1
|
Muniz NO, Baudequin T. Biomimetic and Nonbiomimetic Approaches in Dura Substitutes: The Influence of Mechanical Properties. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:174-189. [PMID: 38874958 DOI: 10.1089/ten.teb.2024.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The dura mater, the furthest and strongest layer of the meninges, is crucial for protecting the brain and spinal cord. Its biomechanical behavior is vital, as any alterations can compromise biological functions. In recent decades, interest in the dura mater has increased due to the need for hermetic closure of dural defects prompting the development of several substitutes. Collagen-based dural substitutes are common commercial options, but they lack the complex biological and structural elements of the native dura mater, impacting regeneration and potentially causing complications like wound/postoperative infection and cerebrospinal fluid (CSF) leakage. To face this issue, recent tissue engineering approaches focus on creating biomimetic dura mater substitutes. The objective of this review is to discuss whether mimicking the mechanical properties of native tissue or ensuring high biocompatibility and bioactivity is more critical in developing effective dural substitutes, or if both aspects should be systematically linked. After a brief description of the properties and architecture of the native cranial dura, we describe the advantages and limitations of biomimetic dura mater substitutes to better understand their relevance. In particular, we consider biomechanical properties' impact on dura repair's effectiveness. Finally, the obstacles and perspectives for developing the ideal dural substitute are explored.
Collapse
Affiliation(s)
- Nathália Oderich Muniz
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne Cedex, France
| | - Timothée Baudequin
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, Compiègne Cedex, France
| |
Collapse
|
2
|
Zwirner J, Waddell JN, Ondruschka B, Li KC. 3D-printed suction clamps for tensile testing of brain tissue. J Mech Behav Biomed Mater 2025; 163:106873. [PMID: 39721198 DOI: 10.1016/j.jmbbm.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
The conventional mounting of ultra-soft biological tissues often involves gluing it between two plates or manually tightening grips. Both methods demand delicate handling skills and are time-consuming. This study outlines the design and practical application of 3D-printed suction clamps for uniaxial tension tests on brain samples. Successful testing was defined by the absence of relevant slippage or the sample being drawn into the clamp. A total of 112 deer brain samples underwent testing using a universal testing machine after one freeze-thaw cycle. These samples were obtained from eight different brain regions. During sample preparation, 7 out of all samples failed. Among the 105 tests, 89 (85%) were successful. Of the 16 unsuccessful tests, 15 samples (14%) slipped, while only one sample (1%) was drawn into the clamp to an extent that testing became impossible. Medulla oblongata samples exhibited exceptionally high slippage at 38%, whereas samples from the temporal cortex, external capsule, and putamen had the lowest slippage in only one single case. In conclusion, suction clamps facilitate high-throughput testing through user-friendly and rapid sample mounting. Testing success is contingent on the specific brain site, with sample slippage being the primary reason for testing failures, while sample inspiration into the clamp is negligible.
Collapse
Affiliation(s)
- J Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany; Department of Oral Rehabilitation, University of Otago, 310 Great King Street North, Dunedin, New Zealand.
| | - J N Waddell
- Department of Oral Rehabilitation, University of Otago, 310 Great King Street North, Dunedin, New Zealand
| | - B Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| | - K C Li
- Department of Oral Rehabilitation, University of Otago, 310 Great King Street North, Dunedin, New Zealand
| |
Collapse
|
3
|
Werner M, Drossel WG, Löffler S, Hammer N. Time-dependent effects of ethanol-glycerin embalming on iliotibial band biomechanics. J Mech Behav Biomed Mater 2025; 163:106887. [PMID: 39823785 DOI: 10.1016/j.jmbbm.2025.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/10/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
When conducting biomechanical testing or clinical training using embalmed human soft tissues, it is essential to understand their impact on biomechanical properties and their time dependence. Previous studies have investigated this influence, but specific variations over different embalming durations have not been thoroughly addressed to date. Ninety-seven human iliotibial band specimens were obtained from nine donors. All specimens were embalmed in ethanol-glycerin for varying durations: one day, eight days, and fourteen days. Prior to the mechanical trials, the specimens underwent osmotic water adjustment, tapering and standardized clamping. Uniaxial tensile tests were conducted to determine elastic modulus, ultimate tensile strength, and ultimate strain. Surface strain measurements were performed using a digital image correlation system. Ethanol-glycerin embalming of soft tissues significantly affects ultimate strain after one day of submersion time, elastic modulus after eight days, and the ultimate tensile strength after fourteen days. For applications requiring consistent and reliable material properties reflecting a (supra-)vital state, caution is advised against using embalmed tissues even following short submersion durations in ethanol-glycerin.
Collapse
Affiliation(s)
- Michael Werner
- Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany; Institute of Anatomy, University of Leipzig, Leipzig, Germany.
| | | | - Sabine Löffler
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Niels Hammer
- Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany; Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany; Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Schultz C, Rodewald M, Weidisch A, Meyer-Zedler T, Caffard T, Schmitt M, Matziolis G, Zippelius T, Popp J. 4D-Spatiotemporal SHG Imaging for the Analysis of Drug-Induced Changes in the Dura Mater. Anal Chem 2025; 97:3892-3900. [PMID: 39949305 PMCID: PMC11866281 DOI: 10.1021/acs.analchem.4c04887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
The spatiotemporal assessment of tissue dynamics after the introduction of disruptive factors is crucial for evaluating their impact and for developing effective countermeasures. Here, we report a 4D-spatiotemporal imaging approach using second harmonic generation (SHG) imaging microscopy, enabling an advanced time-resolved analysis of three-dimensional tissue features. This is of particular interest as topical administration of drugs during spinal surgeries is a standard practice for preventing and treating postoperative complications like infections. Local drug concentrations on tissue are high in these scenarios, and given the dura's role as a protective barrier for the brain and spinal cord, potential drug-induced damage should be evaluated critically. By employing 4D-SHG imaging, we gained detailed insights into changes in dimensional properties of thin section samples, namely, width, height, and volume, as well as into alterations within the hierarchic structure of collagen. The latter thereby allowed us to postulate a mode of action, which we attributed for the herein investigated samples to the pH of the formulation.
Collapse
Affiliation(s)
- Constanze Schultz
- Leibniz
Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz
Health Technologies, Member of the Leibniz Center for Photonics in
Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Marko Rodewald
- Leibniz
Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz
Health Technologies, Member of the Leibniz Center for Photonics in
Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Andreas Weidisch
- Orthopedic
Department, Jena University Hospital, Campus Eisenberg, Klosterlausnitzer
Straße 81, 07607 Eisenberg, Germany
| | - Tobias Meyer-Zedler
- Leibniz
Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz
Health Technologies, Member of the Leibniz Center for Photonics in
Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute
of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member
of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Thomas Caffard
- Department
of Orthopedic Surgery, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Michael Schmitt
- Institute
of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member
of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Georg Matziolis
- Orthopedic
Department, Jena University Hospital, Campus Eisenberg, Klosterlausnitzer
Straße 81, 07607 Eisenberg, Germany
| | - Timo Zippelius
- Department
of Orthopedic Surgery, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Jürgen Popp
- Leibniz
Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz
Health Technologies, Member of the Leibniz Center for Photonics in
Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute
of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member
of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Cluster
of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany
| |
Collapse
|
5
|
Tomlinson J, Scholze M, Ondruschka B, Hammer N, Zwirner J. Crosado embalming related alterations in the morpho-mechanics of collagen rich tissues. Sci Rep 2025; 15:6587. [PMID: 39994345 PMCID: PMC11850799 DOI: 10.1038/s41598-025-90378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Crosado-embalming has been successfully used as embalming technique in research and teaching for over 20 years. It is applied in biomechanical testing experiments if the fresh tissues are unavailable, e.g., for cultural, ethical, logistical or health and safety reasons. However, features of human Crosado-embalmed tissues biomechanical characteristics including its load-deformation properties in comparison to fresh tissues and its controllability through hydration fluids may be insightful and therefore need to be studied further. This study compared the uniaxial load-deformation properties and the cross-sectional area (CSA) measurements of fresh-frozen and Crosado-embalmed collagen-rich tissues, namely the iliotibial band (ITB, 16 unembalmed and 35 embalmed specimens) and cranial dura mater (DM, 60 unembalmed cadavers, and 25 embalmed specimens). The water content of 120 Crosado-embalmed ITB samples (30 cadavers) were analysed considering established rehydration treatments, including polyethylene glycol (PEG). Crosado-embalmed tissues presented an increased elastic modulus (EM) (all p < 0.050; e.g., Crosado ITB PEG only 306 ± 91 MPa vs. fresh-frozen ITB PEG only 108 ± 31 MPa; mean ± standard deviation; p < 0.001) and ultimate tensile strength (UTS) (e.g., Crosado ITB PEG only 46 ± 15 MPa vs. fresh-frozen ITB PEG only 21 ± 8 MPa; p < 0.001) when rehydrated similar to the fresh tissues. The maximum force was different for the dura mater (Crosado 25 ± 13 N vs. fresh 21 ± 20 N; mean ± standard deviation; p = 0.050) but not for the ITB. The CSA following rehydration in PEG only was decreased for Crosado-embalmed samples (3.4 ± 1.2mm2, ITB; 1.1 ± 0.5 mm2, DM) compared to fresh-frozen (5.8 ± 2.1mm2, ITB; 3.1 ± 1.2mm2, DM) (all p ≤ 0.003). Furthermore, rehydration effects were observed following 24 h of PEG treatment (untreated tissues, 49 ± 9% vs. PEG only, 77 ± 4%; p < 0.001), in comparison to fresh samples (69%) tissues were hyperhydrated. In conclusion, Crosado-embalming appears to alter collagen-rich tissues' morphological and mechanical properties. While an increase in material properties of Crosado-embalmed tissues was observed (Emod and UTS), the overall load-bearing capacity and peak structural strength remained unaltered for ITB tissues. This may result from CSA-related, geometric or molecular alterations after the fixative and osmotic water protocols related to changes in the collagen backbone and water-binding capacity.
Collapse
Affiliation(s)
- Joanna Tomlinson
- School of Anatomy, University of Bristol, Bristol, UK.
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Mario Scholze
- Institute of Materials Science and Engineering, Chemnitz University of Technology, Chemnitz, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niels Hammer
- Department of Macroscopic and Clinical Anatomy, Medical University of Graz, Graz, Austria
- Department of Orthopaedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
- Fraunhofer IWU, Dresden, Germany
| | - Johann Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Islam S, Parra-Farinas C, Muthusami P, Shroff M. Image-guided Access to the Spinal Subarachnoid Space in Children. Neuroimaging Clin N Am 2025; 35:155-165. [PMID: 39521524 DOI: 10.1016/j.nic.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Image guidance is becoming standard of practice for cerebrospinal fluid sampling in children to improve success rates and avoid complications. This article discusses various imaging guidance techniques available in the pediatric age group. For neonates and infants, imaging guidance using ultrasound is the technique of choice, and for older children, fluoroscopy or even cone beam computed tomography can be used when anatomy is complex.
