fruits due to its medicinal and wintergreen aroma properties. However, the response of most volatile compounds to endogenous MeSA are still unclarified. In this work, we found the concentration of MeSA can be regulated by salicylic acid methyl esterase 1 (SlMES1). We used CRISPR/Cas9 and GC-MS strategies to investigate the effect of SlMES1 on the biosynthesis of flavor compounds during tomato fruit ripening. Our results showed that the loss of function of SlMES1 significantly increased the MeSA content by altering the flux of MeSA and SA interconversion. Although the increased endogenous MeSA did not affect the fruit ripening process, it altered the concentration and proportion of fruit volatiles, mainly reducing the concentration of soluble sugar and volatile substances derived from amino acids and carotenoids. Additionally, the reduction of soluble sugars and volatiles was associated with downregulated the gene encoding Sucrose synthase (SuSy), Alcohol dehydrogenase (ADH), Phenylalanine ammonia lyase (PAL), and β - Carotene hydroxylase (CHY-β) when compared with control. Taken together, SlMES1 plays a crucial role in regulating the MeSA content during fruit ripening and could become a breeding target for improving fruit flavor quality.
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jinyan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ke Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liqun Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Zhejiang, 310058, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Momo J, Rawoof A, Kumar A, Islam K, Ahmad I, Ramchiary N. Proteomics of Reproductive Development, Fruit Ripening, and Stress Responses in Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:65-95. [PMID: 36584279 DOI: 10.1021/acs.jafc.2c06564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fruits of the tomato crop (Solanum lycopersicum L.) are increasingly consumed by humans worldwide. Due to their rich nutritional quality, pharmaceutical properties, and flavor, tomato crops have gained a salient role as standout crops among other plants. Traditional breeding and applied functional research have made progress in varying tomato germplasms to subdue biotic and abiotic stresses. Proteomic investigations within a span of few decades have assisted in consolidating the functional genomics and transcriptomic research. However, due to the volatility and dynamicity of proteins in the regulation of various biosynthetic pathways, there is a need for continuing research in the field of proteomics to establish a network that could enable a more comprehensive understanding of tomato growth and development. With this view, we provide a comprehensive review of proteomic studies conducted on the tomato plant in past years, which will be useful for future breeders and researchers working to improve the tomato crop.
Collapse
Affiliation(s)
- John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| |
Collapse
|
3
|
Song J, Campbell L, Vinqvist-Tymchuk M. Application of quantitative proteomics to investigate fruit ripening and eating quality. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153766. [PMID: 35921768 DOI: 10.1016/j.jplph.2022.153766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The consumption of fruit and vegetables play an important role in human nutrition, dietary diversity and health. Fruit and vegetable industries impart significant impact on our society, economy, and environment, contributing towards sustainable development in both developing and developed countries. The eating quality of fruit is determined by its appearance, color, firmness, flavor, nutritional components, and the absence of defects from physiological disorders. However, all of these components are affected by many pre- and postharvest factors that influence fruit ripening and senescence. Significant efforts have been made to maintain and improve fruit eating quality by expanding our knowledge of fruit ripening and senescence, as well as by controlling and reducing losses. Innovative approaches are required to gain better understanding of the management of eating quality. With completion of the genome sequence for many horticultural products in recent years and development of the proteomic research technique, quantitative proteomic research on fruit is changing rapidly and represents a complementary research platform to address how genetics and environment influence the quality attributes of various produce. Quantiative proteomic research on fruit is advancing from protein abundance and protein quantitation to gene-protein interactions and post-translational modifications of proteins that occur during fruit development, ripening and in response to environmental influences. All of these techniques help to provide a comprehensive understanding of eating quality. This review focuses on current developments in the field as well as limitations and challenges, both in broad term and with specific examples. These examples include our own research experience in applying quantitative proteomic techniques to identify and quantify the protein changes in association with fruit ripening, quality and development of disorders, as well as possible control mechanisms.
Collapse
Affiliation(s)
- Jun Song
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada.
| | - Leslie Campbell
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Melinda Vinqvist-Tymchuk
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada
| |
Collapse
|
4
|
Ee KY, Lam MQ, Chong CS. Recent Advances in Utilizing Omics Approach to Identify the Bioactive
Peptides and Ripening Metabolism in Plant-based Food. Protein Pept Lett 2022; 29:379-383. [DOI: 10.2174/0929866529666220328125151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Bioactive peptides with potential health benefits and metabolic functionality have been
identified from plant-based food. The aim of this perspective is to report the recent progress in the
research of plant-derived bioactive peptides using the combination of omics technologies and
bioinformatics tools. Studies examining bioactive peptides with identified amino acid sequences and
well-characterized biological functionalities are highlighted. Various software, webtools and
workflows for analyzing and interpreting the biological data acquired from different omics
approaches are discussed. The emerging evidence from the integration of proteomics and
metabolomics data with advanced laboratory analytical methods supports more potential
applications in the envisioned development of nutraceutical and therapeutic products.
