1
|
Gao Y, Ren J, Peng H, Nasser MI, Liu C. Follistatin-like protein 1: Implications for renal disease progression. J Pharmacol Exp Ther 2025; 392:103564. [PMID: 40239460 DOI: 10.1016/j.jpet.2025.103564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/22/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Renal diseases, including glomerulonephritis, acute kidney injury, chronic kidney failure, and kidney tumors are all current global health challenges. Lesions in other systems can cause renal diseases and can affect other systems or even the whole body. Despite ongoing advancements in pharmaceutical and technological innovations, the prognosis for end-stage renal disease, encompassing renal failure and tumors, continues to be bleak. Follistatin-like protein 1 (FSTL1) is a secreted glycoprotein produced mainly by mesenchymal cells. FSTL1 is a glycoprotein that belongs to the family of secreted, cysteine-rich acidic proteins (SPARC). It plays a pivotal role in cell survival, proliferation, differentiation, and migration, as well as in modulating inflammation and immune responses. Research has shown that FSTL1 plays a crucial role in the onset and progression of renal diseases. This review explores the functions and underlying mechanisms of FSTL1 in kidney pathology. SIGNIFICANCE STATEMENT: This review highlights the pivotal role of FSTL1 in renal diseases, particularly its involvement in renal fibrosis, inflammation, and ischemia-reperfusion injury. By elucidating its dual roles across different pathologies, this work underscores FSTL1's potential as both a biomarker and a therapeutic target, offering novel insights for managing chronic kidney disease and associated complications.
Collapse
Affiliation(s)
- Yiqi Gao
- Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junyi Ren
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, Sichuan, China
| | - Haoyu Peng
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, Sichuan, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China.
| | - Chi Liu
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Hsu SN, Stephen LA, Phadwal K, Dillon S, Carter R, Morton NM, Luijten I, Emelianova K, Amin AK, Macrae VE, Freeman TC, Hsu YJ, Staines KA, Farquharson C. Mitochondrial dysfunction and mitophagy blockade contribute to renal osteodystrophy in chronic kidney disease-mineral bone disorder. Kidney Int 2025:S0085-2538(25)00085-7. [PMID: 39922377 DOI: 10.1016/j.kint.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) presents with extra-skeletal calcification and renal osteodystrophy (ROD). However, the pathophysiology of ROD remains unclear. Here we examine the hypothesis that stalled mitophagy within osteocytes of CKD-MBD mouse models contributes to bone loss. RNA-seq analysis revealed an altered expression of genes associated with mitophagy and mitochondrial function in tibia of CKD-MBD mice. The expression of mitophagy regulators, p62/SQSTM1, ATG7 and LC3, was inconsistent with functional mitophagy, and in mito-QC reporter mice with ROD, there was a two- to three-fold increase in osteocyte mitolysosomes. To determine if uremic toxins were potentially responsible for these observations, treatment of cultured osteoblasts with uremic toxins revealed increased mitolysosome number and mitochondria with distorted morphology. Membrane potential and oxidative phosphorylation were also decreased, and oxygen-free radical production increased. The altered p62/SQSTM1 and LC3-II expression was consistent with impaired mitophagy machinery, and the effects of uremic toxins were reversible by rapamycin. A causal link between uremic toxins and the development of mitochondrial abnormalities and ROD was established by showing that a mitochondria-targeted antioxidant (MitoQ) and the charcoal adsorbent AST-120 were able to mitigate the uremic toxin-induced mitochondrial changes and improve bone health. Overall, our study shows that impaired clearance of damaged mitochondria may contribute to the ROD phenotype. Targeting uremic toxins, oxygen-free radical production and the mitophagy process may offer novel routes for intervention to preserve bone health in patients with CKD-MBD. This would be timely as our current armamentarium of anti-fracture medications for patients with severe CKD-MBD is limited.
Collapse
Affiliation(s)
- Shun-Neng Hsu
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Louise A Stephen
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Kanchan Phadwal
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Scott Dillon
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Roderick Carter
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Katie Emelianova
- UK Dementia Research Institute, University of Edinburgh, Edinburgh Medical School, Edinburgh, UK; Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Anish K Amin
- Edinburgh Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Vicky E Macrae
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Tom C Freeman
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Katherine A Staines
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Colin Farquharson
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
3
|
Zhang Z, Zhao Z, Qi C, Zhang X, Xiao Y, Chen C, Zou Y, Chen X, Gu L, Huang J, Huang K, Xiang M, Zhang T, Tong Q, Zhang Y. Butyrolactone I blocks the transition of acute kidney injury to chronic kidney disease in mice by targeting JAK1. MedComm (Beijing) 2025; 6:e70064. [PMID: 39845897 PMCID: PMC11751251 DOI: 10.1002/mco2.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Chronic kidney disease (CKD) is a disease that affects more than 850 million people. Acute kidney injury (AKI) is a common cause of CKD, and blocking the AKI-CKD transition shows promising therapeutic potential. Herein, we found that butyrolactone I (BLI), a natural product, exerts significant nephroprotective effects, including maintenance of kidney function, inhibition of inflammatory response, and prevention of fibrosis, in both folic acid- and ureteral obstruction-induced AKI-CKD transition mouse models. Notably, BLI showed greater blood urea nitrogen reduction and anti-inflammatory effects than telmisartan. Bioinformatics analysis and target confirmation assays suggested that BLI directly binds to JAK1, and kinase inhibition assay confirmed it is a potent JAK1inhibitor with an IC50 of 0.376 µM. Experiments in JAK1-knockdown mice also proved that BLI targets JAK1 to work. Furthermore, BLI demonstrated nephroprotective effects and safety comparable to ivarmacitinib, the well-known JAK1 inhibitor. Mechanistically, BLI targets JAK1 and inhibits its phosphorylation and JAK-STAT activation, subsequently regulating the downstream signaling pathways to inhibit reactive oxygen species production, inflammation, and ferroptosis, thereby preventing the occurrence of kidney fibrosis and blocking the AKI-CKD transition process. This study demonstrates for the first time that BLI is a JAK1 inhibitor and a promising candidate for delaying CKD progression, which warrants further investigation.