Collapse
Affiliation(s)
- Shah Islam
- Paediatric Interventional Neuroradiology, Department of Diagnostic & Interventional Radiology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Medical Imaging, University of Toronto, 263 McCaul Street, 4th Floor, Toronto, Ontario M5T 1W7, Canada. https://twitter.com/DrShahislam
| | - Carmen Parra-Farinas
- Paediatric Interventional Neuroradiology, Department of Diagnostic & Interventional Radiology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Medical Imaging, University of Toronto, 263 McCaul Street, 4th Floor, Toronto, Ontario M5T 1W7, Canada. https://twitter.com/CarmenPFarinas
| | - Prakash Muthusami
- Paediatric Interventional Neuroradiology, Department of Diagnostic & Interventional Radiology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Medical Imaging, University of Toronto, 263 McCaul Street, 4th Floor, Toronto, Ontario M5T 1W7, Canada
| | - Manohar Shroff
- Paediatric Interventional Neuroradiology, Department of Diagnostic & Interventional Radiology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Medical Imaging, University of Toronto, 263 McCaul Street, 4th Floor, Toronto, Ontario M5T 1W7, Canada.
| |
Collapse
|
7
|
Wang S, Eckstein KN, Okamoto RJ, McGarry MDJ, Johnson CL, Bayly PV. Force and energy transmission at the brain-skull interface of the minipig in vivo and post-mortem. J Mech Behav Biomed Mater 2025; 161:106775. [PMID: 39515226 DOI: 10.1016/j.jmbbm.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The brain-skull interface plays an important role in the mechano-pathology of traumatic brain injury (TBI). A comprehensive understanding of the mechanical behavior of the brain-skull interface in vivo is significant for understanding the mechanisms of TBI and creating accurate computational models. Here we investigate the force and energy transmission at the minipig brain-skull interface by non-invasive methods in the live (in vivo) and dead animal (in situ). Displacement fields in the brain and skull were measured in four female minipigs by magnetic resonance elastography (MRE), and the relative displacements between the brain and skull were estimated. Surface maps of deviatoric stress, the apparent mechanical properties of the brain-skull interface, and the net energy flux were generated for each animal when alive and at specific times post-mortem. After death, these maps reveal increases in relative motion between brain and skull, brain surface stress, stiffness of brain-skull interface, and net energy flux from skull to brain. These results illustrate the ability to study both skull and brain mechanics by MRE; the observed post-mortem decrease in the protective capability of the brain-skull interface emphasizes the importance of measuring its behavior in vivo.
Collapse
Affiliation(s)
- Shuaihu Wang
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | - Kevin N Eckstein
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | - Ruth J Okamoto
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | | | | | - Philip V Bayly
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States; Washington University in St. Louis, Biomedical Engineering, United States.
| |
Collapse
|
8
|
Liu ZH, Huang YC, Kuo CY, Govindaraju DT, Chen NY, Yip PK, Chen JP. Docosahexaenoic Acid-Infused Core-Shell Fibrous Membranes for Prevention of Epidural Adhesions. Int J Mol Sci 2024; 25:13012. [PMID: 39684723 DOI: 10.3390/ijms252313012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Avoiding epidural adhesion following spinal surgery can reduce clinical discomfort and complications. As the severity of epidural adhesion is positively correlated with the inflammatory response, implanting a fibrous membrane after spinal surgery, which can act as a physical barrier to prevent adhesion formation while simultaneously modulates postoperative inflammation, is a promising approach to meet clinical needs. Toward this end, we fabricated an electrospun core-shell fibrous membrane (CSFM) based on polylactic acid (PLA) and infused the fiber core region with the potent natural anti-inflammatory compound docosahexaenoic acid (DHA). The PLA/DHA CSFM can continuously deliver DHA for up to 36 days in vitro and reduce the penetration and attachment of fibroblasts. The released DHA can downregulate the gene expression of inflammatory markers (IL-6, IL-1β, and TNF-α) in fibroblasts. Following an in vivo study that implanted a CSFM in rats subjected to lumbar laminectomy, the von Frey withdrawal test indicates the PLA/DHA CSFM treatment can successfully alleviate neuropathic pain-like behaviors in the treated rats, showing 3.60 ± 0.49 g threshold weight in comparison with 1.80 ± 0.75 g for the PLA CSFM treatment and 0.57 ± 0.37 g for the untreated control on day 21 post-implantation. The histological analysis also indicates that the PLA/DHA CSFM can significantly reduce proinflammatory cytokine (TNF-α and IL-1β) protein expression at the lesion and provide anti-adhesion effects, indicating its vital role in preventing epidural fibrosis by mitigating the inflammatory response.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | | | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Ping K Yip
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
9
|
Pogorelova N, Parshin D, Lipovka A, Besov A, Digel I, Larionov P. Structural and Viscoelastic Properties of Bacterial Cellulose Composites: Implications for Prosthetics. Polymers (Basel) 2024; 16:3200. [PMID: 39599291 PMCID: PMC11597974 DOI: 10.3390/polym16223200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
This study investigates the morphological, mechanical, and viscoelastic properties of bacterial cellulose (BC) hydrogels synthesized by the microbial consortium Medusomyces gisevii. BC gel films were produced under static (S) or bioreactor (BioR) conditions. Additionally, an anisotropic sandwich-like composite BC film was developed and tested, consisting of a rehydrated (S-RDH) BC film synthesized under static conditions, placed between two BioR-derived BC layers. Sample characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), rheometry, and uniaxial stretching tests. To our knowledge, this is the first study to combine uniaxial and rheological tests for BC gels. AFM and SEM revealed that the organization of BC fibrils (80±20 nm in diameter) was similar to that of collagen fibers (96±31 nm) found in human dura mater, suggesting potential implications for neurosurgical practice. Stretching tests demonstrated that the drying and rehydration of BC films resulted in a 2- to 8-fold increase in rigidity compared to other samples. This trend was consistent across both small and large deformations, regardless of direction. Mechanically, the composite (BioR+S-RDH) outperformed BC hydrogels synthesized under static and bioreactor conditions by approx. 26%. The composite material (BioR+S-RDH) exhibited greater anisotropy in the stretching tests compared to S-RDH, but less than the BioR-derived hydrogels, which had anisotropy coefficients ranging from 1.29 to 2.03. BioR+S-RDH also demonstrated the most consistent viscoelastic behavior, indicating its suitability for withstanding shear stress and potential use in prosthetic applications. These findings should provide opportunities for further research and medical applications.
Collapse
Affiliation(s)
- Natalia Pogorelova
- Department of Food and Food Biotechnology, Omsk State Agrarian University, Omsk 644008, Russia;
| | - Daniil Parshin
- Lavrentyev Institute of Hydrodynamics, Novosibirsk 630090, Russia; (A.L.); (A.B.)
| | - Anna Lipovka
- Lavrentyev Institute of Hydrodynamics, Novosibirsk 630090, Russia; (A.L.); (A.B.)
| | - Alexey Besov
- Lavrentyev Institute of Hydrodynamics, Novosibirsk 630090, Russia; (A.L.); (A.B.)
| | - Ilya Digel
- Institute for Bioengineering, FH Aachen—University of Applied Sciences, 52066 Aachen, Germany;
| | - Pyotr Larionov
- Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan, Novosibirsk 630091, Russia;
| |
Collapse
|
10
|
Torimitsu S, Nishida Y, Yajima D, Inokuchi G, Motomura A, Chiba F, Yamaguchi R, Hoshioka Y, Tsuneya S, Iwase H, Makino Y. Assessment of differences in mechanical properties and thickness of temporal and occipital bones and correlation with age in Japanese forensic samples. Leg Med (Tokyo) 2024; 71:102503. [PMID: 39111166 DOI: 10.1016/j.legalmed.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 11/25/2024]
Abstract
The mechanical properties and thickness of adult temporal and occipital bones were examined in modern Japanese forensic samples. Cranial bones were obtained from 293 Japanese corpses (179 men and 114 women). During autopsy, left temporal (LT), right temporal (RT), and occipital (O) bone samples were extracted from each skull. Sample thickness (ST) was measured using multidetector computed tomographic imaging. The fracture load (FL) of each sample was measured by a bending test, in which the flexural strength (FS) was calculated. The FL and ST values for O were significantly greater compared with those of the LT and RT bones. The temporal bones were thinner compared with other parts of the skull and at greater risk for fracture. There is a need to take precautions to prevent temporal bone fractures. There were no significant differences in any of the values between LT and RT, indicating bilateral symmetry of the temporal bones. There were significant negative correlations between age and the FL and FS values for all sites in both sexes, except for O in the male samples, suggesting that older individuals are at increased risk for fractures. No significant correlations were observed between age and ST values in any of the samples. There were significantly positive correlations between FL and ST values at all sites regardless of sex.
Collapse
Affiliation(s)
- Suguru Torimitsu
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Education and Research Center of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Yoshifumi Nishida
- Department of Mechanical Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan; Artificial Intelligence Research Center (AIRC), The National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7, Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | - Daisuke Yajima
- Education and Research Center of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686, Japan.
| | - Go Inokuchi
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Education and Research Center of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Ayumi Motomura
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Education and Research Center of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Forensic Medicine, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686, Japan.
| | - Fumiko Chiba
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Education and Research Center of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Rutsuko Yamaguchi
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Legal Medicine, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Yumi Hoshioka
- Education and Research Center of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shigeki Tsuneya
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Education and Research Center of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Hirotaro Iwase
- Education and Research Center of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Yohsuke Makino
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Education and Research Center of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
11
|
Tenio T, Boakye-Yiadom S. Characterization and selection of a skull surrogate for the development of a biofidelic head model. J Mech Behav Biomed Mater 2024; 158:106680. [PMID: 39153408 DOI: 10.1016/j.jmbbm.2024.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
This research paper explores the advancement of physical models simulating the human skull-brain complex, focusing on applications in simulating mild Traumatic Brain Injury (mTBI). Existing models, especially head forms, lack biofidelity in accurately representing the native structures of the skull, limiting the understanding of intracranial injury parameters beyond kinematic head accelerations. This study addresses this gap by investigating the use of additive manufacturing (AM) techniques to develop biofidelic skull surrogates. Materials such as Polylactic Acid (PLA), a bone-simulant PLA variant, and Hydroxyapatite-coated Poly(methyl methacrylate) (PMMA) were used to create models tested for their flexural modulus and strength. The trabecular bone regions were simulated by adjusting infill densities (30%, 50%, 80%) and print raster directions, optimizing manufacturing parameters for biofidelic performance. Among the tested materials, PLA and its bone-simulating variant printed at 80% infill density with a side (tangential) print orientation demonstrated the closest approximation to the mechanical properties of cranial bone, yielding a mean flexural modulus of 1337.2 MPa and a mean ultimate strength of 56.9 MPa. Statistical analyses showed that infill density significantly influenced the moduli and strength of the printed simulants. Digital Image Correlation (DIC) corroborated the comparable performance of the simulants, showing similar strain and displacement behaviors to native skull bone. Notably, the performance of the manufactured cortical and trabecular regions underscored their crucial role in achieving biofidelity, with the trabecular structure providing critical dampening effects when the native bone is loaded. This study establishes PLA, particularly its bone-simulant variant, as an optimal candidate for cranial bone simulants, offering significant potential for developing more accurate biofidelic head models in mTBI research.
Collapse
Affiliation(s)
- Tristan Tenio
- Lassonde School of Engineering Mechanical Engineering Department , York University , Bergeron Building of Engineering Excellence , 11 Arboretum Lane, North York, ON, M3J2S5, Canada.
| | - Solomon Boakye-Yiadom
- Lassonde School of Engineering Mechanical Engineering Department , York University , Bergeron Building of Engineering Excellence , 11 Arboretum Lane, North York, ON, M3J2S5, Canada
| |
Collapse
|
12
|
Liang C, Marghoub A, Profico A, Buzi C, Didziokas M, van de Lande L, Khonsari RH, Johnson D, O’Higgins P, Moazen M. A physico-mechanical model of postnatal craniofacial growth in human. iScience 2024; 27:110617. [PMID: 39220256 PMCID: PMC11365398 DOI: 10.1016/j.isci.2024.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Our fundamental understanding of the physico-mechanical forces that drive the size and shape changes of the cranium during ontogeny are limited. Biomechanical models based on finite element method present a huge opportunity to address this critical gap in our knowledge. Here, we describe a validated computational framework to predict normal craniofacial growth. Our results demonstrated that this approach is capable of predicting the growth of calvaria, face, and skull base. We highlighted the crucial role of skull base in antero-posterior growth of the face and also demonstrated the contribution of the maxillary expansion to the dorsoventral growth of the face and its interplay with the orbits. These findings highlight the importance of physical interactions of different components of the craniofacial system. The computational framework described here serves as a powerful tool to study fundamental questions in developmental biology and to advance treatment of conditions affecting the craniofacial system such as craniosynostosis.