Notwithstanding, much works are mandatory to resolve those lied-ahead challenges before realizing
the proposed applications of plant peptides.
Collapse
Affiliation(s)
- Kah Yaw Ee
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti,
Bandar Barat, 31900 Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul
Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ming Quan Lam
- Centre for Agriculture and Food Research, Universiti Tunku Abdul
Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
- Department of Biological Science, Faculty
of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
5
|
Choi HG, Park DY, Kang NJ. The Fruit Proteome Response to the Ripening Stages in Three Tomato Genotypes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040553. [PMID: 35214885 PMCID: PMC8877657 DOI: 10.3390/plants11040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 05/21/2023]
Abstract
The tomato is a horticultural crop that appears in various colors as it ripens. Differences in the proteome expression abundance of a tomato depend on its genotype and ripening stage. Thus, this study aimed to confirm the differences in changes in the proteome according to four ripening stages (green, breaker, turning, and mature) of three tomato genotypes, i.e., yellow, black, and red tomatoes, using a gel-based proteomic technique. The number of protein spots shown as two-dimensional electrophoresis (2-DE) gels differed according to tomato genotype and ripening stage. A total of 286 variant proteins were determined using matrix-assisted laser desorption-time of flight (MALDI-TOF) mass spectrometry (MS) analysis, confirming 233 identified protein functions. In three tomato genotypes in each ripening stage, grouping according to the Munich Information Center for Protein Sequences (MIPS) functional categories confirmed the variant proteins involved in the following: energy processes (21%); metabolism (20%); protein fate (15%); protein synthesis (10%); a protein with a binding function or cofactor requirement (8%); cell rescue, defense, and virulence (8%); cellular transport, transport facilitation, and transport routes (6%); the biogenesis of cellular components (5%); cell cycle and DNA processing (2%); others (5%). Among the identified protein spots in the function category, two proteins related to metabolism, four related to energy, four related to protein synthesis, and two related to interaction with the cellular environment showed significantly different changes according to the fruit color by the ripening stage. This study reveals the physiological changes in different types of tomatoes according to their ripening stage and provides information on the proteome for further improvement.
Collapse
Affiliation(s)
- Hyo-Gil Choi
- Department of Horticulture, Kongju National University, Yesan 32439, Korea;
| | - Dong-Young Park
- Department of Horticulture, Gyeongsang National University, Jinju 52828, Korea;
| | - Nam-Jun Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence:
| |
Collapse
|
6
|
Giovannoni M, Larini I, Scafati V, Scortica A, Compri M, Pontiggia D, Zapparoli G, Vitulo N, Benedetti M, Mattei B. A novel Penicillium sumatraense isolate reveals an arsenal of degrading enzymes exploitable in algal bio-refinery processes. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:180. [PMID: 34517884 PMCID: PMC8438893 DOI: 10.1186/s13068-021-02030-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/30/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Microalgae are coming to the spotlight due to their potential applications in a wide number of fields ranging from the biofuel to the pharmaceutical sector. However, several factors such as low productivity, expensive harvesting procedures and difficult metabolite extractability limit their full utilization at industrial scale. Similarly to the successful employment of enzymatic arsenals from lignocellulolytic fungi to convert lignocellulose into fermentable sugars for bioethanol production, specific algalytic formulations could be used to improve the extractability of lipids from microalgae to produce biodiesel. Currently, the research areas related to algivorous organisms, algal saprophytes and the enzymes responsible for the hydrolysis of algal cell wall are still little explored. RESULTS Here, an algal trap method for capturing actively growing microorganisms was successfully used to isolate a filamentous fungus, that was identified by whole-genome sequencing, assembly and annotation as a novel Penicillium sumatraense isolate. The fungus, classified as P. sumatraense AQ67100, was able to assimilate heat-killed Chlorella vulgaris cells by an enzymatic arsenal composed of proteases such as dipeptidyl- and amino-peptidases, β-1,3-glucanases and glycosidases including α- and β-glucosidases, β-glucuronidase, α-mannosidases and β-galactosidases. The treatment of C. vulgaris with the filtrate from P. sumatraense AQ67100 increased the release of chlorophylls and lipids from the algal cells by 42.6 and 48.9%, respectively. CONCLUSIONS The improved lipid extractability from C. vulgaris biomass treated with the fungal filtrate highlighted the potential of algal saprophytes in the bioprocessing of microalgae, posing the basis for the sustainable transformation of algal metabolites into biofuel-related compounds.