Collapse
Affiliation(s)
- Zijun Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ziming Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaotian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Function of Natural MedicineInstitute of Materia MedicaChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yu Zou
- Institute of Pharmaceutical ProcessHubei Province Key Laboratory of Occupational Hazard Identification and ControlSchool of MedicineWuhan University of Science and TechnologyWuhanChina
| | - Xia Chen
- Institute of Pharmaceutical ProcessHubei Province Key Laboratory of Occupational Hazard Identification and ControlSchool of MedicineWuhan University of Science and TechnologyWuhanChina
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jianzheng Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kun Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ming Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural MedicineInstitute of Materia MedicaChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Zhang B, Geng H, Zhao K, Omorou M, Liu S, Ye Z, Zhang F, Luan H, Zhang X. FSTL1 aggravates high glucose-induced oxidative stress and transdifferentiation in HK-2 cells. Sci Rep 2025; 15:434. [PMID: 39748077 PMCID: PMC11696259 DOI: 10.1038/s41598-024-84462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Chronic hyperglycemia, a hallmark of diabetes, can trigger inflammatory responses in the kidney, leading to diabetic nephropathy (DN). Follistatin-like protein 1 (FSTL1) has emerged as a potential therapeutic target in various kidney diseases. This study investigated the effect of high glucose on FSTL1 expression and its role in oxidative stress and cellular transdifferentiation injury in HK-2 human proximal tubule epithelial cells, a model of DN. We investigated FSTL1's level in HK-2 cells exposed to high glucose using Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). FSTL1 was manipulated using recombinant human FSTL1 (rhFSTL1) or lentiviral shFSTL1. We then analyzed proliferation, oxidative stress, transdifferentiation, cell migration, and the nuclear factor kappa-B (NF-κB) signaling pathway potentially involved in FSTL1 effects. Finally, we blocked the NF-κB pathway to see its influence on these cellular processes. High glucose exposure significantly increased FSTL1 in HK-2 cells, with longer/higher glucose further amplifying this effect. Silencing of FSTL1 ameliorates cellular damage by promoting proliferation, enhancing superoxide dismutase (SOD) and glutathione (GSH) activity, and reducing malondialdehyde (MDA) production, inhibiting cell migration. Furthermore, it prevented the harmful conversion of HK-2 cells from epithelial to myofibroblast-like phenotypes, evidenced by decreased fibronectin (FN) and α-smooth muscle actin (α-SMA) and preserved E-cadherin. Notably, silencing FSTL1 also inhibited the NF-κB signaling pathway. Conversely, rhFSTL1 exhibited opposite effects. Importantly, blocking NF-κB reversed the detrimental effects of FSTL1. These findings suggest that FSTL1 contributes to high glucose-induced kidney injury by promoting oxidative stress and cellular transdifferentiation potentially via the NF-κB pathway. Targeting FSTL1 may represent a novel therapeutic strategy for preventing or mitigating DN progression.
Collapse
Affiliation(s)
- Baoyuan Zhang
- Department of Histology and Embryology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hang Geng
- Medical Imaging Center, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Kai Zhao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Moussa Omorou
- Laboratory of Medical Biochemistry, First Affiliated Hospital, University of Lomé, Lomé, Togo
| | - Shuang Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Department of Biology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Zhihui Ye
- Department of Orthodontics, Second Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Fanting Zhang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Haiyan Luan
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China.
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China.
| | - Xuesong Zhang
- Medical Imaging Center, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
5
|
Juang U, Lee S, Gwon S, Jung W, Nguyen H, Huang Q, Lee B, Kwon SH, Kim SH, Kim IS, Park J. Enhancement of renal fibrosis in PHF20 transgenic mice. Toxicol Res 2025; 41:71-80. [PMID: 39802116 PMCID: PMC11718026 DOI: 10.1007/s43188-024-00268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Plant homeodomain finger protein 20 (PHF20) plays a crucial role in various biological processes, but its involvement in renal fibrosis remains unclear. This study investigated the role of PHF20 in renal fibrosis using a unilateral ureteral obstruction (UUO) mouse model, a widely accepted model for chronic kidney disease. PHF20 transgenic (PHF20-TG) and wild-type (WT) mice were utilized to explore how PHF20 influences renal inflammation and fibrosis. After UUO surgery, serum analysis revealed elevated creatinine levels and increased inflammatory markers, indicating worsened renal function in PHF20-TG mice. Histological analyses, including H&E, PAS, and Sirius Red staining, confirmed significant tissue damage and fibrosis in the PHF20-TG group. Molecular investigations demonstrated enhanced activation of the TGF-β/SMAD2/3 and NF-κB signaling pathways, both of which are crucial in the progression of renal fibrosis. Our findings suggest that PHF20 overexpression accelerates early-stage renal fibrosis by amplifying inflammatory responses and promoting collagen deposition. This indicates that PHF20 expression could serve as an early marker for renal fibrosis progression.