Collapse
Affiliation(s)
- Ce Liang
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Arsalan Marghoub
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Antonio Profico
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Costantino Buzi
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), 43007 Tarragona, Spain
- Departament d’Història i Història de l’Art, Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Marius Didziokas
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Lara van de Lande
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, 3015 GD Rotterdam, the Netherlands
- Craniofacial Growth and Form Laboratory, Hôpital Necker–Enfants Malades, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, 75015 Paris, France
| | - Roman Hossein Khonsari
- Craniofacial Growth and Form Laboratory, Hôpital Necker–Enfants Malades, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, 75015 Paris, France
| | - David Johnson
- Oxford Craniofacial Unit, Oxford University Hospital, Oxford OX3 9DU, UK
| | - Paul O’Higgins
- Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| |
Collapse
|
13
|
Yang H, Kim JJ, Kim YB, Cho KC, Oh JH. Investigation of paraclinoid aneurysm formation by comparing the combined influence of hemodynamic parameters between aneurysmal and non-aneurysmal arteries. J Cereb Blood Flow Metab 2024; 44:1393-1403. [PMID: 38051823 PMCID: PMC11342732 DOI: 10.1177/0271678x231218589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023]
Abstract
Numerous studies have evaluated the effects of hemodynamic parameters on aneurysm formation. However, the reasons why aneurysms do not initiate in intracranial arteries are still unclear. This study aimed to investigate the influence of hemodynamic parameters, wall shear stress (WSS) and strain, on aneurysm formation by comparing between aneurysmal and non-aneurysmal arteries. Fifty-eight patients with paraclinoid aneurysms on one side were enrolled. Based on magnetic resonance angiography, each patient's left and right internal carotid arteries (ICAs) were reconstructed. For a patient having an aneurysm on one side, the ICA with the paraclinoid aneurysm was defined as the aneurysmal artery after eliminating the aneurysm, whereas the opposite ICA without aneurysm was defined as the non-aneurysmal artery. Computational fluid dynamics and fluid-structure interaction analyses were then performed for both aneurysmal and non-aneurysmal arteries. Finally, the relationship between high hemodynamic parameters and aneurysm location was investigated. For aneurysmal arteries, high WSS and strain locations were well-matched with the aneurysm formation site. Also, considerable correlations between high WSS and strain locations were observed. However, there was no significant relationship between high hemodynamic parameters and aneurysm formation for non-aneurysmal arteries. The findings are helpful for understanding aneurysm formation mechanism and encouraging further relevant research.
Collapse
Affiliation(s)
- Hyeondong Yang
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Korea
| | - Jung-Jae Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Bae Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang-Chun Cho
- Department of Neurosurgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Je Hoon Oh
- Department of Mechanical Engineering and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Korea
| |
Collapse
|
14
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Consolini J, Oberman AG, Sayut J, Damen FW, Goergen CJ, Ravosa MJ, Holland MA. Investigation of direction- and age-dependent prestretch in mouse cranial dura mater. Biomech Model Mechanobiol 2024; 23:721-735. [PMID: 38206531 PMCID: PMC11261808 DOI: 10.1007/s10237-023-01802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Cranial dura mater is a dense interwoven vascularized connective tissue that helps regulate neurocranial remodeling by responding to strains from the growing brain. Previous ex vivo experimentation has failed to account for the role of prestretch in the mechanical behavior of the dura. Here we aim to estimate the prestretch in mouse cranial dura mater and determine its dependency on direction and age. We performed transverse and longitudinal incisions in parietal dura excised from newborn (day ∼ 4) and mature (12 weeks) mice and calculated the ex vivo normalized incision opening (measured width over length). Then, similar incisions were simulated under isotropic stretching within Abaqus/Standard. Finally, prestretch was estimated by comparing the ex vivo and in silico normalized openings. There were no significant differences between the neonatal and adult mice when comparing cuts in the same direction, but adult mice were found to have significantly greater stretch in the anterior-posterior direction than in the medial-lateral direction, while neonatal dura was essentially isotropic. Additionally, our simulations show that increasing curvature impacts the incision opening, indicating that flat in silico models may overestimate prestretch.
Collapse
Affiliation(s)
- Jack Consolini
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Alyssa G Oberman
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - John Sayut
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew J Ravosa
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Maria A Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
16
|
Oura P, Hakkarainen A, Sajantila A. Forensic neuropathology in the past decade: a scoping literature review. Forensic Sci Med Pathol 2024; 20:724-735. [PMID: 37439948 PMCID: PMC11297074 DOI: 10.1007/s12024-023-00672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
While there has been notable research activity in the field of clinical neuropathology over the recent years, forensic approaches have been less frequent. This scoping literature review explored original research on forensic neuropathology over the past decade (January 1, 2010, until February 12, 2022) using the MEDLINE database. The aims were to (1) analyze the volume of research on the topic, (2) describe meta-level attributes and sample characteristics, and (3) summarize key research themes and methods. Of 5053 initial hits, 2864 fell within the target timeframe, and 122 were included in the review. Only 3-17 articles were published per year globally. Most articles originated from the Europe (39.3%) and Asia (36.1%) and were published in forensic journals (57.4%). A median sample included 57 subjects aged between 16 and 80 years. The most common research theme was traumatic intracranial injury (24.6%), followed by anatomy (12.3%) and substance abuse (11.5%). Key methods included immunotechniques (31.1%) and macroscopic observation (21.3%). Although a number of novel findings were reported, most were of preliminary nature and will require further validation. In order to reach breakthroughs and validate novel tools for routine use, more research input is urged from researchers across the world. It would be necessary to ensure appropriate sample sizes and make use of control groups.
Collapse
Affiliation(s)
- Petteri Oura
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland.
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland.
| | - Antti Hakkarainen
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| |
Collapse
|
17
|
Ma Z, Zhuang Y, Long X, Yu B, Li J, Yang Y, Yu Y. Modeling and evaluation of biomechanics and hemodynamic based on patient-specific small intracranial aneurysm using fluid-structure interaction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107963. [PMID: 38064956 DOI: 10.1016/j.cmpb.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Rupture of small intracranial aneurysm (IA) often leads to the development of highly fatal clinical syndromes such as subarachnoid hemorrhage. Due to the patient specificity of small IA, there are many difficulties in evaluating the rupture risk of small IA such as multiple influencing factors, high clinical experience requirements and poor reusability. METHODS In this study, clinical methods such as transcranial doppler (TCD) and magnetic resonance imaging (MRI) are used to obtain patient-specific parameters, and the fluid-structure interaction method (FSI) is used to model and evaluate the biomechanics and hemodynamics of patient-specific small IA. RESULTS The results show that a spiral vortex stably exists in the patient-specific small IA. Due to the small size of the patient-specific small IA, the blood flow velocity still maintains a high value with maximum reaching 3 m/s. The inertial impact of blood flow and vortex convection have certain influence on hemodynamic and biomechanics parameters. They cause three high value areas of WSSM on the patient-specific small IA with maximum of 180 Pa, 130 Pa and 110 Pa, respectively. They also cause two types of WSS concentration points, positive normal stress peak value areas and negative normal stress peak value areas to appear. CONCLUSION This paper found that the factors affecting hemodynamic parameters and biomechanical parameters are different. Unlike hemodynamic parameters, biomechanical parameters are also affected by blood pressure in addition to blood flow velocity. This study reveals the relationship between the flow field distribution and changes of patient-specific small IA, biomechanics and hemodynamics.
Collapse
Affiliation(s)
- Zijian Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yijie Zhuang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaoao Long
- Neurosurgery Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, Guangdong, China.
| | - Bo Yu
- Neurosurgery Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jiawang Li
- Neurosurgery Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China
| |
Collapse
|
18
|
Liao HC, Liang CL, Chen CH, Liao CC, Xiao F. A Spherical Cap Model of Epidural Hematomas. Cureus 2024; 16:e53653. [PMID: 38449968 PMCID: PMC10917467 DOI: 10.7759/cureus.53653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Background Epidural hematomas (EDHs), which have a characteristic biconvex shape, are a type of post-traumatic intracranial mass. EDHs and other types of intracranial hematomas are often diagnosed with computed tomography (CT). The volumes of EDHs are important in treatment decisions and prognosis. Their volumes are usually estimated on CT using the "ABC" method, which is based on the ellipsoid shape rather than their biconvex shape. Objective To simulate the biconvex shape, we modeled the geometry of EDHs with two spherical caps. We aim to provide simpler estimation of EDH volumes in clinical settings, and eventually recommend a threshold for surgical evacuation. Methods Applying the relationship between the sphere radius, spherical cap height, and base circle radius, we derived formulas for the shape of an EDH, relating its largest diameter and location to the other two diameters. We also estimated EDH volumes using the spherical cap volume and conventional ABC formulas and then constructed a lookup table accordingly. Results Validation of the model was performed using 14 CT image sets from previously reported patients with EDHs. Our geometric model demonstrated accurate predictions. The model also allows reducing the number of parameters to be measured in the ABC method from three to one, the hematoma length, showcasing its potential as a reliable tool for clinical decision-making. Based on our model, an EDH longer than 7 cm would occupy more than 30 mL of the intracranial volume. Conclusion The proposed model offers a streamlined approach to estimating EDH volumes, reducing the complexity of parameters required for clinical assessments. We recommend a length of 7 cm as a threshold for surgical evacuation of EDHs. This acceleration in decision-making is crucial for managing critically injured patients with traumatic brain injuries. Further validation across diverse patient populations will enhance the generalizability and utility of this geometric modeling approach in clinical settings.
Collapse
Affiliation(s)
- Heng-Chun Liao
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, TWN
| | | | - Chien-Hua Chen
- Biomedical Engineering, National Taiwan University, Taipei, TWN
| | - Chun-Chih Liao
- Department of Neurosurgery, Taipei Hospital, Taipei, TWN
| | - Furen Xiao
- Medical Device and Imaging, National Taiwan University, Taipei, TWN
- Department of Neurosurgery, National Taiwan University Hospital, Taipei, TWN
| |
Collapse
|
19
|
Siess M, Steinke H, Zwirner J, Hammer N. On a potential morpho-mechanical link between the gluteus maximus muscle and pelvic floor tissues. Sci Rep 2023; 13:22901. [PMID: 38129498 PMCID: PMC10739724 DOI: 10.1038/s41598-023-50058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Stress urinary incontinence presents a condition not only found in female elderlies, but also in young athletes participating in high-impact sports such as volleyball or trampolining. Repeated jumps appear to be a predisposing factor. Yet the pathophysiology remains incompletely elucidated to date; especially with regard to the influence of the surrounding buttock tissues including gluteus maximus. The present study assessed the morpho-mechanical link between gluteus maximus and the pelvic floor female bodies. 25 pelves obtained from Thiel embalmed females were studied in a supine position. Strands of tissues connecting gluteus maximus with the pelvic floor obtained from 20 sides were assessed mechanically. Plastinates were evaluated to verify the dissection findings. In total, 49 hemipelves were included for data acquisition. The fascia of gluteus maximus yielded connections to the subcutaneous tissues, the fascia of the external anal sphincter and that of obturator internus and to the fascia of the urogenital diaphragm. The connection between gluteus maximus and the urogenital diaphragm withstood an average force of 23.6 ± 17.3 N. Cramér φ analyses demonstrated that the connections of the fasciae connecting gluteus maximus with its surroundings were consistent in the horizontal and sagittal planes, respectively. In conclusion, gluteus maximus is morphologically densely linked to the pelvic floor via strands of connective tissues investing the adjacent muscles. Though gluteus maximus has also been reported to facilitate urinary continence, the here presented morpho-mechanical link suggests that it may also have the potential to contribute to urinary stress incontinence. Future research combining clinical imaging with in-situ testing may help substantiate the potential influence from a clinical perspective.