Collapse
Affiliation(s)
- M Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - I Larini
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - V Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - A Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - M Compri
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - D Pontiggia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - G Zapparoli
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - N Vitulo
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - M Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - B Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
7
|
Nguyen TV, Gupta R, Annas D, Yoon J, Kim YJ, Lee GH, Jang JW, Park KH, Rakwal R, Jung KH, Min CW, Kim ST. An Integrated Approach for the Efficient Extraction and Solubilization of Rice Microsomal Membrane Proteins for High-Throughput Proteomics. FRONTIERS IN PLANT SCIENCE 2021; 12:723369. [PMID: 34567038 PMCID: PMC8460067 DOI: 10.3389/fpls.2021.723369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The preparation of microsomal membrane proteins (MPs) is critically important to microsomal proteomics. To date most research studies have utilized an ultracentrifugation-based approach for the isolation and solubilization of plant MPs. However, these approaches are labor-intensive, time-consuming, and unaffordable in certain cases. Furthermore, the use of sodium dodecyl sulfate (SDS) and its removal prior to a mass spectrometry (MS) analysis through multiple washing steps result in the loss of proteins. To address these limitations, this study introduced a simple micro-centrifugation-based MP extraction (MME) method from rice leaves, with the efficacy of this approach being compared with a commercially available plasma membrane extraction kit (PME). Moreover, this study assessed the subsequent solubilization of isolated MPs in an MS-compatible surfactant, namely, 4-hexylphenylazosulfonate (Azo) and SDS using a label-free proteomic approach. The results validated the effectiveness of the MME method, specifically in the enrichment of plasma membrane proteins as compared with the PME method. Furthermore, the findings showed that Azo demonstrated several advantages over SDS in solubilizing the MPs, which was reflected through a label-free quantitative proteome analysis. Altogether, this study provided a relatively simple and rapid workflow for the efficient extraction of MPs with an Azo-integrated MME approach for bottom-up proteomics.
Collapse
Affiliation(s)
- Truong Van Nguyen
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Ravi Gupta
- Department of General Education, College of General Education, Kookmin University, Seoul, South Korea
| | - Dicky Annas
- Department of Chemistry, Pusan National University, Busan, South Korea
| | - Jinmi Yoon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Yu-Jin Kim
- Department of Life Science & Environmental Biochemistry, Pusan National University, Miryang, South Korea
| | - Gi Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan, South Korea
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| |
Collapse
|
8
|
Dashbaldan S, Rogowska A, Pączkowski C, Szakiel A. Distribution of Triterpenoids and Steroids in Developing Rugosa Rose ( Rosarugosa Thunb.) Accessory Fruit. Molecules 2021; 26:molecules26175158. [PMID: 34500591 PMCID: PMC8433923 DOI: 10.3390/molecules26175158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Triterpenoids and steroids are considered to be important for the fruit quality and health-promoting properties for the consumers. The aim of the study was the determination of the changes in triterpenoid and steroid biosynthesis and the accumulation in hypanthium and achenes of rugosa rose (Rosa rugosa Thunb.) hip during fruit development and ripening at three different phenological stages (young fruits, fully developed unripe fruits, and matured fruits). Triterpenoids and steroids were also determined in the peel and the pulp of the matured hips. The obtained results indicated that the distribution of the analyzed compounds in different fruit tissues is a selective process. The increased rate of hydroxylation of triterpenoids, the deposition of hydroxylated acids in fruit surface layer, and the continuous biosynthesis of phytosterols in achenes versus its gradual repression in hypanthium accompanied by the accumulation of their biosynthetic intermediates and ketone derivatives seem to be characteristic metabolic features of maturation of rugosa rose accessory fruit. These observations, apart from providing the important data on metabolic modifications occurring in developing fruits, might have a practical application in defining fruit parts, particularly rich in bioactive constituents, to enable the development of novel functional products.
Collapse
Affiliation(s)
- Soyol Dashbaldan
- Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (S.D.); (A.R.); (C.P.)
- School of Industrial Technology, Mongolian University of Science and Technology, 8nd Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia
| | - Agata Rogowska
- Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (S.D.); (A.R.); (C.P.)