Collapse
Affiliation(s)
- Uijin Juang
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
| | - Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
| | - Suhwan Gwon
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
| | - Woohyeong Jung
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
| | - Huonggiang Nguyen
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
| | - Qingzhi Huang
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983 Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - In Soo Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, 35015 Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, 35015 Republic of Korea
| |
Collapse
|
6
|
Son SS, Jeong HS, Lee SW, Lee ES, Lee JG, Lee JH, Yi J, Park MJ, Choi MS, Lee D, Choi SY, Ha J, Kang JS, Cho NJ, Park S, Gil HW, Chung CH, Park JS, Kim MH, Park J, Lee EY. EPRS1-mediated fibroblast activation and mitochondrial dysfunction promote kidney fibrosis. Exp Mol Med 2024; 56:2673-2689. [PMID: 39623092 DOI: 10.1038/s12276-024-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 12/28/2024] Open
Abstract
Kidney fibrosis causes irreversible structural damage in chronic kidney disease and is characterized by aberrant extracellular matrix (ECM) accumulation. Although glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is a crucial enzyme involved in proline-rich protein synthesis, its role in kidney fibrosis remains unclear. The present study revealed that EPRS1 expression levels were increased in the fibrotic kidneys of patients and mice, especially in fibroblasts and proximal tubular epithelial cells, on the basis of single-cell analysis and immunostaining of fibrotic kidneys. Moreover, C57BL/6 EPRS1tm1b heterozygous knockout (Eprs1+/-) and pharmacological EPRS1 inhibition with the first-in-class EPRS1 inhibitor DWN12088 protected against kidney fibrosis and dysfunction by preventing fibroblast activation and proximal tubular injury. Interestingly, in vitro assays demonstrated that EPRS1-mediated nontranslational pathways in addition to translational pathways under transforming growth factor β-treated conditions by phosphorylating SMAD family member 3 in fibroblasts and signal transducers and activators of transcription 3 in injured proximal tubules. EPRS1 knockdown and catalytic inhibition suppressed these pathways, preventing fibroblast activation, proliferation, and subsequent collagen production. Additionally, we revealed that EPRS1 caused mitochondrial damage in proximal tubules but that this damage was attenuated by EPRS1 inhibition. Our findings suggest that the EPRS1-mediated ECM accumulation induces kidney fibrosis via fibroblast activation and mitochondrial dysfunction. Therefore, targeting EPRS1 could be a potential therapeutic target for alleviating fibrotic injury in chronic kidney disease.
Collapse
Affiliation(s)
- Seung Seob Son
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hee Seul Jeong
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Seong-Woo Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jeong Geon Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Ji-Hye Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Mi Ju Park
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Min Sun Choi
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Donghyeong Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jiheon Ha
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Nam-Jun Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Samel Park
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyo-Wook Gil
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Joon Seok Park
- Drug Discovery Center, Daewoong Pharmaceutical Co. Ltd., Yongin, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Eun Young Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea.
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea.
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea.
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea.
| |
Collapse
|
7
|
Lee Y, Kim KH, Park J, Kang HM, Kim SH, Jeong H, Lee B, Lee N, Cho Y, Kim GD, Yu S, Gee HY, Bok J, Hamilton MS, Gewin L, Aronow BJ, Lim KM, Coffey RJ, Nam KT. Regenerative Role of Lrig1+ Cells in Kidney Repair. J Am Soc Nephrol 2024; 35:1702-1714. [PMID: 39120954 PMCID: PMC11617485 DOI: 10.1681/asn.0000000000000462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/05/2024] [Indexed: 08/11/2024] Open
Abstract
Key Points Lrig1 + cells exist long term during kidney homeostasis and become activated upon injury, contributing to regeneration. Lrig1 + cells and their progeny emerge during tubulogenesis and contribute to proximal tubule and inner medullary collecting duct development. Lrig1 + cells expand and differentiate into a mature nephron lineage in response to AKI to repair the proximal tubule. Background In response to severe kidney injury, the kidney epithelium displays remarkable regenerative capabilities driven by adaptable resident epithelial cells. To date, it has been widely considered that the adult kidney lacks multipotent stem cells; thus, the cellular lineages responsible for repairing proximal tubule damage are incompletely understood. Leucine-rich repeats and immunoglobulin-like domain protein 1–expressing cells (Lrig1 + cells) have been identified as a long-lived cell in various tissues that can induce epithelial tissue repair. Therefore, we hypothesized that Lrig1 + cells participate in kidney development and tissue regeneration. Methods We investigated the role of Lrig1 + cells in kidney injury using mouse models. The localization of Lrig1 + cells in the kidney was examined throughout mouse development. The function of Lrig1 + progeny cells in AKI repair was examined in vivo using a tamoxifen-inducible Lrig1 -specific Cre recombinase-based lineage tracing in three different kidney injury mouse models. In addition, we conducted single-cell RNA sequencing to characterize the transcriptional signature of Lrig1 + cells and trace their progeny. Results Lrig1 + cells were present during kidney development and contributed to formation of the proximal tubule and collecting duct structures in mature mouse kidneys. In three-dimensional culture, single Lrig1 + cells demonstrated long-lasting propagation and differentiated into the proximal tubule and collecting duct lineages. These Lrig1 + proximal tubule cells highly expressed progenitor-like and quiescence-related genes, giving rise to a novel cluster of cells with regenerative potential in adult kidneys. Moreover, these long-lived Lrig1 + cells expanded and repaired damaged proximal tubule in response to three types of AKIs in mice. Conclusions These findings highlight the critical role of Lrig1 + cells in kidney regeneration.
Collapse
Affiliation(s)
- Yura Lee
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang H. Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hyun Mi Kang
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Buhyun Lee
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Nakyum Lee
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yejin Cho
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Gyeong Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Seyoung Yu
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jinwoong Bok
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Maxwell S. Hamilton
- Epithelial Biology Center and Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Leslie Gewin
- Division of Nephrology and Hypertension, Department of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Bruce J. Aronow
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Robert J. Coffey
- Epithelial Biology Center and Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Ki Taek Nam
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Perez-Moreno E, Toledo T, Campusano P, Zuñiga S, Azócar L, Feuerhake T, Méndez GP, Labarca M, Pérez-Molina F, de la Peña A, Herrera-Cid C, Ehrenfeld P, Godoy AS, González A, Soza A. Galectin-8 counteracts folic acid-induced acute kidney injury and prevents its transition to fibrosis. Biomed Pharmacother 2024; 177:116923. [PMID: 38936192 DOI: 10.1016/j.biopha.2024.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
Acute kidney injury (AKI), characterized by a sudden decline in kidney function involving tubular damage and epithelial cell death, can lead to progressive tissue fibrosis and chronic kidney disease due to interstitial fibroblast activation and tissue repair failures that lack direct treatments. After an AKI episode, surviving renal tubular cells undergo cycles of dedifferentiation, proliferation and redifferentiation while fibroblast activity increases and then declines to avoid an exaggerated extracellular matrix deposition. Appropriate tissue recovery versus pathogenic fibrotic progression depends on fine-tuning all these processes. Identifying endogenous factors able to affect any of them may offer new therapeutic opportunities to improve AKI outcomes. Galectin-8 (Gal-8) is an endogenous carbohydrate-binding protein that is secreted through an unconventional mechanism, binds to glycosylated proteins at the cell surface and modifies various cellular activities, including cell proliferation and survival against stress conditions. Here, using a mouse model of AKI induced by folic acid, we show that pre-treatment with Gal-8 protects against cell death, promotes epithelial cell redifferentiation and improves renal function. In addition, Gal-8 decreases fibroblast activation, resulting in less expression of fibrotic genes. Gal-8 added after AKI induction is also effective in maintaining renal function against damage, improving epithelial cell survival. The ability to protect kidneys from injury during both pre- and post-treatments, coupled with its anti-fibrotic effect, highlights Gal-8 as an endogenous factor to be considered in therapeutic strategies aimed at improving renal function and mitigating chronic pathogenic progression.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Tomás Toledo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pascale Campusano
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Sebastián Zuñiga
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lorena Azócar
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Teo Feuerhake
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Mariana Labarca
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Cristian Herrera-Cid
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro S Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile.