Collapse
Affiliation(s)
- Maximilian Siess
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Auenbruggerplatz 25, 8036, Graz, Austria
| | - Hanno Steinke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Johann Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Auenbruggerplatz 25, 8036, Graz, Austria.
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany.
- Medical Branch, Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Chemnitz, Germany.
| |
Collapse
|
20
|
Kriener K, Whiting H, Storr N, Homes R, Lala R, Gabrielyan R, Kuang J, Rubin B, Frails E, Sandstrom H, Futter C, Midwinter M. Applied use of biomechanical measurements from human tissues for the development of medical skills trainers: a scoping review. JBI Evid Synth 2023; 21:2309-2405. [PMID: 37732940 DOI: 10.11124/jbies-22-00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVE The objective of this review was to identify quantitative biomechanical measurements of human tissues, the methods for obtaining these measurements, and the primary motivations for conducting biomechanical research. INTRODUCTION Medical skills trainers are a safe and useful tool for clinicians to use when learning or practicing medical procedures. The haptic fidelity of these devices is often poor, which may be because the synthetic materials chosen for these devices do not have the same mechanical properties as human tissues. This review investigates a heterogeneous body of literature to identify which biomechanical properties are available for human tissues, the methods for obtaining these values, and the primary motivations behind conducting biomechanical tests. INCLUSION CRITERIA Studies containing quantitative measurements of the biomechanical properties of human tissues were included. Studies that primarily focused on dynamic and fluid mechanical properties were excluded. Additionally, studies only containing animal, in silico , or synthetic materials were excluded from this review. METHODS This scoping review followed the JBI methodology for scoping reviews and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sources of evidence were extracted from CINAHL (EBSCO), IEEE Xplore, MEDLINE (PubMed), Scopus, and engineering conference proceedings. The search was limited to the English language. Two independent reviewers screened titles and abstracts as well as full-text reviews. Any conflicts that arose during screening and full-text review were mediated by a third reviewer. Data extraction was conducted by 2 independent reviewers and discrepancies were mediated through discussion. The results are presented in tabular, figure, and narrative formats. RESULTS Data were extracted from a total of 186 full-text publications. All of the studies, except for 1, were experimental. Included studies came from 33 countries, with the majority coming from the United States. Ex vivo methods were the predominant approach for extracting human tissue samples, and the most commonly studied tissue type was musculoskeletal. In this study, nearly 200 unique biomechanical values were reported, and the most commonly reported value was Young's (elastic) modulus. The most common type of mechanical test performed was tensile testing, and the most common reason for testing human tissues was to characterize biomechanical properties. Although the number of published studies on biomechanical properties of human tissues has increased over the past 20 years, there are many gaps in the literature. Of the 186 included studies, only 7 used human tissues for the design or validation of medical skills training devices. Furthermore, in studies where biomechanical values for human tissues have been obtained, a lack of standardization in engineering assumptions, methodologies, and tissue preparation may implicate the usefulness of these values. CONCLUSIONS This review is the first of its kind to give a broad overview of the biomechanics of human tissues in the published literature. With respect to high-fidelity haptics, there is a large gap in the published literature. Even in instances where biomechanical values are available, comparing or using these values is difficult. This is likely due to the lack of standardization in engineering assumptions, testing methodology, and reporting of the results. It is recommended that journals and experts in engineering fields conduct further research to investigate the feasibility of implementing reporting standards. REVIEW REGISTRATION Open Science Framework https://osf.io/fgb34.
Collapse
Affiliation(s)
- Kyleigh Kriener
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Harrison Whiting
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- School of Clinical Medicine, Royal Brisbane Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Storr
- Gold Coast University Hospital, Southport, QLD Australia
| | - Ryan Homes
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Raushan Lala
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Robert Gabrielyan
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Jasmine Kuang
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Bryn Rubin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Ochsner Clinical School, Jefferson, LA, United States
| | - Edward Frails
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Hannah Sandstrom
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Christopher Futter
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Anaesthesia and Intensive Care Program, Herston Biofabrication institute, Brisbane, QLD, Australia
| | - Mark Midwinter
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Niestrawska JA, Rodewald M, Schultz C, Quansah E, Meyer-Zedler T, Schmitt M, Popp J, Tomasec I, Ondruschka B, Hammer N. Morpho-mechanical mapping of human dura mater microstructure. Acta Biomater 2023; 170:86-96. [PMID: 37598794 DOI: 10.1016/j.actbio.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The human dura mater is known to impact vastly traumatic brain injury mechanopathology. In spite of this involvement, dura mater is typically neglected in computational and physical human head models. The lack of location-dependent microstructural and related mechanical data of dura mater may be considered a rationale behind this simplification. The anisotropic nature of dura mater under various loading conditions so far remains unelucidated. Furthermore, principal collagen fiber orientation is yet to be quantified for a morpho-mechanically-informed material model on the dura mater. This study aims to assess how location-dependent mechanical anisotropy is linked to principal collagen fiber orientation. Uniaxial extension tests were performed in a heated tissue bath for 60 samples from six individuals and correlated to the three-dimensional collagen structure in four individuals using second-harmonic generation (SHG) imaging. Failure stress and stretch at failure, elastic modulus, and a microstructurally motivated material model were integrated to examine local differences in dura mater morpho-mechanics. The quantitative observation of collagen fiber orientation and dispersion confirmed that collagen is highly aligned in the human dura mater and that both fiber orientation and dispersion differ depending on the location investigated. This observation provides a possible explanation for the previously observed isotropic mechanical behavior, as the main collagen fiber direction is not oriented along the anterior-posterior or medial-lateral direction at most of the mapped locations. Additionally, these site-dependent structural properties have implications for the mechanical load response and therefore potentially for the regional functions dura mater has to fulfill. The here chosen non-symmetrical fiber dispersion material model fits the data well and provides a comprehensive parameter base for further studies and future finite element models. STATEMENT OF SIGNIFICANCE: The human dura mater greatly affects traumatic brain injury mechanisms, but it is often ignored in computational and physical head models. This is because there is a lack of detailed microstructural and mechanical data specific to the dura mater. Its anisotropic nature and collagen fiber orientation have not been fully understood, hindering the development of an accurate material model. Hence, this study combines morphological data on collagen fiber orientation and dispersion at multiple locations of human cranial dura mater, and links microstructure to location-specific load-displacement behavior. It provides microstructurally informed mechanical information towards realistic head models for predicting location-dependent tissue behavior and failure for assessing brain injury and graft material development.
Collapse
Affiliation(s)
- Justyna Anna Niestrawska
- Division of Macroscopic and Clinical Anatomy Gottfried Schatz Research Center, Medical University of Graz, Austria.
| | - Marko Rodewald
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Constanze Schultz
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena Germany
| | - Elsie Quansah
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Tobias Meyer-Zedler
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Igor Tomasec
- Division of Macroscopic and Clinical Anatomy Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy Gottfried Schatz Research Center, Medical University of Graz, Austria; Department of Orthopaedic and Trauma Surgery University of Leipzig, Leipzig, Germany; Fraunhofer IWU, Dresden, Germany
| |
Collapse
|
22
|
Bordoni B, Escher AR. Rethinking the Origin of the Primary Respiratory Mechanism. Cureus 2023; 15:e46527. [PMID: 37808591 PMCID: PMC10552882 DOI: 10.7759/cureus.46527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/10/2023] Open
Abstract
Spheno-occipital synchondrosis (SOS) is the joint regarded as the most important foundation for understanding cranial osteopathy and craniosacral therapy. SOS is the origin of the primary respiratory mechanism (PRM), a movement between the posterior surface of the body of the sphenoid bone and the anterior surface of the base of the occipital bone. From the PRM perspective, an alteration of the position between the two bone surfaces would create cranial and/or craniosacral dysfunction. These positional alterations of the SOS (in adults and children) would determine specific and schematical movements of the bones of the entire skull, whose movements are recognizable by palpation by trained operators. PRM expression is influenced by other elements, such as movement of the cranial bones, inherent movement of the central nervous system, cyclic movement of cerebrospinal fluid (CSF), mechanical tension of the cranial meninges, and passive movement of the sacral bone between the iliac bones. The article reviews the most up-to-date information on the evolution of cranial sutures/joints and meninges in adulthood, the fluctuations of the CSF, brain, and spinal mass movements. Research should reconsider the motivations that induce the operator to discriminate the palpable cranial rhythmic impulse, and probably, to rethink new cranial dysfunctional patterns.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
23
|
Hammer N, Ondruschka B, Berghold A, Kuenzer T, Pregartner G, Scholze M, Schulze-Tanzil GG, Zwirner J. Sample size considerations in soft tissue biomechanics. Acta Biomater 2023; 169:168-178. [PMID: 37517620 DOI: 10.1016/j.actbio.2023.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Biomechanical experiments help link tissue morphology with load-deformation characteristics. A tissue-dependent minimum sample number is indispensable to obtain accurate material properties. Stress-strain properties were retrieved from human dura mater and scalp skin, exemplifying two distinct soft tissues. Minimum sample sizes necessary for a stable estimation of material properties were obtained in a simulation study. One-thousand random samples were sequentially drawn for calculating the point at which a majority of the estimators settled within a corridor of stability at given tolerance levels around a 'complete' reference for the mean, median and coefficient of variation. Stable estimations of means and medians can be achieved below sample sizes of 30 at a ± 20%-tolerance within 80%-conformity for scalp skin and dura. Lower tolerance levels or higher conformity dramatically increase the required sample size. Conformity was barely ever reached for the coefficient of variation. The parameter type appears decisive for achieving conformity. STATEMENT OF SIGNIFICANCE: Biomechanical trials utilizing human tissues are needed to obtain material properties for surgical repair, tissue engineering and modeling purposes. Linking tissue mechanics with morphology helps elucidate form-function relationships, the 'morpho-mechanical link'. For material properties to be accurate, it is vital to examine a minimum number of samples. This number may vary between tissues, and the effects of intrinsic tissue characteristics on data accuracy are unclear to date. This study used data obtained from human dura and skin to compute minimum sample sizes required for estimating material properties at a stable level. It was shown that stable estimations are possible at a ± 20%-tolerance within 80%-conformity below sample sizes of 30. Higher accuracy warrants much higher sample sizes for most material properties.
Collapse
Affiliation(s)
- Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany; Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology Dresden, Germany.
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Thomas Kuenzer
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Mario Scholze
- Institute of Materials Science and Engineering, Chemnitz University of Technology, Chemnitz, Germany
| | | | - Johann Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Wu Z, Chen D, Pan C, Zhang G, Chen S, Shi J, Meng C, Zhao X, Tao B, Chen D, Liu W, Ding H, Tang Z. Surgical Robotics for Intracerebral Hemorrhage Treatment: State of the Art and Future Directions. Ann Biomed Eng 2023; 51:1933-1941. [PMID: 37405558 PMCID: PMC10409846 DOI: 10.1007/s10439-023-03295-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype with high mortality and disability, and there are no proven medical treatments that can improve the functional outcome of ICH patients. Robot-assisted neurosurgery is a significant advancement in the development of minimally invasive surgery for ICH. This review encompasses the latest advances and future directions of surgical robots for ICH. First, three robotic systems for neurosurgery applied to ICH are illustrated. Second, the key technologies of robot-assisted surgery for ICH are introduced in aspects of stereotactic technique and navigation, the puncture instrument, and hematoma evacuation. Finally, the limitations of current surgical robots are summarized, and the possible development direction is discussed, which is named "multisensor fusion and intelligent aspiration control of minimally invasive surgical robot for ICH". It is expected that the new generation of surgical robots for ICH will facilitate quantitative, precise, individualized, standardized treatment strategies for ICH.