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (S.D.); (A.R.); (C.P.)
| | - Anna Szakiel
- Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (S.D.); (A.R.); (C.P.)
- Correspondence: ; Tel.: +48-225543316
| |
Collapse
|
9
|
Effect of Transgenic Rootstock Grafting on the Omics Profiles in Tomato. Food Saf (Tokyo) 2021; 9:32-47. [PMID: 34249588 PMCID: PMC8254850 DOI: 10.14252/foodsafetyfscj.d-20-00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Grafting of non-transgenic scion onto genetically modified (GM) rootstocks provides superior
agronomic traits in the GM rootstock, and excellent fruits can be produced for consumption. In
such grafted plants, the scion does not contain any foreign genes, but the fruit itself is
likely to be influenced directly or indirectly by the foreign genes in the rootstock. Before
market release of such fruit products, the effects of grafting onto GM rootstocks should be
determined from the perspective of safety use. Here, we evaluated the effects of a transgene
encoding β-glucuronidase (GUS) on the grafted tomato fruits as a model case. An edible tomato
cultivar, Stella Mini Tomato, was grafted onto GM Micro-Tom tomato plants that had been
transformed with the GUS gene. The grafted plants showed no difference in
their fruit development rate and fresh weight regardless of the presence or absence of the
GUS gene in the rootstock. The fruit samples were subjected to transcriptome
(NGS-illumina), proteome (shotgun LC-MS/MS), metabolome (LC-ESI-MS and GC-EI-MS), and general
food ingredient analyses. In addition, differentially detected items were identified between
the grafted plants onto rootstocks with or without transgenes (more than two-fold). The
transcriptome analysis detected approximately 18,500 expressed genes on average, and only 6
genes were identified as differentially expressed. Principal component analysis of 2,442 peaks
for peptides in proteome profiles showed no significant differences. In the LC-ESI-MS and
GC-EI-MS analyses, a total of 93 peak groups and 114 peak groups were identified, respectively,
and only 2 peak groups showed more than two-fold differences. The general food ingredient
analysis showed no significant differences in the fruits of Stella scions between GM and non-GM
Micro-Tom rootstocks. These multiple omics data showed that grafting on the rootstock harboring
the GUS transgene did not induce any genetic or metabolic variation in the
scion.
Collapse
|
10
|
Groppi A, Liu S, Cornille A, Decroocq S, Bui QT, Tricon D, Cruaud C, Arribat S, Belser C, Marande W, Salse J, Huneau C, Rodde N, Rhalloussi W, Cauet S, Istace B, Denis E, Carrère S, Audergon JM, Roch G, Lambert P, Zhebentyayeva T, Liu WS, Bouchez O, Lopez-Roques C, Serre RF, Debuchy R, Tran J, Wincker P, Chen X, Pétriacq P, Barre A, Nikolski M, Aury JM, Abbott AG, Giraud T, Decroocq V. Population genomics of apricots unravels domestication history and adaptive events. Nat Commun 2021; 12:3956. [PMID: 34172741 PMCID: PMC8233370 DOI: 10.1038/s41467-021-24283-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
Among crop fruit trees, the apricot (Prunus armeniaca) provides an excellent model to study divergence and adaptation processes. Here, we obtain nearly 600 Armeniaca apricot genomes and four high-quality assemblies anchored on genetic maps. Chinese and European apricots form two differentiated gene pools with high genetic diversity, resulting from independent domestication events from distinct wild Central Asian populations, and with subsequent gene flow. A relatively low proportion of the genome is affected by selection. Different genomic regions show footprints of selection in European and Chinese cultivated apricots, despite convergent phenotypic traits, with predicted functions in both groups involved in the perennial life cycle, fruit quality and disease resistance. Selection footprints appear more abundant in European apricots, with a hotspot on chromosome 4, while admixture is more pervasive in Chinese cultivated apricots. Our study provides clues to the biology of selected traits and targets for fruit tree research and breeding.