| |
Collapse
|
9
|
Möckel T, Boegel S, Schwarting A. Transcriptome Analysis of BAFF/BAFF-R System in Murine Nephrotoxic Serum Nephritis. Int J Mol Sci 2024; 25:5415. [PMID: 38791453 PMCID: PMC11121395 DOI: 10.3390/ijms25105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is an emerging cause for morbidity and mortality worldwide. Acute kidney injury (AKI) can transition to CKD and finally to end-stage renal disease (ESRD). Targeted treatment is still unavailable. NF-κB signaling is associated with CKD and activated by B cell activating factor (BAFF) via BAFF-R binding. In turn, renal tubular epithelial cells (TECs) are critical for the progression of fibrosis and producing BAFF. Therefore, the direct involvement of the BAFF/BAFF-R system to the pathogenesis of CKD is conceivable. We performed non-accelerated nephrotoxic serum nephritis (NTN) as the CKD model in BAFF KO (B6.129S2-Tnfsf13btm1Msc/J), BAFF-R KO (B6(Cg)-Tnfrsf13ctm1Mass/J) and wildtype (C57BL/6J) mice to analyze the BAFF/BAFF-R system in anti-glomerular basement membrane (GBM) disease using high throughput RNA sequencing. We found that BAFF signaling is directly involved in the upregulation of collagen III as BAFF ko mice showed a reduced expression. However, these effects were not mediated via BAFF-R. We identified several upregulated genes that could explain the effects of BAFF in chronic kidney injury such as Txnip, Gpx3, Igfbp7, Ccn2, Kap, Umod and Ren1. Thus, we conclude that targeted treatment with anti-BAFF drugs such as belimumab may reduce chronic kidney damage. Furthermore, upregulated genes may be useful prognostic CKD biomarkers.
Collapse
Affiliation(s)
- Tamara Möckel
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
| | - Sebastian Boegel
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
| | - Andreas Schwarting
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
- Center for Rheumatic Disease Rhineland-Palatinate GmbH, 55543 Bad Kreuznach, Germany
| |
Collapse
|
10
|
Thipboonchoo N, Fongsupa S, Sureram S, Sa-nguansak S, Kesornpun C, Kittakoop P, Soodvilai S. Altenusin, a fungal metabolite, alleviates TGF-β1-induced EMT in renal proximal tubular cells and renal fibrosis in unilateral ureteral obstruction. Heliyon 2024; 10:e24983. [PMID: 38318047 PMCID: PMC10839986 DOI: 10.1016/j.heliyon.2024.e24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Renal fibrosis is a pathological feature of chronic kidney disease (CKD), progressing toward end-stage kidney disease (ESKD). The aim of this study is to investigate the therapeutic potential of altenusin, a farnesoid X receptor (FXR) agonist derived from fungi, on renal fibrosis. The effect of altenusin was determined (i) in vitro using the transforming growth factor β1 (TGF-β1)-induced epithelial to mesenchymal transition (EMT) of human renal proximal tubular cells and (ii) in vivo using mouse unilateral ureteral obstruction (UUO). The findings revealed that incubation of 10 ng/ml TGF-β1 promotes morphological change in RPTEC/TERT1 cells, a human renal proximal tubular cell line, from epithelial to fibroblast-like cells. TGF-β1 markedly increased EMT markers namely α-smooth muscle actin (α-SMA), fibronectin, and matrix metalloproteinase 9 (MMP-9), while decreased the epithelial marker E-cadherin. Co-incubation TGF-β1 with altenusin preserved the epithelial characteristics of the renal epithelial cells by antagonizing TGF-β/Smad signaling pathway, specifically a decreased phosphorylation of Smad2/3 with an increased level of Smad7. Interestingly, the antagonizing effect of altenusin does not require FXR activation. Moreover, altenusin could reverse TGF-β1-induced fibroblast-like cells to epithelial-like cells. Treatment on UUO mice with 30 mg/kg altenusin significantly reduced the expression of α-SMA, fibronectin, and collagen type 1A1 (COL1A1). The reduction in the renal fibrosis markers is correlated with the decreased phosphorylation of Smad2/3 levels but does not improve E-cadherin protein expression. Collectively, altenusin reduces EMT in human renal proximal tubular cells and renal fibrosis by antagonizing the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Natechanok Thipboonchoo
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Somsak Fongsupa
- Department of Medical Technology, Faculty of Allied Health Science, Thammasat University Rangsit Campus, Thailand
| | - Sanya Sureram
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Suliporn Sa-nguansak
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Chatchai Kesornpun
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Sunhapas Soodvilai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Mierke CT. Editorial: In celebration of women in cell adhesion and migration. Front Cell Dev Biol 2023; 11:1348958. [PMID: 38146493 PMCID: PMC10749420 DOI: 10.3389/fcell.2023.1348958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Systems Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany
| |
Collapse
|
13
|
Grapa AI, Efthymiou G, Van Obberghen-Schilling E, Blanc-Féraud L, Descombes X. A spatial statistical framework for the parametric study of fiber networks: Application to fibronectin deposition by normal and activated fibroblasts. BIOLOGICAL IMAGING 2023; 3:e25. [PMID: 38510171 PMCID: PMC10951922 DOI: 10.1017/s2633903x23000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 03/22/2024]
Abstract
Due to the complex architectural diversity of biological networks, there is an increasing need to complement statistical analyses with a qualitative and local description of their spatial properties. One such network is the extracellular matrix (ECM), a biological scaffold for which changes in its spatial organization significantly impact tissue functions in health and disease. Quantifying variations in the fibrillar architecture of major ECM proteins should considerably advance our understanding of the link between tissue structure and function. Inspired by the analysis of functional magnetic resonance imaging (fMRI) images, we propose a novel statistical analysis approach embedded into a machine learning paradigm, to measure and detect local variations of meaningful ECM parameters. We show that parametric maps representing fiber length and pore directionality can be analyzed within the proposed framework to differentiate among various tissue states. The parametric maps are derived from graph-based representations that reflect the network architecture of fibronectin (FN) fibers in a normal, or disease-mimicking in vitro setting. Such tools can potentially lead to a better characterization of dynamic matrix networks within fibrotic tumor microenvironments and contribute to the development of better imaging modalities for monitoring their remodeling and normalization following therapeutic intervention.