Collapse
Affiliation(s)
- Zhuojin Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ge Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Shi
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cai Meng
- School of Mechanical Engineering & Automation-BUAA, Beihang University, Beijing, 100083, China
| | - Xingwei Zhao
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Tao
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Diansheng Chen
- School of Mechanical Engineering & Automation-BUAA, Beihang University, Beijing, 100083, China
| | - Wenjie Liu
- Beijing WanTeFu Medical Instrument Co., Ltd, Beijing, 102299, China
| | - Han Ding
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Pant B, Park M, Kim AA. Electrospun Nanofibers for Dura Mater Regeneration: A Mini Review on Current Progress. Pharmaceutics 2023; 15:pharmaceutics15051347. [PMID: 37242589 DOI: 10.3390/pharmaceutics15051347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Dural defects are a common problem in neurosurgical procedures and should be repaired to avoid complications such as cerebrospinal fluid leakage, brain swelling, epilepsy, intracranial infection, and so on. Various types of dural substitutes have been prepared and used for the treatment of dural defects. In recent years, electrospun nanofibers have been applied for various biomedical applications, including dural regeneration, due to their interesting properties such as a large surface area to volume ratio, porosity, superior mechanical properties, ease of surface modification, and, most importantly, similarity with the extracellular matrix (ECM). Despite continuous efforts, the development of suitable dura mater substrates has had limited success. This review summarizes the investigation and development of electrospun nanofibers with particular emphasis on dura mater regeneration. The objective of this mini-review article is to give readers a quick overview of the recent advances in electrospinning for dura mater repair.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Allison A Kim
- Department of Healthcare Management, Woosong University, Daejon 34606, Republic of Korea
| |
Collapse
|
26
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
27
|
Familiari P, Lapolla P, Relucenti M, Battaglione E, Cristiano L, Sorrentino V, Aversa S, D'Amico A, Puntorieri P, Bruzzaniti L, Mingoli A, Brachini G, Barbaro G, Scafa AK, D'Andrea G, Frati A, Picotti V, Berra LV, Petrozza V, Nottola S, Santoro A, Bruzzaniti P. Cortical atrophy in chronic subdural hematoma from ultra-structures to physical properties. Sci Rep 2023; 13:3400. [PMID: 36854960 PMCID: PMC9975247 DOI: 10.1038/s41598-023-30135-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Several theories have tried to elucidate the mechanisms behind the pathophysiology of chronic subdural hematoma (CSDH). However, this process is complex and remains mostly unknown. In this study we performed a retrospective randomised analysis comparing the cortical atrophy of 190 patients with unilateral CSDH, with 190 healthy controls. To evaluate the extent of cortical atrophy, CT scan images were utilised to develop an index that is the ratio of the maximum diameter sum of 3 cisterns divided by the maximum diameter of the skull at the temporal lobe level. Also, we reported, for the first time, the ultrastructural analyses of the CSDH using a combination of immunohistochemistry methods and transmission electron microscopy techniques. Internal validation was performed to confirm the assessment of the different degrees of cortical atrophy. Relative Cortical Atrophy Index (RCA index) refers to the sum of the maximum diameter of three cisterns (insular cistern, longitudinal cerebral fissure and cerebral sulci greatest) with the temporal bones' greatest internal distance. This index, strongly related to age in healthy controls, is positively correlated to the preoperative and post-operative maximum diameter of hematoma and the midline shift in CSDH patients. On the contrary, it negatively correlates to the Karnofsky Performance Status (KPS). The Area Under the Receiver Operating Characteristics (AUROC) showed that RCA index effectively differentiated cases from controls. Immunohistochemistry analysis showed that the newly formed CD-31 positive microvessels are higher in number than the CD34-positive microvessels in the CSDH inner membrane than in the outer membrane. Ultrastructural observations highlight the presence of a chronic inflammatory state mainly in the CSDH inner membrane. Integrating these results, we have obtained an etiopathogenetic model of CSDH. Cortical atrophy appears to be the triggering factor activating the cascade of transendothelial cellular filtration, inflammation, membrane formation and neovascularisation leading to the CSDH formation.
Collapse
Affiliation(s)
- Pietro Familiari
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Oxford University Hospital, Headington, Oxford, OX3 9DU, UK.
- Department of Anatomical, Histological, Medical Legal Sciences and Locomotor Apparatus, Sapienza University of Rome, Rome, Italy.
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy.
| | - Michela Relucenti
- Department of Anatomical, Histological, Medical Legal Sciences and Locomotor Apparatus, Sapienza University of Rome, Rome, Italy
| | - Ezio Battaglione
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Veronica Sorrentino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Sara Aversa
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Alessia D'Amico
- Department of Experimental Medicine, Sapienza, University of Rome, Rome, Italy
- Unit of Rehabilitation, Istituto Neurotraumatologico Italiano, Rome, Italy
| | | | - Lucia Bruzzaniti
- DICEAM Department, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Andrea Mingoli
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Gioia Brachini
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Barbaro
- DICEAM Department, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | | | | | - Alessandro Frati
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Department of Neurosurgery, IRCCS Neuromed Pozzilli IS, Isernia, Italy
| | - Veronica Picotti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Neurosurgery Division of "Spaziani" Hospital, Frosinone, Italy
- Division of Neurosurgery, Policlinico Tor Vergata, University Tor Vergata of Rome, Rome, Italy
| | | | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Stefania Nottola
- Department of Anatomical, Histological, Medical Legal Sciences and Locomotor Apparatus, Sapienza University of Rome, Rome, Italy
| | - Antonio Santoro
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Placido Bruzzaniti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Neurosurgery Division of "Spaziani" Hospital, Frosinone, Italy
| |
Collapse
|
28
|
Zwirner J, Ondruschka B, Scholze M, Thambyah A, Workman J, Hammer N, Niestrawska JA. Dynamic load response of human dura mater at different velocities. J Mech Behav Biomed Mater 2023; 138:105617. [PMID: 36543085 DOI: 10.1016/j.jmbbm.2022.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Despite of its assumed role to mitigate brain tissue response under dynamic loading conditions, the human dura mater is frequently neglected in computational and physical human head models. A reason for this is the lack of load-deformation data when the dura mater is loaded dynamically. To date, the biomechanical characterization of the human dura mater predominantly involved quasi-static testing setups. This study aimed to investigate the strain rate-dependent mechanical properties of the human dura mater comparing three different velocities of 0.3, 0.5 and 0.7 m/s. Samples were chosen in a perpendicular orientation to the visible main fiber direction on the samples' surface, which was mostly neglected in previous studies. The elastic modulus of dura mater significantly increased at higher velocities (5.16 [3.38; 7.27] MPa at 0.3 m/s versus 44.38 [35.30; 74.94] MPa at 0.7 m/s). Both the stretch at yield point λf (1.148 [1.137; 1.188] for 0.3 m/s, 1.062 [1.054; 1.066] for 0.5 m/s and 1.015 [1.012; 1.021] for 0.7 m/s) and stress at yield point σf of dura mater (519.14 [366.74; 707.99] kPa for 0.3 m/s versus 300.52 [245.31; 354.89] kPa at 0.7 m/s) significantly decreased with increasing velocities. Conclusively, increasing the load application velocity increases stiffness and decreases tensile strength as well as straining potential of human dura mater between 0.3 and 0.7 m/s. The elastic modulus of human dura mater should be adapted to the respective velocities in computational head impact simulations.
Collapse
Affiliation(s)
- J Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Oral Sciences, University of Otago, Dunedin, New Zealand.
| | - B Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Scholze
- Institute of Materials Science and Engineering, Chemnitz University of Technology, Chemnitz, Germany
| | - A Thambyah
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - J Workman
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - N Hammer
- Department of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; Department of Orthopaedic and Trauma Surgery, University of Leipzig, Leipzig, Germany; Fraunhofer IWU, Dresden, Germany
| | - J A Niestrawska
- Department of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
29
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
30
|
Singh R, Singh R, Sen C, Gautam U, Roy S, Suri A. Mechanical Characterization and Standardization of Silicon Scalp and Dura Surrogates for Neurosurgical Simulation. World Neurosurg 2023; 169:e197-e205. [PMID: 36415013 DOI: 10.1016/j.wneu.2022.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Simulation-based neurosurgical training allows the development of surgical skills outside the operating room. However, the use of nonstandardized materials and poor haptic feedback remain the primary limitations of the surgical simulators. Therefore, this work proposes a comprehensive scheme for scalp and dura surrogate synthesis and their standardization for neurosurgical training. METHODS Eight different variants of silicone-based scalp (S1-S8) and dura (D1-D8) surrogates were synthesized. The samples were evaluated by 26 neurosurgeons. They provided their feedback in a Likert scale questionnaire. Kruskal-Wallis test with Dunn multiple comparisons was used for statistical analysis of surgeons' scores. The samples were mechanically characterized using Shore A hardness and dynamic nanoindentation testing. RESULTS The highest mean Likert score values were obtained for S3 scalp and D8 dura variants. The comparison of S3 and D8 with the rest of the variants in the respective groups was statistically significant in 21 of 28 instances. The average Shore A hardness and storage modulus of the S3 variant were 21.9 DU and 505.3 kPa, respectively. The corresponding values for the D8 variant were 32.5 DU and 632 kPa, respectively. CONCLUSIONS This study proposes a method for the synthesis, evaluation, and standardization of scalp and dura surrogates. The study achieved standardized silicone compositions along with a recommendable range of Shore hardness and viscoelastic moduli values for the scalp and dura surrogates. This work can be extended for the standardization of surrogates for other tissues involved in neurosurgical simulators.
Collapse
Affiliation(s)
- Ramandeep Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Rajdeep Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Chander Sen
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Umesh Gautam
- Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi, India
| | - Sitikantha Roy
- Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
31
|
Sievänen H, Kari J, Eskola V, Huurre A, Soukka H, Palmu S. Incidence of traumatic lumbar punctures in adults: the impact of a patient's first procedure. Clin Med (Lond) 2023; 23:31-37. [PMID: 36650062 PMCID: PMC11046507 DOI: 10.7861/clinmed.2022-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Lumbar puncture (LP) is a widely used diagnostic method in patients of all ages. Blood-contaminated cerebrospinal fluid samples are frequent and may compromise diagnostic accuracy. OBJECTIVES We determined age-specific incidences of traumatic LPs (TLPs) in adults and examined factors that accounted for the incidence of TLPs. METHODS Erythrocyte count data from 15,812 LP procedures (2,404 were performed twice) were collected from hospital records of patients aged from 18 to 104 years. The incidence of TLPs in a patient's second LP procedure was evaluated with logistic regression analysis using the first LP, the time between the procedures and age as predictors. RESULTS The incidence of TLP in the second procedure was at least double that in the first procedure. If the first procedure was traumatic, the odds ratio of a TLP in the second procedure was 7-40-fold. One day between the successive procedures was associated with an over 10-fold odds ratio increase of TLP, and a week was still 4-8-fold odds ratio increase. Age was also associated with the incidence of TLP. CONCLUSIONS Two factors (a week or less between a patient's two LP procedures or a traumatic first LP) multiply the odds of the second procedure being traumatic and contribute to whether a patient's following LP procedure is successful.