Collapse
Affiliation(s)
- Alexis Groppi
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33077, France
| | - Shuo Liu
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue, Bayuquan District, Yingkou City, 115009, Liaoning, China
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Stéphane Decroocq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Quynh Trang Bui
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - David Tricon
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Sandrine Arribat
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - William Marande
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Jérôme Salse
- INRAE/UBP UMR 1095 GDEC Genetique, Diversite et Ecophysiologie des Cereales, Laboratory PaleoEVO Paleogenomics & Evolution, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Cécile Huneau
- INRAE/UBP UMR 1095 GDEC Genetique, Diversite et Ecophysiologie des Cereales, Laboratory PaleoEVO Paleogenomics & Evolution, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Nathalie Rodde
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Wassim Rhalloussi
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Stéphane Cauet
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Benjamin Istace
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Erwan Denis
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Jean-Marc Audergon
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Guillaume Roch
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
- CEP INNOVATION, 23 Rue Jean Baldassini, Lyon, 69364, Cedex 07, France
| | - Patrick Lambert
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Tetyana Zhebentyayeva
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Wei-Sheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue, Bayuquan District, Yingkou City, 115009, Liaoning, China
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | | | - Rémy-Félix Serre
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | - Robert Debuchy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Joseph Tran
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, Villenave d'Ornon, 33882, France
| | - Patrick Wincker
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Xilong Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Aurélien Barre
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
| | - Macha Nikolski
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33077, France
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Albert Glenn Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, USA
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay AgroParisTech, Orsay, 91400, France.
| | - Véronique Decroocq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France.
| |
Collapse
|
11
|
Identification, Classification, and Expression Analysis of the Triacylglycerol Lipase ( TGL) Gene Family Related to Abiotic Stresses in Tomato. Int J Mol Sci 2021; 22:ijms22031387. [PMID: 33573234 PMCID: PMC7866549 DOI: 10.3390/ijms22031387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
Triacylglycerol Lipases (TGLs) are the major enzymes involved in triacylglycerol catabolism. TGLs hydrolyze long-chain fatty acid triglycerides, which are involved in plant development and abiotic stress responses. Whereas most studies of TGLs have focused on seed oil metabolism and biofuel in plants, limited information is available regarding the genome-wide identification and characterization of the TGL gene family in tomato (Solanum lycopersicum L.). Based on the latest published tomato genome annotation ITAG4.0, 129 SlTGL genes were identified and classified into 5 categories according to their structural characteristics. Most SlTGL genes were distributed on 3 of 12 chromosomes. Segment duplication appeared to be the driving force underlying expansion of the TGL gene family in tomato. The promoter analysis revealed that the promoters of SlTGLs contained many stress responsiveness cis-elements, such as ARE, LTR, MBS, WRE3, and WUN-motifs. Expression of the majority of SlTGL genes was suppressed following exposure to chilling and heat, while it was induced under drought stress, such as SlTGLa9, SlTGLa6, SlTGLa25, SlTGLa26, and SlTGLa13. These results provide valuable insights into the roles of the SlTGL genes family and lay a foundation for further functional studies on the linkage between triacylglycerol catabolism and abiotic stress responses in tomato.
Collapse
|
12
|
Kok SY, Namasivayam P, Ee GCL, Ong-Abdullah M. Comparative proteomic analysis of oil palm (Elaeis guineensis Jacq.) during early fruit development. J Proteomics 2020; 232:104052. [PMID: 33262095 DOI: 10.1016/j.jprot.2020.104052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 01/04/2023]
Abstract
To gain insights on protein changes in fruit setting and growth in oil palm, a comparative proteomic approach was undertaken to study proteome changes during its early development. The variations in the proteome at five early developmental stages were investigated via a gel-based proteomic technique. A total of 129 variant proteins were determined using mass spectrometric analysis, resulting in 80 identifications. The majority of the identified protein species were classified as energy and metabolism, stress response/defence and cell structure during early oil palm development representing potential candidates for the control of final fruit size and composition. Seven prominent protein species were then characterised using real-time polymerase chain reaction to validate the mRNA expression against the protein abundant profiles. Transcript and protein profiles were parallel across the developmental stages, but divergent expression was observed in one protein spot, indicative of possible post-transcriptional events. Our results revealed protein changes in early oil palm fruit development provide valuable information in the understanding of fruit growth and metabolism during early stages that may contribute towards improving agronomic traits. BIOLOGICAL SIGNIFICANCE: Two-dimensional gel electrophoresis coupled with mass spectrometry approach was used in this study to identify differentially expressed proteins during early oil palm fruit development. A total of 80 protein spots with significant change in abundance were successfully identified and selected genes were analysed using real time PCR to validate their expression. The dynamic changes in oil palm fruit proteome during early development were mostly active in primary and energy metabolism, stress responses, cell structure and protein metabolism. This study reveals the physiological processes during early oil palm fruit development and provides a reference proteome for further improvements in fruit quality traits.
Collapse
Affiliation(s)
- Sau-Yee Kok
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia; Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Parameswari Namasivayam
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Gwendoline Cheng-Lian Ee
- Department of Chemistry, Faculty of Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Meilina Ong-Abdullah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia.
| |
Collapse
|