Collapse
|
14
|
Goel H, Printz RL, Shiota C, Estes SK, Pannala V, AbdulHameed MDM, Shiota M, Wallqvist A. Assessing Kidney Injury Induced by Mercuric Chloride in Guinea Pigs with In Vivo and In Vitro Experiments. Int J Mol Sci 2023; 24:7434. [PMID: 37108594 PMCID: PMC10138559 DOI: 10.3390/ijms24087434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Acute kidney injury, which is associated with high levels of morbidity and mortality, affects a significant number of individuals, and can be triggered by multiple factors, such as medications, exposure to toxic chemicals or other substances, disease, and trauma. Because the kidney is a critical organ, understanding and identifying early cellular or gene-level changes can provide a foundation for designing medical interventions. In our earlier work, we identified gene modules anchored to histopathology phenotypes associated with toxicant-induced liver and kidney injuries. Here, using in vivo and in vitro experiments, we assessed and validated these kidney injury-associated modules by analyzing gene expression data from the kidneys of male Hartley guinea pigs exposed to mercuric chloride. Using plasma creatinine levels and cell-viability assays as measures of the extent of renal dysfunction under in vivo and in vitro conditions, we performed an initial range-finding study to identify the appropriate doses and exposure times associated with mild and severe kidney injuries. We then monitored changes in kidney gene expression at the selected doses and time points post-toxicant exposure to characterize the mechanisms of kidney injury. Our injury module-based analysis revealed a dose-dependent activation of several phenotypic cellular processes associated with dilatation, necrosis, and fibrogenesis that were common across the experimental platforms and indicative of processes that initiate kidney damage. Furthermore, a comparison of activated injury modules between guinea pigs and rats indicated a strong correlation between the modules, highlighting their potential for cross-species translational studies.
Collapse
Affiliation(s)
- Himanshu Goel
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shanea K. Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Venkat Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
15
|
Proteomic landscape of the extracellular matrix in the fibrotic kidney. Kidney Int 2023; 103:1063-1076. [PMID: 36805449 DOI: 10.1016/j.kint.2023.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 02/19/2023]
Abstract
The extracellular matrix (ECM) is a complex three-dimensional network of proteins surrounding cells, forming a niche that controls cell adhesion, proliferation, migration and differentiation. The ECM network provides an architectural scaffold for surrounding cells and undergoes dynamic changes in composition and contents during the evolution of chronic kidney disease (CKD). Here, we unveiled the proteomic landscape of the ECM by delineating proteome-wide and ECM-specific alterations in normal and fibrotic kidneys. Decellularized kidney tissue scaffolds were made and subjected to proteomic profiling by liquid chromatography with tandem mass spectrometry. A total of 172 differentially expressed proteins were identified in these scaffolds from mice with CKD. Through bioinformatics analysis and experimental validation, we identified a core set of nine signature proteins, which could play a role in establishing an oxidatively stressed, profibrotic, proinflammatory and antiangiogenetic microenvironment. Among these nine proteins, glutathione peroxidase 3 (GPX3) was the only protein with downregulated expression during CKD. Knockdown of GPX3 in vivo augmented ECM expression and aggravated kidney fibrotic lesions after obstructive injury. Transcriptomic profiling revealed that GPX3 depletion resulted in an altered expression of the genes enriched in hypoxia pathway. Knockdown of GPX3 induced NADPH oxidase 2 expression, promoted kidney generation of reactive oxygen species and activated p38 mitogen-activated protein kinase. Conversely, overexpression of exogenous GPX3 alleviated kidney fibrosis, inhibited NADPH oxidase 2 and p38 mitogen-activated protein kinase. These findings suggest that oxidative stress is a pivotal element of the fibrogenic microenvironment. Thus, our studies represent a comprehensive proteomic characterization of the ECM in the fibrotic kidney and provide novel insights into molecular composition of the fibrogenic microenvironment.