Collapse
Affiliation(s)
| | | | - Vesa Eskola
- Tampere University Hospital, Tampere, Finland and Tampere University, Tampere, Finland
| | - Anu Huurre
- Turku University Hospital, Turku, Finland and University of Turku, Turku, Finland
| | - Hanna Soukka
- Turku University Hospital, Turku, Finland and University of Turku, Turku, Finland
| | - Sauli Palmu
- Tampere University Hospital, Tampere, Finland and Tampere University, Tampere, Finland
| |
Collapse
|
32
|
Wang Y, Guo Q, Wang W, Wang Y, Fang K, Wan Q, Li H, Wu T. Potential use of bioactive nanofibrous dural substitutes with controlled release of IGF-1 for neuroprotection after traumatic brain injury. NANOSCALE 2022; 14:18217-18230. [PMID: 36468670 DOI: 10.1039/d2nr06081g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
For patients suffering from traumatic brain injury (TBI), the closure of dural defects after decompressive craniectomy is the prerequisite to restoring normal physiological functions. It is also an urgent challenge to provide a neuroprotection effect against the primary and secondary nerve damage during long-term recovery. To solve these issues, we herein develop a class of bioactive, nanofibrous dural substitutes that can long-term release insulin-like growth factor 1 (IGF-1) for improving the survival and neurite outgrowth of neural cells after TBI. Such dural substitutes were polycaprolactone (PCL) nanofibers encapsulated with hyaluronic acid methacryloyl (HAMA)/IGF-1 by blend or coaxial electrospinning techniques, achieving bioactive PCL/HAMA/IGF nanofibrous dural substitutes with different release profiles of IGF-1. The nanofibrous dural substitutes exhibited good mechanical properties and hydrophobicity, which prevent cerebrospinal fluid leakage, maintain normal intracranial pressure, and avoid external impact on the brain. We also found that the viability and neurite outgrowth of SH-SY5Y cells and primary neurons were significantly enhanced after neurite transection or oxygen and glucose deprivation treatment. Taken together, such PCL/HAMA/IGF nanofibrous dural substitutes hold promising potential to provide neuroprotection effects after primary and secondary nerve damage in TBI, which would bring significant benefits to the field of neurosurgery involving the use of artificial dura mater.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China.
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Qingxia Guo
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Wei Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| | - Yuanfei Wang
- Department of Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Huanting Li
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China.
| | - Tong Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| |
Collapse
|
33
|
Jaafar A, Darvin ME, Tuchin VV, Veres M. Confocal Raman Micro-Spectroscopy for Discrimination of Glycerol Diffusivity in Ex Vivo Porcine Dura Mater. Life (Basel) 2022; 12:1534. [PMID: 36294969 PMCID: PMC9605590 DOI: 10.3390/life12101534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Dura mater (DM) is a connective tissue with dense collagen, which is a protective membrane surrounding the human brain. The optical clearing (OC) method was used to make DM more transparent, thereby allowing to increase in-depth investigation by confocal Raman micro-spectroscopy and estimate the diffusivity of 50% glycerol and water migration. Glycerol concentration was obtained, and the diffusion coefficient was calculated, which ranged from 9.6 × 10-6 to 3.0 × 10-5 cm2/s. Collagen-related Raman band intensities were significantly increased for all depths from 50 to 200 µm after treatment. In addition, the changes in water content during OC showed that 50% glycerol induces tissue dehydration. Weakly and strongly bound water types were found to be most concentrated, playing a major role in the glycerol-induced water flux and OC. Results show that OC is an efficient method for controlling the DM optical properties, thereby enhancing the in-depth probing for laser therapy and diagnostics of the brain. DM is a comparable to various collagen-containing tissues and organs, such as sclera of eyes and skin dermis.
Collapse
Affiliation(s)
- Ali Jaafar
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, H-1525 Budapest, Hungary
- Institute of Physics, University of Szeged, Dom ter 9, H-6720 Szeged, Hungary
- Ministry of Higher Education and Scientific Research, Baghdad 10065, Iraq
| | - Maxim E. Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya Str., 410028 Saratov, Russia
- A.N. Bach Institute of Biochemistry, FRC “Biotechnology of the Russian Academy of Sciences”, 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Miklós Veres
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, H-1525 Budapest, Hungary
| |
Collapse
|
34
|
Li Y, Adanty K, Vette A, Vakiel P, Ouellet S, Raboud DW, Dennison C. Review of Mechanisms and Research Methods for Blunt Ballistic Head Injury. J Biomech Eng 2022; 145:1145669. [PMID: 35993786 DOI: 10.1115/1.4055289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Head injuries account for 15% to 20% of all military injuries and pose a high risk of causing functional disability and fatality. Blunt ballistic impacts are one of the threats that can lead to severe head injuries. This review aims to examine the mechanisms and injury risk assessment associated with blunt ballistic head injury (BBHI). The review further discusses research methods and instrumentation used in BBHI studies, focusing on their limitations and challenges. Studies on the mechanisms of focal and diffuse brain injuries remain largely inconclusive and require further efforts. Some studies have attempted to associate BBHIs with head mechanics, but more research is required to establish correlations between head mechanics and injury severity. Limited access to experimental models and a lack of instrumentation capable of measuring the mechanics of brain tissue in-situ are potential reasons for the lack of understanding of injury mechanisms, injury correlations and injury tolerance levels specific to this loading regime. Targeted research for understanding and assessing head injuries in blunt ballistic impacts is a necessary step in improving our ability to design protection systems to mitigate these injuries.
Collapse
Affiliation(s)
- Yizhao Li
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Kevin Adanty
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Albert Vette
- Faculty of Electrical Engineering, Kempten University of Applied Sciences,Bahnhofstrasse 61, 87435 Kempten (Allgäu), Germany; Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Paris Vakiel
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada, V8P 5C2; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9
| | - Simon Ouellet
- Weapons Effects and Protection Section, Defence R&D Valcartier Research Centre, Quebec, QC, Canada, G3J 1X5
| | - Don W Raboud
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Christopher Dennison
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada, V8P 5C2
| |
Collapse
|
35
|
Fatigue Testing of Human Flexor Tendons Using a Customized 3D-Printed Clamping System. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Improved surgical procedures and implant developments for ligament or tendon repair require an in-depth understanding of tissue load-deformation and fatigue properties. Cyclic testing will provide crucial information on the behavior of these materials under reoccurring loads and on fatigue strength. Sparse data are available describing soft tissue behavior under cyclic loading. To examine fatigue strength, a new technology was trialed deploying 3D-printing to facilitate and standardize cyclic tests aiming to determine tendon fatigue behavior. Cadaveric flexor digitorum tendons were harvested and mounted for tensile testing with no tapering being made, using 3D-printed clamps and holder arms, while ensuring a consistent testing length. Loads ranging between 200 to 510 N were applied at a frequency of 4 Hz, and cycles to failure ranged between 8 and >260,000. S–N curves (Woehler curves) were generated based on the peak stresses and cycles to failure. Power regression yielded a combined coefficient of determination of stress and cycles to failure of R2 = 0.65, while the individual coefficients for tissues of single donors ranged between R2 = 0.54 and R2 = 0.88. The here-presented results demonstrate that S–N curves of human tendons can be obtained using a standardized setting deploying 3D-printing technology.
Collapse
|
36
|
Zhao Z, Wu T, Cui Y, Zhao R, Wan Q, Xu R. Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells. Polymers (Basel) 2022; 14:1882. [PMID: 35567051 PMCID: PMC9099771 DOI: 10.3390/polym14091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
The development and treatment of some diseases, such as large-area cerebral infarction, cerebral hemorrhage, brain tumor, and craniocerebral trauma, which may involve the injury of the dura mater, elicit the need to repair this membrane by dural grafts. However, common dural grafts tend to result in dural adhesions and scar tissue and have no further neuroprotective effects. In order to reduce or avoid the complications of dural repair, we used PLGA, tetramethylpyrazine, and chitosan as raw materials to prepare a nanofibrous dura mater (NDM) with excellent biocompatibility and adequate mechanical characteristics, which can play a neuroprotective role and have an antifibrotic effect. We fabricated PLGA NDM by electrospinning, and then chitosan was grafted on the nanofibrous dura mater by the EDC-NHS cross-linking method to obtain PLGA/CS NDM. Then, we also prepared PLGA/TMP/CS NDM by coaxial electrospinning. Our study shows that the PLGA/TMP/CS NDM can inhibit the excessive proliferation of fibroblasts, as well as provide a sustained protective effect on the SH-SY5Y cells treated with oxygen-glucose deprivation/reperfusion (OGD/R). In conclusion, our study may provide a new alternative to dural grafts in undesirable cases of dural injuries.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, China; (Z.Z.); (R.Z.)
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, China; (T.W.); (Y.C.)
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Tong Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, China; (T.W.); (Y.C.)
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, China; (T.W.); (Y.C.)
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Rui Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, China; (Z.Z.); (R.Z.)
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, China; (T.W.); (Y.C.)
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, China; (T.W.); (Y.C.)
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Rui Xu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, China; (Z.Z.); (R.Z.)
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
37
|
Steel S, Pearcy Q, Li K, Scholze M, Zwirner J. The relationship between the pH value of a hydration solution and the biomechanical properties of Crosado-embalmed human iliotibial bands. J Mech Behav Biomed Mater 2022; 132:105266. [DOI: 10.1016/j.jmbbm.2022.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
|
38
|
Pearcy Q, Tomlinson J, Niestrawska JA, Möbius D, Zhang M, Zwirner J. Systematic review and meta-analysis of the biomechanical properties of the human dura mater applicable in computational human head models. Biomech Model Mechanobiol 2022; 21:755-770. [PMID: 35266061 PMCID: PMC9132839 DOI: 10.1007/s10237-022-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
Accurate biomechanical properties of the human dura mater are required for computational models and to fabricate artificial substitutes for transplantation and surgical training purposes. Here, a systematic literature review was performed to summarize the biomechanical properties of the human dura mater that are reported in the literature. Furthermore, anthropometric data, information regarding the mechanically tested samples, and specifications with respect to the used mechanical testing setup were extracted. A meta-analysis was performed to obtain the pooled mean estimate for the elastic modulus, ultimate tensile strength, and strain at maximum force. A total of 17 studies were deemed eligible, which focused on human cranial and spinal dura mater in 13 and 4 cases, respectively. Pooled mean estimates for the elastic modulus (n = 448), the ultimate tensile strength (n = 448), and the strain at maximum force (n = 431) of 68.1 MPa, 7.3 MPa and 14.4% were observed for native cranial dura mater. Gaps in the literature related to the extracted data were identified and future directions for mechanical characterizations of human dura mater were formulated. The main conclusion is that the most commonly used elastic modulus value of 31.5 MPa for the simulation of the human cranial dura mater in computational head models is likely an underestimation and an oversimplification given the morphological diversity of the tissue in different brain regions. Based on the here provided meta-analysis, a stiffer linear elastic modulus of 68 MPa was observed instead. However, further experimental data are essential to confirm its validity.