Collapse
|
16
|
Lang H, Zhang H, Ma M, Wan X, Chen Y, Sun Q, Cao C. Serum Fstl1, a novel biomarker screened based on protein array technology, predict acute kidney injury and major renal adverse events after cardiac surgery: A prospective cohort study. Clin Chim Acta 2023; 539:79-86. [PMID: 36372309 DOI: 10.1016/j.cca.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is a severe complication after cardiac surgery. The early prediction of AKI can facilitate timely intervention and prevent adverse outcomes. We aimed to identify unique serum biomarker that can be used to facilitate early prediction of AKI after cardiac surgery. METHODS A prospective cohort study was performed in cardiac surgery patients, serum samples were collected from 172 patients before surgery, 4 h and 1 day after surgery. We used protein array technology to detect the serum protein expression profile of cardiac surgery-associated AKI (CSA-AKI) patients, and verified the novel biomarker follistatin-like 1 (Fstl1) by expanding the sample size. The primary outcome was AKI, under the definition of Kidney Disease: Improving Global Outcomes (KDIGO). RESULTS Patients with AKI had significantly higher serum Fstl1 levels at 4 h after surgery. After multivariate adjustment, the highest quartile of postoperative serum Fstl1 level, compared with the lowest quartile, associated with 56.3-fold higher odds of AKI. Serum Fstl1 at 4 h post-surgery had a high predictive ability for AKI, severe AKI and major renal adverse events(MAKE) (AUC = 0.713, 0.869 and 0.808, respectively). Adding postoperative 4 h serum Fstl1 to the clinical model can significantly improve the predictive performance of the model. CONCLUSIONS Higher serum Fstl1 levels at 4 h post-surgery is associated with higher odds of AKI after cardiac surgery, and when added to clinical model and Cleveland Score, serum Fstl1 levels at 4 h after cardiac surgery enhanced early prediction of AKI, severe AKI and MAKE in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Hong Lang
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Hang Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Shanghai 201620, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu 210006, China
| | - Yuyang Chen
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Qing Sun
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu 211166, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
17
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
18
|
The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 2022; 18:545-557. [PMID: 35788561 DOI: 10.1038/s41581-022-00590-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.
Collapse
|
19
|
Rayego-Mateos S, Morgado-Pascual JL, Lavoz C, Rodrigues-Díez RR, Márquez-Expósito L, Tejera-Muñoz A, Tejedor-Santamaría L, Rubio-Soto I, Marchant V, Ruiz-Ortega M. CCN2 Binds to Tubular Epithelial Cells in the Kidney. Biomolecules 2022; 12:biom12020252. [PMID: 35204752 PMCID: PMC8869303 DOI: 10.3390/biom12020252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), is considered a fibrotic biomarker and has been suggested as a potential therapeutic target for kidney pathologies. CCN2 is a matricellular protein with four distinct structural modules that can exert a dual function as a matricellular protein and as a growth factor. Previous experiments using surface plasmon resonance and cultured renal cells have demonstrated that the C-terminal module of CCN2 (CCN2(IV)) interacts with the epidermal growth factor receptor (EGFR). Moreover, CCN2(IV) activates proinflammatory and profibrotic responses in the mouse kidney. The aim of this paper was to locate the in vivo cellular CCN2/EGFR binding sites in the kidney. To this aim, the C-terminal module CCN2(IV) was labeled with a fluorophore (Cy5), and two different administration routes were employed. Both intraperitoneal and direct intra-renal injection of Cy5-CCN2(IV) in mice demonstrated that CCN2(IV) preferentially binds to the tubular epithelial cells, while no signal was detected in glomeruli. Moreover, co-localization of Cy5-CCN2(IV) binding and activated EGFR was found in tubules. In cultured tubular epithelial cells, live-cell confocal microscopy experiments showed that EGFR gene silencing blocked Cy5-CCN2(IV) binding to tubuloepithelial cells. These data clearly show the existence of CCN2/EGFR binding sites in the kidney, mainly in tubular epithelial cells. In conclusion, these studies show that circulating CCN2(IV) can directly bind and activate tubular cells, supporting the role of CCN2 as a growth factor involved in kidney damage progression.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14071 Cordoba, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral Chile, Valdivia 5090000, Chile;
| | - Raúl R. Rodrigues-Díez
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Laura Márquez-Expósito
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Lucía Tejedor-Santamaría
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Irene Rubio-Soto
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Vanessa Marchant
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
20
|
Ha KB, Sangartit W, Jeong AR, Lee ES, Kim HM, Shim S, Kukongviriyapan U, Kim DK, Lee EY, Chung CH. EW-7197 Attenuates the Progression of Diabetic Nephropathy in db/db Mice through Suppression of Fibrogenesis and Inflammation. Endocrinol Metab (Seoul) 2022; 37:96-111. [PMID: 35255604 PMCID: PMC8901963 DOI: 10.3803/enm.2021.1305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is characterized by albuminuria and accumulation of extracellular matrix (ECM) in kidney. Transforming growth factor-β (TGF-β) plays a central role in promoting ECM accumulation. We aimed to examine the effects of EW-7197, an inhibitor of TGF-β type 1 receptor kinase (ALK5), in retarding the progression of DN, both in vivo, using a diabetic mouse model (db/db mice), and in vitro, in podocytes and mesangial cells. METHODS In vivo study: 8-week-old db/db mice were orally administered EW-7197 at a dose of 5 or 20 mg/kg/day for 10 weeks. Metabolic parameters and renal function were monitored. Glomerular histomorphology and renal protein expression were evaluated by histochemical staining and Western blot analyses, respectively. In vitro study: DN was induced by high glucose (30 mM) in podocytes and TGF-β (2 ng/mL) in mesangial cells. Cells were treated with EW-7197 (500 nM) for 24 hours and the mechanism associated with the attenuation of DN was investigated. RESULTS Enhanced albuminuria and glomerular morphohistological changes were observed in db/db compared to that of the nondiabetic (db/m) mice. These alterations were associated with the activation of the TGF-β signaling pathway. Treatment with EW-7197 significantly inhibited TGF-β signaling, inflammation, apoptosis, reactive oxygen species, and endoplasmic reticulum stress in diabetic mice and renal cells. CONCLUSION EW-7197 exhibits renoprotective effect in DN. EW-7197 alleviates renal fibrosis and inflammation in diabetes by inhibiting downstream TGF-β signaling, thereby retarding the progression of DN. Our study supports EW-7197 as a therapeutically beneficial compound to treat DN.