Collapse
Affiliation(s)
- Quinton Pearcy
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Joanna Tomlinson
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Justyna A Niestrawska
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Dustin Möbius
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ming Zhang
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin, New Zealand. .,Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Institute of Legal Medicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
39
|
Evin M, Sudres P, Weber P, Godio-Raboutet Y, Arnoux PJ, Wagnac E, Petit Y, Tillier Y. Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison. Acta Biomater 2022; 140:446-456. [PMID: 34838701 DOI: 10.1016/j.actbio.2021.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/01/2022]
Abstract
Introduction This study aims at identifying mechanical characteristics under bi-axial loading conditions of extracted swine pia mater (PM) and dura and arachnoid complex (DAC). Methods 59 porcine spinal samples have been tested on a bi-axial experimental device with a pre-load of 0.01 N and a displacement rate of 0.05 mm·s-1. Post-processing analysis included an elastic modulus, as well as constitutive model identification for Ogden model, reduced Gasser Ogden Holzapfel (GOH) model, anisotropic GOH model, transverse isotropic and anisotropic Gasser models as well as a Mooney-Rivlin model including fiber strengthening for PM. Additionally, micro-structure of the tissue was investigated using a bi-photon microscopy. Results Linear elastic moduli of 108 ± 40 MPa were found for DAC longitudinal direction, 53 ± 32 MPa for DAC circumferential direction, with a significant difference between directions (p < 0.001). PM presented significantly higher longitudinal than circumferential elastic moduli (26 ± 13 MPa vs 13 ± 9 MPa, p < 0.001). Transversely isotropic and anisotropic Gasser models were the most suited models for DAC (r2 = 0.99 and RMSE:0.4 and 0.3 MPa) and PM (r2 = 1 and RMSE:0.06 and 0.07 MPa) modelling. Conclusion This work provides reference values for further quasi-static bi-axial studies, and is the first for PM. Collagen structures observed by two photon microscopy confirmed the use of anisotropic Gasser model for PM and the existence of fenestration. The results from anisotropic Gasser model analysis depicted the best fit to experimental data as per this protocol. Further investigations are required to allow the use of meningeal tissue mechanical behaviour in finite element modelling with respect to physiological applications. STATEMENT OF SIGNIFICANCE: This study is the first to present biaxial tensile test of pia mater as well as constitutive model comparisons for dura and arachnoid complex tissue based on such tests. Collagen structures observed by semi-quantitative analysis of two photon microscopy confirmed the use of anisotropic Gasser model for pia mater and existence of fenestration. While clear identification of fibre population was not possible in DAC, results from anisotropic Gasser model depicted better fitting on experimental data as per this protocol. Bi-axial mechanical testing allows quasi-static characterization under conditions closer to the physiological context and the results presented could be used for further simulations of physiology. Indeed, the inclusion of meningeal tissue in finite element models will allow more accurate and reliable numerical simulations.
Collapse
|
40
|
Kirilova-Doneva M, Pashkouleva D. The effects of age and sex on the elastic mechanical properties of human abdominal fascia. Clin Biomech (Bristol, Avon) 2022; 92:105591. [PMID: 35131681 DOI: 10.1016/j.clinbiomech.2022.105591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/19/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The abdominal hernias become more prevalent with age, that can adversely affect life quality. The mechanical properties of abdominal wall layers are supposed to play a significant role in developing of an abdominal hernia.The objective of this study was to determine the mechanical properties of the human abdominal layer - fascia and the effects of age and sex on it for choosing the proper brand of hernia mesh. METHODS 78 samples harvested from 19 fresh cadavers were subjected to uniaxial tension tests and divided into four groups according to age. Group A corresponds to age up to 60 years, Group B to age 61-70 years, Group C to age 71-80 years and Group D to 81-90 years. Median stress-stretch ratio curves with respect to age, sex and direction of loading were obtained. Median values of the maximum tensile stress, stretch at maximum stress and elastic modulus calculated at 5% strain were determined. FINDINGS The abdominal fascia showed large variations between specimens depending on age and sex. The stiffness of the fascia increased with age. There is statistically significant differences between the median curves of male samples (P = 0.008) and female samples (P = 0.019) according to age in the L direction. Statistically significant differences between the values of maximum stress (P = 0.01) and elastic modulus (P = 0.003) from Group C in the L direction and maximum stress (P = 0.03) from Group D in the T direction was established. INTERPRETATION The female samples are stiffer than male samples especially after 80 years.
Collapse
Affiliation(s)
- Miglena Kirilova-Doneva
- Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria; Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | |
Collapse
|
41
|
Characterization, isolation, and in vitro culture of leptomeningeal fibroblasts. J Neuroimmunol 2021; 361:577727. [PMID: 34688068 DOI: 10.1016/j.jneuroim.2021.577727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022]
Abstract
Meninges, or the membranous coverings of the brain and spinal cord, play host to dozens of morbid pathologies. In this study we provide a method to isolate the leptomeningeal cell layer, identify leptomeninges in histologic slides, and maintain leptomeningeal fibroblasts in in vitro culture. Using an array of transcriptomic, histological, and cytometric analyses, we identified ICAM1 and SLC38A2 as two novel markers of leptomeningeal cells in vivo and in vitro. Our results confirm the fibroblastoid nature of leptomeningeal cells and their ability to form a sheet-like layer that covers the brain and spine parenchyma. These findings will enable researchers in central nervous system barriers to describe leptomeningeal cell functions in health and disease.
Collapse
|
42
|
Çavdar S, Sürücü S, Özkan M, Köse B, Malik AN, Aydoğmuş E, Tanış Ö, Lazoğlu İ. Comparison of the Morphologic and Mechanical Features of Human Cranial Dura and Other Graft Materials Used for Duraplasty. World Neurosurg 2021; 159:e199-e207. [PMID: 34920156 DOI: 10.1016/j.wneu.2021.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed to compare the thickness and mechanical properties of the frontal; parietal; temporal; occipital human dura; autogenous grafts (facia lata, temporal fascia, galea aponeurotica); and artificial dura. METHODS Sagittal and transverse dura samples were obtained from standard regions of the cranial dura from 30 autopsies for histologic and mechanical property measurements. Identical measurements were made for the autogenous grafts artificial dura, and the results were statistically analyzed. RESULTS The thickness of the temporal (0.35 ± 0.11 mm), parietal (0.44 ± 0.13 mm), frontal (0.38 ± 0.12 mm), and occipital (0.46 ± 0.18 mm) dura showed regional variations. The parietal and occipital dura were significantly thicker than the temporal dura. The occipital dura was considerably thicker than the frontal dura. The frontal and temporal dura of males were significantly thicker than females. The sagittal maximum tensile force measurements were significantly greater than transverse, for the frontal, temporal, and occipital dura. The stiffness measurements in sagittal direction were greater than the measurements in transverse direction for the frontal dura. The mechanical properties and thickness of the autogenous and artificial dura were not similar to the human dura. CONCLUSIONS The thickness and mechanical properties of the regional cranial dura should be taken into consideration for a better cure and fewer complications. The mechanical properties of sagittal and transverse dura should be kept in mind for the preference of dura material. The present study's data can pave the way to produce artificial regional dura by mimicking the thickness and mechanical properties of the human dura.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey.
| | - Selçuk Sürücü
- Department of Anatomy, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey
| | - Mazhar Özkan
- Department of Anatomy, Tekirdağ Namık Kemal University, School of Medicine, Istanbul, Turkey
| | - Büşra Köse
- Department of Anatomy, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey
| | - Anjum Naeem Malik
- Manufacturing and Automation Research Center, Mechanical Engineering Department, Koç University, Istanbul, Turkey
| | - Evren Aydoğmuş
- Department of Neurosurgery, Dr. Lütfi Kırdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Özgül Tanış
- Department of Anatomy, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey
| | - İsmail Lazoğlu
- Manufacturing and Automation Research Center, Mechanical Engineering Department, Koç University, Istanbul, Turkey
| |
Collapse
|
43
|
Zwirner J, Ondruschka B, Pregartner G, Berghold A, Scholze M, Hammer N. On the correlations of biomechanical properties of super-imposed temporal tissue layers and their age-, sex-, side- and post-mortem interval dependence. J Biomech 2021; 130:110847. [PMID: 34753030 DOI: 10.1016/j.jbiomech.2021.110847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Obtaining biomechanical properties of biological tissues for simulation purposes or graft developments is time and resource consuming. The number of samples required for biomechanical tests could be reduced if the load-deformation properties of a given tissue layer could be estimated from adjacent layers or if the biomechanical parameters were unaffected by age, bodyside, sex or post-mortem interval. This study investigates for the first time potential correlations of multiple super-imposed tissue layers using the temporal region of the human head as an area of broad interest in biomechanical modelling. Spearman correlations between biomechanical properties of the scalp, muscle fascia, muscle, bone and dura mater from up to 83 chemically unfixed cadavers were investigated. The association with age, sex and post-mortem interval was assessed. The results revealed sporadic correlations between the corresponding layers, such as the maximum force (r = 0.43) and ultimate tensile strength (r = 0.33) between scalp and muscle. Side- and age-dependence of the biomechanical properties were different between the tissue types. Strain at maximum force of fascia (r = -0.37) and elastic modulus of temporal muscle (r = 0.26) weakly correlated with post-mortem interval. Only strain at maximum force of scalp differed significantly between sexes. Uniaxial biomechanical properties of individual head tissue layers can thus not be estimated solely based on adjacent layers. Therefore, correlations between the tissues' biomechanical properties, anthropometric data and post-mortem interval need to be established independently for each layer. Sex seems not to be a relevant influencing factor for the passive tissue mechanics of the here investigated temporal head tissue layers.
Collapse
Affiliation(s)
- J Zwirner
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Legal Medicine, University of Leipzig, Leipzig, Germany.
| | - B Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - A Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - M Scholze
- Institute of Materials Science and Engineering, Chemnitz University of Technology, Chemnitz, Germany; Institute of Macroscopic and Clinical Anatomy, Medical University of Graz, Graz, Austria
| | - N Hammer
- Institute of Macroscopic and Clinical Anatomy, Medical University of Graz, Graz, Austria; Department of Orthopedic and Trauma Surgery, University of Leipzig, Germany; Fraunhofer IWU, Dresden, Germany.
| |
Collapse
|
44
|
Mechanical characterisation of the human dura mater, falx cerebri and superior sagittal sinus. Acta Biomater 2021; 134:388-400. [PMID: 34314888 DOI: 10.1016/j.actbio.2021.07.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023]
Abstract
The cranial meninges have been shown to play a pivotal role in traumatic brain injury mechanopathology. However, while the mechanical response of the brain and its many subregions have been studied extensively, the meninges have conventionally been overlooked. This paper presents the first comparative mechanical analysis of human dura mater, falx cerebri and superior sagittal sinus tissues. Biaxial tensile analysis identified that these tissues are mechanically heterogeneous, in contrast to the assumption that the tissues are mechanically homogeneous which is typically employed in FE model design. A thickness of 0.91 ± 0.05 (standard error) mm for the falx cerebri was also identified. This data can aid in improving the biofidelity of the influential falx structure in FE models. Additionally, the use of a collagen hybridizing peptide on the superior sagittal sinus suggests this structure is particularly susceptible to the effects of circumferential stretch, which may have important implications for clinical treatment of dural venous sinus pathologies. Collectively, this research progresses understanding of meningeal mechanical and structural characteristics and may aid in elucidating the behaviour of these tissues in healthy and diseased conditions. STATEMENT OF SIGNIFICANCE: This study presents the first evaluation of human falx cerebri and superior sagittal sinus mechanical, geometrical and structural properties, along with a comparison to cranial dura mater. To mechanically characterise the tissues, biaxial tensile testing is conducted on the tissues. This analysis identifies, for the first time, mechanical stiffness differences between these tissues. Additionally, geometrical analysis identifies that there are thickness differences between the tissues. The evaluation of human meningeal tissues allows for direct implementation of the novel data to finite element head injury models to enable improved biofidelity of these influential structures in traumatic brain injury simulations. This work also identifies that the superior sagittal sinus may be easily damaged during clinical angioplasty procedures, which may inform the treatment of dural sinus pathologies.
Collapse
|
45
|
Liu B, Jin Z, Chen H, Liang L, Li Y, Wang G, Zhang J, Xu T. Electrospun poly (L-lactic acid)/gelatine membranes loaded with doxorubicin for effective suppression of glioblastoma cell growth in vitro and in vivo. Regen Biomater 2021; 8:rbab043. [PMID: 34394954 PMCID: PMC8358479 DOI: 10.1093/rb/rbab043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 12/26/2022] Open
Abstract
Electrospun membranes are attracting interest as a drug delivery system because of their material composition flexibility and versatile drug loading. In this study, the electrospun membrane was loaded with doxorubicin (DOX) via electrostatic adsorption for long-term drug delivery. DOX loading process was optimized by varying temperature, time, drug concentration, pH and ionic strength of solutions. The loading process did not impair the structural properties of the membrane. Next, we investigated the drug release kinetics using spectroscopic techniques. The composite membranes released 22% of the adsorbed DOX over the first 48 h, followed by a slower and sustained release over 4 weeks. The DOX release was sensitive to acidic solutions that the release rate at pH 6.0 was 1.27 times as that at pH 7.4. The DOX-loaded membranes were found to be cytotoxic to U-87 MG cells in vitro that decreased the cell viability from 82.92% to 25.49% from 24 to 72 h of co-incubation. These membranes showed strong efficacy in suppressing tumour growth in vivo in glioblastoma-bearing mice that decreased the tumour volume by 77.33% compared with blank membrane-treated group on Day 20. In conclusion, we have developed an effective approach to load DOX within a clinically approved poly (L-lactic acid)/gelatine membrane for local and long-term delivery of DOX for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Boxun Liu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Zhizhong Jin
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang 110122, China
| | - Haiyan Chen
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Lun Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Yao Li
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Guo Wang
- East China Institute of Digital Medical Engineering, Shangrao 334000, China
| | - Jing Zhang
- Medprin Regenerative Medical Technologies Co., Ltd, Guangzhou 510663, China
| | - Tao Xu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education; Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing; Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Shim T, Chillakuru Y, Moncada P, Kim S, Sabetrasekh P, Sparks A, Mulcahy CF, Monfared A. Sensorineural Hearing Loss and Tinnitus Characteristics in Patients With Idiopathic Intracranial Hypertension. Otol Neurotol 2021; 42:1323-1328. [PMID: 34172653 DOI: 10.1097/mao.0000000000003213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To characterize patterns of sensorineural hearing loss (SNHL) and tinnitus in patients with idiopathic intracranial hypertension (IIH). STUDY DESIGN Retrospective chart review. SETTING Tertiary referral center. PATIENTS Adult patients diagnosed with IIH via lumbar puncture (LP) between 2010 and 2020 who had available audiograms. The study included a total of 40 patients; 33 women, and 7 men with a median age of 43. INTERVENTIONS Diagnostic LP and audiogram. MAIN OUTCOME MEASURES Otologic symptoms, ophthalmologic signs, hearing thresholds, cerebrospinal fluid opening pressures. RESULTS The most commonly reported symptoms were tinnitus in 28 (70%, 23 pulsatile and 5 tonal), aural fullness in 11 (28%), and vertigo in 10 (25%). Twenty-nine patients had ophthalmologic examinations and 18 had evidence of papilledema. Twenty-five (63%) patients had hearing loss in at least one ear at one frequency range. Patients presented with both unilateral and bilateral hearing loss across low, middle, and high frequency ranges. No significant association was observed between hearing loss threshold and LP opening pressure except for 250 Hz in the left ear. After stratification by tinnitus group (pulsatile, tonal, and no tinnitus), no significant difference was found between mean hearing loss threshold at different frequencies. In addition, no significant mean age difference was identified in patients within each tinnitus group. CONCLUSIONS There was no classic pattern or presentation for hearing loss in our IIH patients. They developed sudden, unilateral, or bilateral SNHL in low, middle, or high frequency range. The degree of hearing loss did not correlate with CSF opening pressure.
Collapse
Affiliation(s)
- Timothy Shim
- Division of Otolaryngology-Head and Neck Surgery, George Washington University School of Medicine & Health Sciences, Washington, DC
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Biomechanics of vascular areas of the human cranial dura mater. J Mech Behav Biomed Mater 2021; 125:104866. [PMID: 34655943 DOI: 10.1016/j.jmbbm.2021.104866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 11/21/2022]
Abstract
Accurate biomechanical properties of the human cranial dura mater are paramount for computational head models, artificial graft developments and biomechanical basic research. Yet, it is unclear whether areas of the dura containing meningeal vessels biomechanically differ from avascular areas. Here, 244 dura mater samples with or without vessels from 32 cadavers were tested in a quasi-static uniaxial tensile testing setup. The thicknesses of the meningeal and periosteal dura in vascular and avascular areas were histologically investigated in 36 samples using van Gieson staining. The elastic modulus of 112 MPa from dura samples containing vessels running transversely was significantly lower than samples with vessels running longitudinally (151 MPa; p < 0.001). The ultimate tensile strength of dura samples with transversely running vessels (11.1 MPa) was significantly lower in comparison to both avascular samples (14.9 MPa; p < 0.001) and samples with a longitudinally running vessel (15.0 MPa; p < 0.001). The maximum force of dura samples with longitudinally running vessels was 37 N (p < 0.001), this was significantly higher compared to the other groups which were 23 N (p < 0.001). The meningeal and periosteal dura layer thicknesses were not statistically different in avascular areas (p > 0.222). However, around the vessels, the meningeal dura layer was significantly thicker compared to the periosteal layer (p ≤ 0.019). The sum of the meningeal and periosteal layers was similar between vascular and avascular areas (p ≥ 0.071). Vascular areas of the human cranial dura mater withstand the same forces as avascular areas when being stretched. When stretched along the vessel, the dura-vessel composite can withstand even higher tensile forces compared to avascular areas. Vascular areas of the cranial dura mater seem to be similar when compared to avascular areas making their separate simulation in computational models non-essential.
Collapse
|
48
|
The incidence of postoperative cerebrospinal fluid leakage after elective cranial surgery: a systematic review. Neurosurg Rev 2021; 45:1827-1845. [PMID: 34499261 DOI: 10.1007/s10143-021-01641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/12/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Cerebrospinal fluid (CSF) leakage is a major complication after elective neurosurgical procedures. The aim of this systematic literature review is to summarize the incidence rates of postoperative cerebrospinal fluid leakage for neurosurgical procedures, classified by surgical approach. The Pubmed, Cochrane, Embase, and Web of Science databases were searched for studies reporting the outcome of patients undergoing elective neurosurgical procedures. The number of patients, surgical approach, and indication for surgery were recorded for each study. Outcomes related to CSF leakage such as clinical manifestation and treatment were reported as well. One hundred and thirteen studies were included, reporting 94,695 cases. Overall, CSF leaks were present in 3.8% of cases. Skull base surgery had the highest rate of CSF leakage with 6.2%. CSF leakage occurred in 5.9% of anterior skull base procedures, 6.4% of middle fossa, and 5.2% of transpetrosal surgeries. 5.8% of reported infratentorial procedures were complicated by CSF leakage versus 2.9% of supratentorial surgeries. CSF leakage remains a common serious adverse event after cranial surgery. There exists a need for standardized procedures to reduce the incidence of postoperative CSF leakage, as this serious adverse event may lead to increased health care costs.
Collapse
|
49
|
Liao J, Li X, He W, Guo Q, Fan Y. A biomimetic triple-layered biocomposite with effective multifunction for dura repair. Acta Biomater 2021; 130:248-267. [PMID: 34118449 DOI: 10.1016/j.actbio.2021.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Dura mater defect and subsequent cerebrospinal fluid (CSF) leakage usually appear in trauma or neurosurgical procedures and are followed by a series of serious complications and even death. The use of a qualified dura mater substitute with multifunction of leakage blockade, adhesion prevention, and dura reconstruction is one of the promising treatment methods. However, even though some products have been used in the clinic, none of the substitutes achieved the required multifunction. In this study, we aimed to design and fabricate a dura repair composite with the ideal multifunction. By biomimicking the structure and component of natural dura, we applied poly(L-lactic acid) (PLLA), chitosan (CS), gelatin, and acellular small intestinal submucosa (SIS) powders to successfully prepare a triple-layered composite. Then, a series of specific devices and techniques were developed to investigate the performance. The results revealed that satisfactory structural stability could be realized under good synergistic interactions among the components. In addition, all the findings suggested that the bionic triple-layered composite showed satisfactory multifunction of leakage blockade, adhesion prevention, antibacterial property, and dura reconstruction potential, and thus, it might be a promising candidate for dura repair. STATEMENT OF SIGNIFICANCE: Developing qualified dura mater substitutes with multifunction of leakage blockade, adhesion prevention, and dura reconstruction is crucial for treating dura mater defect and subsequent cerebrospinal fluid (CSF) leakage that appear in trauma or neurosurgical procedures. In this study, we designed and fabricated a triple-layered dura repair biocomposite with satisfactory structural stability and desired multifunction based on biomimicking of the structure and component of natural dura. Moreover, a series of specific devices and techniques were developed to investigate the relevant performance. Overall, the developed hydrogel electrospinning system exhibited excellent advantages in achieving multifunction and could be applied widely in the future to achieve multifunctional tissue repair materials.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Wei He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qi Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
50
|
Jain A, Muneer MS, Okromelidze L, McGeary R, Valluri SK, Bhatt AA, Gupta V, Grewal SS, Cheshire WP, Middlebrooks EH, Sandhu SJS. Absence of Meckel Cave: A Rare Cause of Trigeminal Neuralgia. AJNR Am J Neuroradiol 2021; 42:1610-1614. [PMID: 34244131 DOI: 10.3174/ajnr.a7205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 11/07/2022]
Abstract
Trigeminal neuralgia is a debilitating condition with numerous etiologies. In this retrospective case series, we report a cohort of patients with a rarely described entity, absence of Meckel cave, and propose this as a rare cause of trigeminal neuralgia. A search of the electronic medical record was performed between 2000 and 2020 to identify MR imaging reports with terms including "Meckel's cave" and "hypoplasia," "atresia," "collapse," or "asymmetry." Images were reviewed by 2 blinded, board-certified neuroradiologists. Seven cases of the absence of Meckel cave were identified. Seven patients (100%) had ipsilateral trigeminal neuralgia and ipsilateral trigeminal nerve atrophy, suggesting an association between absence of Meckel cave and trigeminal neuralgia. Absence of Meckel cave is a rare entity of unknown etiology, with few existing reports that suggest the possibility of an association with trigeminal neuralgia. Its recognition may have important implications in patient management. Future studies and longitudinal data are needed to assess treatment outcomes and added risks from surgical intervention in these patients.
Collapse
Affiliation(s)
- A Jain
- From the Departments of Radiology (A.J., M.S.M., L.O., R.M., S.K.V., A.A.B., V.G., E.H.M., S.J.S.S.)
| | - M S Muneer
- From the Departments of Radiology (A.J., M.S.M., L.O., R.M., S.K.V., A.A.B., V.G., E.H.M., S.J.S.S.)
| | - L Okromelidze
- From the Departments of Radiology (A.J., M.S.M., L.O., R.M., S.K.V., A.A.B., V.G., E.H.M., S.J.S.S.)
| | - R McGeary
- From the Departments of Radiology (A.J., M.S.M., L.O., R.M., S.K.V., A.A.B., V.G., E.H.M., S.J.S.S.)
| | - S K Valluri
- From the Departments of Radiology (A.J., M.S.M., L.O., R.M., S.K.V., A.A.B., V.G., E.H.M., S.J.S.S.)
| | - A A Bhatt
- From the Departments of Radiology (A.J., M.S.M., L.O., R.M., S.K.V., A.A.B., V.G., E.H.M., S.J.S.S.)
| | - V Gupta
- From the Departments of Radiology (A.J., M.S.M., L.O., R.M., S.K.V., A.A.B., V.G., E.H.M., S.J.S.S.)
| | | | - W P Cheshire
- Neurology (W.P.C.), Mayo Clinic, Jacksonville, Florida
| | - E H Middlebrooks
- From the Departments of Radiology (A.J., M.S.M., L.O., R.M., S.K.V., A.A.B., V.G., E.H.M., S.J.S.S.) .,Neurosurgery (S.S.G., E.H.M.)
| | - S J S Sandhu
- From the Departments of Radiology (A.J., M.S.M., L.O., R.M., S.K.V., A.A.B., V.G., E.H.M., S.J.S.S.)
| |
Collapse
|