Collapse
Affiliation(s)
- Kyung Bong Ha
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen,
Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen,
Thailand
| | - Ah Reum Jeong
- Department of Internal Medicine and Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Hong Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Soyeon Shim
- Department of Pharmacy, Ewha Womans University College of Pharmacy, Seoul,
Korea
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen,
Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen,
Thailand
| | - Dae-Kee Kim
- Department of Pharmacy, Ewha Womans University College of Pharmacy, Seoul,
Korea
| | - Eun Young Lee
- Department of Internal Medicine and Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju,
Korea
| |
Collapse
|
21
|
Mulderrig L, Garaycoechea JI, Tuong ZK, Millington CL, Dingler FA, Ferdinand JR, Gaul L, Tadross JA, Arends MJ, O'Rahilly S, Crossan GP, Clatworthy MR, Patel KJ. Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response. Nature 2021; 600:158-163. [PMID: 34819667 DOI: 10.1038/s41586-021-04133-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/13/2021] [Indexed: 01/14/2023]
Abstract
Endogenous DNA damage can perturb transcription, triggering a multifaceted cellular response that repairs the damage, degrades RNA polymerase II and shuts down global transcription1-4. This response is absent in the human disease Cockayne syndrome, which is caused by loss of the Cockayne syndrome A (CSA) or CSB proteins5-7. However, the source of endogenous DNA damage and how this leads to the prominent degenerative features of this disease remain unknown. Here we find that endogenous formaldehyde impedes transcription, with marked physiological consequences. Mice deficient in formaldehyde clearance (Adh5-/-) and CSB (Csbm/m; Csb is also known as Ercc6) develop cachexia and neurodegeneration, and succumb to kidney failure, features that resemble human Cockayne syndrome. Using single-cell RNA sequencing, we find that formaldehyde-driven transcriptional stress stimulates the expression of the anorexiogenic peptide GDF15 by a subset of kidney proximal tubule cells. Blocking this response with an anti-GDF15 antibody alleviates cachexia in Adh5-/-Csbm/m mice. Therefore, CSB provides protection to the kidney and brain against DNA damage caused by endogenous formaldehyde, while also suppressing an anorexic endocrine signal. The activation of this signal might contribute to the cachexia observed in Cockayne syndrome as well as chemotherapy-induced anorectic weight loss. A plausible evolutionary purpose for such a response is to ensure aversion to genotoxins in food.
Collapse
Affiliation(s)
- Lee Mulderrig
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Zewen K Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christopher L Millington
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Felix A Dingler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Liam Gaul
- The Francis Crick Institute, London, UK
| | - John A Tadross
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mark J Arends
- Division of Pathology, University of Edinburgh, Cancer Research UK Edinburgh Centre, IGMM, Edinburgh, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
22
|
Grant MP, Henley N, Dubuissez M, Chen N, Hartmann U, Royal V, Barbier O, Pichette V, Gerarduzzi C. Sub-chronic oral exposure of tungsten induces markers of kidney injury. Am J Physiol Cell Physiol 2021; 322:C205-C217. [PMID: 34852206 DOI: 10.1152/ajpcell.00277.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tungsten is a naturally occurring transition element used in a broad range of applications. As a result of its extensive use, we are increasingly exposed to tungsten from our environment, including potable water, since tungsten can become bioaccessible in ground sources. The kidneys are particularly susceptible to tungsten exposure as this is the main site for tungsten excretion. In this study, we investigated the prolonged effects of tungsten on the kidneys and how this may impact injury and function. When mice were exposed to tungsten in their drinking water for 1-month, kidney function had not significantly changed. Following 3-month exposure, mice were presented with deterioration in kidney function as determined by serum and urine creatinine levels. During 3-months of tungsten exposure, murine kidneys demonstrated significant increases in the myofibroblast marker ⍺SMA, and extracellular matrix products: fibronectin, collagen, and matricellular proteins. In addition, Masson's trichrome and H&E staining revealed an increase in fibrotic tissue and vacuolization of tubular epithelial cells, respectively, from kidneys of tungsten-treated mice, indicative of renal injury. In vitro treatment of kidney fibroblasts with tungsten led to increased proliferation and upregulation of Transforming Growth Factor Beta 1 (TGFβ1), which was consistent with the appearance of fibroblast-to-myofibroblast transition (FMT) markers. Our data suggest that continuous exposure to tungsten impairs kidney function that may lead to the development of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Michael P Grant
- Department of Orthopaedics, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada; Department of Surgery, McGill University, Montréal, Québec, Montreal, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Montreal, Canada
| | - Marion Dubuissez
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec, Canada; Département de microbiologie, infectiologie et immunologie, Montreal, Canada
| | - Nan Chen
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, Vancouver, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Cologne, Germany
| | - Virginie Royal
- Départment de Pathologie, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Montreal, Canada
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col San Pedro Zacatenco, C.P. 07360, Ciudad de México, CDMX, Mexico, Mexico
| | - Vincent Pichette
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec; Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Montreal, Canada
| | - Casimiro Gerarduzzi
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec; Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Montreal, Canada
| |
Collapse
|
23
|
Follistatin-Like-1 (FSTL1) Is a Fibroblast-Derived Growth Factor That Contributes to Progression of Chronic Kidney Disease. Int J Mol Sci 2021; 22:ijms22179513. [PMID: 34502419 PMCID: PMC8431028 DOI: 10.3390/ijms22179513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the mechanisms responsible for the progression of chronic kidney disease (CKD) is incomplete. Microarray analysis of kidneys at 4 and 7 weeks of age in Col4a3-/- mice, a model of progressive nephropathy characterized by proteinuria, interstitial fibrosis, and inflammation, revealed that Follistatin-like-1 (Fstl1) was one of only four genes significantly overexpressed at 4 weeks of age. mRNA levels for the Fstl1 receptors, Tlr4 and Dip2a, increased in both Col4a-/- mice and mice subjected to unilateral ureteral obstruction (UUO). RNAscope® (Advanced Cell Diagnostics, Newark CA, USA) localized Fstl1 to interstitial cells, and in silico analysis of single cell transcriptomic data from human kidneys showed Fstl1 confined to interstitial fibroblasts/myofibroblasts. In vitro, FSTL1 activated AP1 and NFκB, increased collagen I (COL1A1) and interleukin-6 (IL6) expression, and induced apoptosis in cultured kidney cells. FSTL1 expression in the NEPTUNE cohort of humans with focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN), and IgA nephropathy (IgAN) was positively associated with age, eGFR, and proteinuria by multiple linear regression, as well as with interstitial fibrosis and tubular atrophy. Clinical disease progression, defined as dialysis or a 40 percent reduction in eGFR, was greater in patients with high baseline FSTL1 mRNA levels. FSTL1 is a fibroblast-derived cytokine linked to the progression of experimental and clinical CKD.
Collapse
|
24
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
25
|
Alk1 haploinsufficiency causes glomerular dysfunction and microalbuminuria in diabetic mice. Sci Rep 2020; 10:13136. [PMID: 32753679 PMCID: PMC7403732 DOI: 10.1038/s41598-020-68515-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/16/2020] [Indexed: 11/08/2022] Open
Abstract
Endothelial dysfunction has been shown to play an important role in the pathogenesis of glomerular damage during diabetic kidney disease (DKD). As such, a better understanding of the molecular mechanisms involved in glomerular endothelial dysfunctions could provide novel therapeutic strategies for the prevention of DKD. We have previously shown that Alk1/BMP9 signaling plays an important function to maintain vascular integrity in diabetic animals. As such, we evaluated the effects of Alk1 suppression on glomerular endothelial function in diabetic mice. In the present study, we used mice with conditional heterozygote deletion of Alk1 in the endothelium (Alk1ΔEC) to evaluate the role of Alk1 on kidney function during STZ-induced diabetes. DKD was investigated in diabetic control and Alk1ΔEC mice euthanized eight weeks after the onset of diabetes. We showed that Alk1 expression is reduced in the glomeruli of human DKD patients. While renal function was not altered in Alk1ΔEC non-diabetic mice, we showed that Alk1 haploinsufficiency in the glomerular endothelium leads to microalbuminuria, thickening of the glomerular basement membrane, glomerular apoptosis and podocyte loss in diabetic mice. These data suggest that Alk1 is important for the proper function of glomerular endothelial cells and that decreased Alk1 combined with chronic hyperglycemia can impair renal function.
Collapse
|
26
|
Osteopontin: The Molecular Bridge between Fat and Cardiac-Renal Disorders. Int J Mol Sci 2020; 21:ijms21155568. [PMID: 32759639 PMCID: PMC7432729 DOI: 10.3390/ijms21155568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN) is a multifaceted matricellular protein, with well-recognized roles in both the physiological and pathological processes in the body. OPN is expressed in the main organs and cell types, in which it induces different biological actions. During physiological conditioning, OPN acts as both an intracellular protein and soluble excreted cytokine, regulating tissue remodeling and immune-infiltrate in adipose tissue the heart and the kidney. In contrast, the increased expression of OPN has been correlated with the severity of the cardiovascular and renal outcomes associated with obesity. Indeed, OPN expression is at the “cross roads” of visceral fat extension, cardiovascular diseases (CVDs) and renal disorders, in which OPN orchestrates the molecular interactions, leading to chronic low-grade inflammation. The common factor associated with OPN overexpression in adipose, cardiac and renal tissues seems attributable to the concomitant increase in visceral fat size and the increase in infiltrated OPN+ macrophages. This review underlines the current knowledge on the molecular interactions between obesity and the cardiac–renal disorders ruled by OPN.
Collapse
|
27
|
Ahn HS, Kim JH, Jeong H, Yu J, Yeom J, Song SH, Kim SS, Kim IJ, Kim K. Differential Urinary Proteome Analysis for Predicting Prognosis in Type 2 Diabetes Patients with and without Renal Dysfunction. Int J Mol Sci 2020; 21:ijms21124236. [PMID: 32545899 PMCID: PMC7352871 DOI: 10.3390/ijms21124236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Renal dysfunction, a major complication of type 2 diabetes, can be predicted from estimated glomerular filtration rate (eGFR) and protein markers such as albumin concentration. Urinary protein biomarkers may be used to monitor or predict patient status. Urine samples were selected from patients enrolled in the retrospective diabetic kidney disease (DKD) study, including 35 with good and 19 with poor prognosis. After removal of albumin and immunoglobulin, the remaining proteins were reduced, alkylated, digested, and analyzed qualitatively and quantitatively with a nano LC-MS platform. Each protein was identified, and its concentration normalized to that of creatinine. A prognostic model of DKD was formulated based on the adjusted quantities of each protein in the two groups. Of 1296 proteins identified in the 54 urine samples, 66 were differentially abundant in the two groups (area under the curve (AUC): p-value < 0.05), but none showed significantly better performance than albumin. To improve the predictive power by multivariate analysis, five proteins (ACP2, CTSA, GM2A, MUC1, and SPARCL1) were selected as significant by an AUC-based random forest method. The application of two classifiers—support vector machine and random forest—showed that the multivariate model performed better than univariate analysis of mucin-1 (AUC: 0.935 vs. 0.791) and albumin (AUC: 1.0 vs. 0.722). The urinary proteome can reflect kidney function directly and can predict the prognosis of patients with chronic kidney dysfunction. Classification based on five urinary proteins may better predict the prognosis of DKD patients than urinary albumin concentration or eGFR.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jong Ho Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - Hwangkyo Jeong
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul 05505, Korea;
| | - Sang Heon Song
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - Sang Soo Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - In Joo Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
- Correspondence: (I.J.K.); (K.K.); Tel.: +82-51-240-7224 (I.J.K.); +82-2-1688-7575 (K.K.)
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
- Bio-Medical Institute of Technology, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (I.J.K.); (K.K.); Tel.: +82-51-240-7224 (I.J.K.); +82-2-1688-7575 (K.K.)
| |
Collapse
|
28
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|